
 Abstract - In this paper, we discuss a situation of
enterprise software upgrade that is common in real life. We
started with a simplistic model with one software vendor and
then multiple software vendors. This model led to an optimal
interval time for upgrades that resembles the optimal time in
Economic Order Quantity. A more realistic model with
discrete time was proposed by adopting MicroStrategy case
in releasing their newer software, namely one major upgrade
followed by 3 minor upgrades in a year. We proved that the
discrete cost function is convex. From an analysis of several
numerical examples, we found very interesting and a bit
counter intuitive observation.

Keywords - Software upgrade, optimal interval time

I. INTRODUCTION

 Enterprise software refers to computer programs used
by organizations rather than individual users. It typically
includes various business applications, tools for modeling
the organization's operations, and development tools for
creating custom applications. Business Intelligence (BI) is
a type of enterprise software that helps improve decision-
making through fact-based support systems.
 This paper focuses on determining the optimal interval
for upgrading an enterprise software suite, specifically in
the context of Business Intelligence software like
MicroStrategy Platform Analytics. In typical enterprise
scenarios, customers maintain two parallel systems during
the upgrade process: a stable production system using an
older software version and a user acceptance testing (UAT)
system using a newer version. The upgrade involves
comparing these systems.
 Enterprise software like MicroStrategy often provides
testing tools, such as MicroStrategy Integrity Manager, to
aid the upgrade process. However, it is also important to
involve business users in validating the user experience to
ensure that upgrading to the newer version is beneficial.
The main challenge addressed in this paper is finding the
right balance for how frequently a customer should
upgrade their system. The authors develop a simple
mathematical model using both continuous and discrete
time assumptions to determine the optimal upgrade
frequency for enterprise BI software. Enterprise software
refers to computer programs used by organizations rather
than individual users. It typically includes various business
applications, tools for modeling the organization's
operations, and development tools for creating custom
applications. Business Intelligence (BI) is an enterprise

software that helps improve decision-making through fact-
based support systems.
 This paper focuses on determining the optimal interval
for upgrading an enterprise software suite, specifically in
the context of Business Intelligence software like
MicroStrategy Platform Analytics. In typical enterprise
scenarios, customers maintain two parallel systems during
the upgrade process: a stable production system using an
older software version and a user acceptance testing (UAT)
system using a newer version. Therefore, the upgrade
involves comparing these systems.
 Enterprise software like MicroStrategy often provides
testing tools such as MicroStrategy Integrity Manager to
aid the upgrade process. However, it is also important to
involve business users in validating the user experience to
ensure that upgrading to the newer version is beneficial.
 The main challenge addressed in this paper is finding
the right balance for how frequently a customer should
upgrade their system. The authors develop a simple
mathematical model using continuous and discrete time
assumptions to determine the optimal upgrade frequency
for enterprise BI software.

II. LITERATURE REVIEW

 Surprisingly, there are minimal literature reviews that
we can find on the subject of software upgrades, not to
mention: enterprise software. One of the most relevant
pieces of literature we can find is by Vaniea and Rashidi
[1]. They surveyed 307 respondents and concluded that
users balance the risks and costs of updating against
potential benefits. They also suggest several factors to
consider, such as (1) information about the newer version,
(2) resources that need to be allocated, and (3) the recovery
path. However, they do not suggest any particular upgrade
interval to follow.

Labuschagne et al. [2] investigated the cost and benefit
of automated regression testing on 61 Java projects using
the Continuous Integration service provided by GIT-Hub.
They found that it was only sometimes clear to have the
benefit of a regression test compared to the cost of writing,
maintaining, and executing it. Their subject is different
from our focus.

Bala and Carr [3] perhaps is the closest to our research.
They presented mathematical models that relate the
software upgrade to the price. Their research objective is to
understand whether offering a special upgrade price is an
effective strategy. They concluded that offering a discount
is beneficial when the new version has many new

Optimal Interval Time for Enterprise (Business Intelligence) Software Upgrade

I. N. Bisono1, H. Soewandi2
1Department of Industrial Engineering, Petra Christian University, Surabaya, Indonesia

2Microstrategy, Inc., 1850 Towers Crescent Plaza, Tysons Corner, VA 22182, USA
(mlindri@petra.ac.id, hsoewandi@microstrategy.com)

mailto:mlindri@petra.ac.id
mailto:hsoewandi@microstrategy.com

functionalities or minor upgrades (since the users will need
to be given the incentives to adopt the latest technology).
However, when the new version has some new
functionalities, there may be better strategies than
discounted prices. Nevertheless, they focus on merit, not
timing, and they focus on personal software.

Khoo and Robey [4] are one of the research papers
(that we can find) that study enterprise software upgrades
(SAP and Windows) – they called these "package
software." They conducted qualitative empirical research
in a large enterprise. The motivation for the upgrade is
mainly because this packaged software is near the end of
its life cycle (i.e., no longer supported by vendors). They
concluded that a software upgrade is a unique type of IS
project, with characteristics distinguishing it from
maintenance, traditional system development, and initial
adoption of a commercial system. In addition, their study
found that sunset dates can be a dominating influence on
an upgrade decision. Our focus differs from theirs since we
try to balance various costs well.

Planning, S. [5] wrote a report for NIST on the
economic impacts of inadequate infrastructure for software
testing. He presented various economic models for
software testing, focusing on insufficient testing. Again, a
fascinating topic, but utterly different from ours.

With these findings, we decided to build our
mathematical model to understand better. We develop the
model based on the seminal work on inventory control that
balance between set-up (testing) cost and holding (upgrade
testing) cost (see Erlenkotter [6] for detail).

III. METHOD AND DISCUSSION

A. Costs of Enterprise (BI) Software Upgrade and
Simple Mathematical Model

In this section, we will discuss the cost model that we
consider for our optimization. We start with the assumption
that a director or executive has a planning horizon T unit of
time (e.g., ten years, 12 years, 15 years, 20 years, etc.) in
their mind. For the sake of our discussion, which is a
common practice in the industry, when the user wants to
upgrade the system, they will need to set up a parallel User
Acceptance Testing (UAT) system that needs to be
compared with the existing production system.

To do testing, we need to prepare a UAT system:
several Computer/Machine/Virtual Machines with enough
RAM and hard disk, warehouse database (WH RDBMS)
for testing data, etc. Let’s assume the set-up cost to prepare
all of these hardware and test data is US$ K. Therefore, if
we upgrade the Enterprise (BI) system every t unit of time
(where t is our decision variable), we will encounter the
following set-up cost for the entire planning horizon:

𝐾𝐾 × 𝑇𝑇
𝑡𝑡

It is typical that once the UAT system is up and running,
the BI team (or IT department) will perform automated
testing for some benchmark reports. MicroStrategy, as an

enterprise (BI) software provider, has a tool such as
MicroStrategy Integrity Manager that can be used to
compare SQLs and Data for various reports between
different versions. This is usually the first step in the
software upgrade testing. We can safely assume that the
cost of performing this automated comparison is a fixed
cost of US$ 𝒉𝒉𝟎𝟎 as well. Therefore, if the entire planning
horizon is T unit of time, and we perform upgrade
every t unit of time, the cost will be

ℎ0 × 𝑇𝑇
𝑡𝑡

Once we have passed the first stage of upgrade testing,

we will invite business users to verify and confirm that the
UAT system produces the same result as the current
production system, and to see whether business users like
the look and feel of the version. This type of software
system is generally quite challenging and can be costly
because there are more business/end users’ involvement.

Several literatures in software testing suggested that n-
way combinatorial testing is one of the most effective way
in testing [7, 8]. Some researchers even suggest various
techniques on how to generate test sets [9, 10, 11].

Now, imagine that the BI software vendor introduces the
same number of new features every time period (say: 1 new
feature), and the software testing upgrade will do 2-way
testing (test every 2 combinations), then with the
assumption that the current system has already used 2
features, the software testing upgrade will need to consider
combination sequence =},,,,{ 2

6
2

5
2

4
2

3 CCCC
},15,10,6,3{  of test cases, that means:

• If we upgrade in the next 1 time unit, we need to test 2
combinations out of (2+1=3) features.

• If we upgrade in the next 2 time unit, we need to test 2
combinations out of (2+2=4) features.

• If we upgrade in the next 3 time unit, we need to test 2
combinations out of (2+3=5) features.

• Etc.

Therefore, n-way combinatorial software testing
sequence above suggests that the software upgrade testing
will be a function of our decision variable t (optimal inter-
upgrade time). If we wait for 1 time-unit to upgrade for the
new version, we will need to run 3 sets of test cases. If we
wait for 2 time-units, we will need to perform 6 sets of test
cases. Similarly, if we wait for 3 time-units, we will need
to do 10 test cases, etc. Notice that this sequence can be
easily proven to be convex (see equation 4 below).
Therefore, without loss of generality, we can define a
slightly conservative approach to model the software
upgrade testing cost as a linear function (or any convex
function to approximate this cost):

ℎ1 + ℎ2 × t
Hence, in our model, the total cost (TC) for the entire
planning horizon (T) will be given by:
TC = (𝐾𝐾+ℎ0)×𝑇𝑇

𝑡𝑡
+ ℎ1 + ℎ2 × t (𝑇𝑇 ≥ 𝑡𝑡 ≥ 0, ∀t ∈ R) (1)

Notice that TC is a convex function since its summons are
convex respectively. Therefore, taking the derivative of TC

with respect to t, we get the optimal inter-upgrade time to
be:

𝑡𝑡∗ = �(𝐾𝐾+ℎ0)×𝑇𝑇
ℎ2

= �𝐾𝐾1×𝑇𝑇
ℎ2

 (2)

It is very important for us to understand the
interpretation of the software upgrade testing cost ℎ2 in
reality. This is the cost to invite business (end) users to
validate the newer version, and it really depends upon how
often we perform an upgrade (or how different the current
production version to the newer version). In practice, this
is usually an estimate based on the amount of business
(end) users that participate in the pilot project for the UAT
system. It also does not mean that those business (end)
users will do user acceptance testing for the entire duration
of t time unit. We suggest using the compensation rate of
those business (end) users per unit time multiply by a
percentage.

Many who are familiar with inventory control would
quickly point out that the optimal inter-upgrade time in (2)
resembles the Economic Order Quantity (EOQ) of Harris
[12]. While the optimal solution in (2) looks very simple,
it can explain many real-life phenomena in the industry,
and it can also be expanded to cover more complicated
cases, such as more than one software needs to be
upgraded, etc.

Let’s now consider a few critical aspects of those
simple formulas. Consider an organization with a fixed
planning horizon = T (say: 10 years), and analyze the
𝐾𝐾1 ℎ2⁄ ratios. It is straightforward to see that when the set-
up (fixed) cost per testing is relatively high to the cost of
bringing business (end) users to help validate the newer
version, the organization tends to be conservative in their
upgrade. Conversely, suppose an organization tends to
bring more of their business users into the user acceptance
testing, i.e. the 𝐾𝐾1 ℎ2⁄ ratio becomes small (since ℎ2 is
higher), then the inter-upgrade time should be shorter, i.e.,
the organization should upgrade more often. It is very
interesting to point out that this simple phenomenon does
not seem true in real life. Many BI directors/executives for
large enterprises are afraid to do frequent updates.

When the enterprise (BI) software provider observes
the above phenomenon, naturally, the reaction is to modify
the cadence of the release software. Many enterprises (BI)
software providers change their release cadence into a
much more predictable cadence with minor releases to help
and encourage customers to upgrade to the new versions
and, more importantly, release software as Service Pack (or
Update or Minor release) in an effort to reduce the n-way
combinatorial testing cost. This leads to a more realistic
model below.

B. More Realistic Model for Optimal Upgrade Interval

As we have discussed in the previous section, many

enterprise (BI) software vendors, e.g., MicroStrategy,
actually adopted a more predictable cadence in releasing
their newer software with major release follows by minor
(service packs or update releases) such as:

• Dec 2018: MSTR 2019 GA (major release)
• Mar 2019: MSTR 2019 Update 1 (minor release)
• Jun 2019: MSTR 2019 Update 2 (minor release)
• Sep 2019: MSTR 2019 Update 3 (minor release)
• Dec 2019: MSTR 2020 GA (major release)
• Mar 2020: MSTR 2020 Update 1 (minor release)
• Jun 2020: MSTR 2020 Update 2 (minor release)
• Sep 2020: MSTR 2020 Update 3 (minor release)
• Dec 2020: MSTR 2021 GA (major release)
• Mar 2021: MSTR 2021 Update 1 (minor release)

In term of software upgrade testing cost, the above
release cadence can be depicted to have the following cost
consequence as in Figure 1 (remember that the software
upgrade testing cost essentially affected by how many new
features the software version has, as we have pointed as the
result of n-way combinatorial testing).

In this situation, the set-up cost is more or less the same.
However, we will need to discretize the decision variable,
i.e., inter-upgrade time (t) and adjust the upgrade testing
cost accordingly. For simplicity, we can break upgrade
testing cost into two different upgrade testing costs,
namely: upgrade testing cost for major release (h1/quarter)
and upgrade testing cost for minor release (h2/quarter). It
makes sense, and without loss of generality, if we assume:
h1 ≥ h2 since testing for major release will have more new
codes. For the decision variable (t time unit), it can now be
defined as: how many quarters (a discrete number of
quarters) from the last update.
Now, the Total Cost function in (1), for ∀t∈ Z and t ≥ 1,
can be rewritten as:
𝑇𝑇𝑇𝑇(𝑡𝑡) = 𝐾𝐾1×𝑇𝑇

𝑡𝑡
+ ∑ ℎ(𝑛𝑛)𝑡𝑡

𝑛𝑛=1 (

 = 𝐾𝐾1×𝑇𝑇
𝑡𝑡

+ ℎ2 × 𝑡𝑡 + (ℎ1 − ℎ2) × �𝑡𝑡−1
4
� + (ℎ1 − ℎ2)

(3)
Please note that we write the total cost in (3) that way for
the purpose to establish the proof. It should be clear that ∀t
≥ 1, we have: ∑ ℎ(𝑛𝑛) = ℎ2 × 𝑡𝑡 + (ℎ1 − ℎ2) × �𝑡𝑡

4
�𝑡𝑡

𝑛𝑛=1 =

ℎ2 × 𝑡𝑡 + (ℎ1 − ℎ2) × �𝑡𝑡−1
4
� + (ℎ1 − ℎ2).

Following Murota (2008, 2015), we define a univariate
function f: Z → R as a discrete convex function if:

f(t − 1) + f(t + 1) ≥ 2f(t) (∀t ∈ Z) (4)

Fig. 1. The upgrade testing cost will be the area under the above curve

Lemma 1:
If 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡, 4) = 2, 3, and 0, then the total cost TC(t) in (3)
is a discrete convex function.
Proof:

The proof is straight forward, we simply use the definition
in (4) and the fact that

�𝑥𝑥
𝑦𝑦
� = 𝑥𝑥−𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦)

𝑦𝑦
 where mod(x,y) is the remainder of 𝑥𝑥

𝑦𝑦

Then enumerate for t = 2, 3, 4, Here is the detail. First the
right hand side of the inequality in (4):
TC(t – 1) + TC(t + 1) =

�
𝐾𝐾1×𝑇𝑇
(𝑡𝑡−1)

+ ℎ2 × (𝑡𝑡 − 1) +

(ℎ1 − ℎ2) × �𝑡𝑡−2
4
� + (ℎ1 − ℎ2)

�+

�
𝐾𝐾1×𝑇𝑇
(𝑡𝑡+1)

+ ℎ2 × (𝑡𝑡 + 1) +

(ℎ1 − ℎ2) × �𝑡𝑡
4
� + (ℎ1 − ℎ2)

�

 = 2×𝐾𝐾1×𝑇𝑇×𝑡𝑡
(𝑡𝑡2−1)

+ 2 × ℎ2 × 𝑡𝑡 + (ℎ1 − ℎ2) × ��𝑡𝑡−2
4
� + �𝑡𝑡

4
�� +

2 × (ℎ1 − ℎ2)
 = 2×𝐾𝐾1×𝑇𝑇×𝑡𝑡

(𝑡𝑡2−1)
+ 2 × ℎ2 × 𝑡𝑡 + (ℎ1 − ℎ2) ×

�(𝑡𝑡−2)−𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡−2,4)
4

+ 𝑡𝑡−𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡,4)
4

� + 2 × (ℎ1 − ℎ2)

= 2×𝐾𝐾1×𝑇𝑇×𝑡𝑡
(𝑡𝑡2−1)

+ 2 × ℎ2 × 𝑡𝑡 + (ℎ1 − ℎ2) ×

�2𝑡𝑡−𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡−2,4)−𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡+1,4)
4

− 1
2
� + 2 × (ℎ1 − ℎ2) (5)

Now, the left hand side of the inequality (4) can be re-
written as:
2 * TC(t) = 2 × �𝐾𝐾1×𝑇𝑇

𝑡𝑡
+ ℎ2 × 𝑡𝑡 + (ℎ1 − ℎ2) × �𝑡𝑡−1

4
� +

(ℎ1 − ℎ2)�

= 2×𝐾𝐾1×𝑇𝑇
𝑡𝑡

 + 2 × ℎ2 × 𝑡𝑡 + 2 × (ℎ1 − ℎ2) × �𝑡𝑡−𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡−1,4)
4

−
1
4
� + 2 × (ℎ1 − ℎ2) (6)

Since mod is a cyclical function, we just need to compare
equations (5) and (6) for t = 2, 3, and 4. That is we need to
prove that
 2×𝐾𝐾1×𝑇𝑇×𝑡𝑡

(𝑡𝑡2−1)
− (ℎ1 − ℎ2) × �𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡−2,4)+𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡+1,4)

4
� ≥

2×𝐾𝐾1×𝑇𝑇
𝑡𝑡

 − 2 × (ℎ1 − ℎ2) × 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡−1,4)
4

• For t = 2, we have 4×𝐾𝐾1×𝑇𝑇
3

≥ 𝐾𝐾1 × 𝑇𝑇

• For t = 3, we have 3×𝐾𝐾1×𝑇𝑇
4

≥ 2×𝐾𝐾1×𝑇𝑇
3

• For t = 4, we have 8×𝐾𝐾1×𝑇𝑇
15

≥ 𝐾𝐾1×𝑇𝑇
2

Q.E.D.
Unfortunately, we cannot easily establish convexity of

the cost function tor t = 5, 9, 13, 17, … However, we can
have the following: Define transformation 𝑡𝑡 = 4 × 𝑠𝑠 + 1
∀s∈ Z and s ≥ 1, and we have the following Lemma.

Lemma 2:
If 𝑡𝑡 = 4 × 𝑠𝑠 + 1, ∀s∈ Z, s ≥ 1, then the total cost TC(s) in
(3) is a discrete convex function with respect to s.
Proof:

With the transformation, we have the following cost
function: 𝑇𝑇𝑇𝑇(𝑠𝑠) = 𝐾𝐾1×𝑇𝑇

4𝑠𝑠+1
+ ℎ1𝑠𝑠 + 3ℎ2𝑠𝑠 . Applying the

definition of discrete convex function in (4), we have:
LHS= 𝐾𝐾1×𝑇𝑇

4(𝑠𝑠+1)+1
+ ℎ1(𝑠𝑠 + 1) + 3ℎ2(𝑠𝑠 + 1)+ 𝐾𝐾1×𝑇𝑇

4(𝑠𝑠−1)+1
+

ℎ1(𝑠𝑠 − 1) + 3ℎ2(𝑠𝑠 − 1) = 𝐾𝐾1×𝑇𝑇
4𝑠𝑠+5

+ 𝐾𝐾1×𝑇𝑇
4𝑠𝑠−3

+ 2ℎ1𝑠𝑠 + 6ℎ2𝑠𝑠

= (8𝑠𝑠+2)(𝐾𝐾1×𝑇𝑇)
(4𝑠𝑠+5)(4𝑠𝑠−3)

+ 2ℎ1𝑠𝑠 + 6ℎ2𝑠𝑠
and
RHS = 𝐾𝐾1×𝑇𝑇

8𝑠𝑠+1
+ 2ℎ1𝑠𝑠 + 6ℎ2𝑠𝑠

Since 𝐾𝐾1 × 𝑇𝑇 > 0, it is straight forward to see that
(8𝑠𝑠+2)(𝐾𝐾1×𝑇𝑇)
(4𝑠𝑠+5)(4𝑠𝑠−3)

≥ (𝐾𝐾1×𝑇𝑇)
8𝑠𝑠+1

, ∀s∈ Z, s ≥ 1 q.e.d.

Algorithm to Find the Optimal Upgrade Interval

With the above Lemma 2 and Lemma 1, we can then design
the following simple algorithm to find the optimal inter-
upgrade time.

Algorithm:
Initialize TC(t = 1) = according to 𝐾𝐾1 × 𝑇𝑇 + ℎ1
Apply Lemma 2 for t = 5, 9, …

Calculate TC(t) according to (3)
If TC(t) > TC(t – 4), break

Apply Lemma 1 to search the minimal TC for (t – 1), (t –
2), (t – 3) OR (t + 1), (t + 2), (t + 3)
It is worth it to point out that the total cost TC(s) = 𝐾𝐾1×𝑇𝑇

4𝑠𝑠+1
+

ℎ1𝑠𝑠 + 3ℎ2𝑠𝑠 is actually the total cost when we consider
yearly cost (instead of quarterly cost). Since the behavior
of enterprise (BI) software vendor is to produce major
release at the beginning of the year, the total cost for the
entire year is constant. Hence, the problem can actually be
reduced to the original problem in (1) which is convex.

C. Numerical Examples and Observations

To have a better understanding of the difference on
enterprise (BI) software upgrade between countries where
labor cost of upgrade testing software is relatively cheaper
than the set-up cost vs. countries where labor cost is
expensive relative to the set-up cost, we simulated the total
cost (Eq. 3) with various combination ratio h1 on h2 and K1
on h2.

For the simulation, we use planning horizon (T) of 10
years (= 40 quarters), and h2=1. Obviously, in the situation
when the set-up cost (𝐾𝐾1) is relatively high compare to the
upgrade testing cost (h2), then the adoption of newer
version of the enterprise (BI) software will be longer. Take
for example, when 𝐾𝐾1 ten times h2 and h1 = h2, the
simulation resulted optimal inter-upgrade times of 20
quarters. On the other hand, when the set-up cost is less
dominant, it is cheaper to upgrade sooner.

The simulation result grid shown that when the set up
cost is twice at much the minor set-up cost, the optimal
time for upgrade. This observation is a bit counter intuitive
from the action of the enterprise software vendor. The

explanation for this is that the vendor is very likely a more
dominant where its software is very much needed and the
new functionalities that are offered very much needed as
well.

IV. CONCLUSION

 In this paper, we presented a simple mathematical
model that is very similar to the famous economic order
quantity from Harris. We use the argument from n-way
combinatorial testing to model the software testing upgrade
when an enterprise upgrades its enterprise (BI) software.
Even though, simple model, our model can be used to
explain some real-life scenarios.

We further enhance our mathematical model to
account for more realistic scenario by accounting for the
release schedule of the enterprise (BI) software, and
discretize the time period. We further develop a very
simple numerical computation algorithm for planning
purpose. Furthermore, our numerical simulation found
very interesting and a bit counter intuitive observations.
This by itself may need to be further researched.

Clearly, our optimal inter-upgrade system
mathematical model for enterprise software can also be
further enhanced into several different directions, e.g.,
when the release version for every software follow
different schedules (RDBMS software vendor has its own
release schedule, Operating Systems, Mobile, and various
other software may also have different release schedule and
their own variations in term of functionalities).

REFERENCES

[1] Vaniea, Kami and Yasmeen Rashidi (2016), “Tales of

Software Updates: The process of updating software”, CHI
2016: Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, May 2016, pp. 3215 – 3226.

[2] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes
(2017), “Measuring the Cost of Regression Testing in
Practice: A Study of Java Projects using Continuous
Integration”, ESEC/FSE 2017: Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering,
August 2017, pp. 821–830.

[3] Ram Bala and Scott Carr (2009), “Pricing Software
Upgrades: The Role of Product Improvement and User
Costs”, Production and Operations Management, Vol. 18
No. 5, September – October 2009, pp. 560–580.

[4] Huoy Min Khoo and Daniel Robey (2007), "Deciding to
upgrade packaged software: a comparative case study of
motives, contingencies and dependencies", European Journal
of Information Systems, Vol. 16, pp. 555–567.

[5] Planning, S. (2002). The economic impacts of inadequate
infrastructure for software testing. National Institute of
Standards and Technology.

[6] Donald Erlenkotter (2014), “Ford Whitman Harris's
Economical Lot Size Model”, International Journal of
Production Economics, Volume 155, September 2014, pp.
12 – 15.

[7] Sangeeta Sabharwal and Manuj Aggarwal (2017), "A novel
approach for deriving interactions for combinatorial testing",
Engineering Science and Technology, Vol 20, pp. 59 – 71.

[8] Bryce, R. C., Lei, Y., Kuhn, D. R., & Kacker, R. (2010).
Combinatorial testing. In Handbook of Research on Software
Engineering and Productivity Technologies: Implications of
Globalization (pp. 196-208). IGI Global.

[9] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun and J. Lawrence
(2007), "IPOG: A General Strategy for T-Way Software
Testing," 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems
(ECBS'07), 2007, pp. 549-556.

[10] Yu, L., Duan, F., Lei, Y., Kacker, R. N., & Kuhn, D. R.
(2014, January). Combinatorial test generation for software
product lines using minimum invalid tuples. In 2014 IEEE
15th International Symposium on High-Assurance Systems
Engineering (pp. 65-72). IEEE.

[11] Abdullah B. Nasser, Yazan A. Sariera, AbdulRahman A.
Alsewari, and Kamal Z. Zamli (2015), "Assessing
Optimization Based Strategies for t-way Test Suite
Generation: The Case for Flower-based Strategy", 2015
IEEE International Conference on Control System,
Computing and Engineering, 27 - 29 November 2015,
Penang, Malaysia.

[12] Harris, F.W. (1915), "What quantity to make at once", The
Library of Factory Management, Vol. 5, Operation and
Costs, A.W.ShawCompany, Chicago, pp.47 – 52.

[13] Murota, Kazuo (2009), “Recent Developments in Discrete
Convex Analysis, Research Trends in Combinatorial
Optimization”, Bonn 2008 (W. Cook, L. Lovasz and J.
Vygen, eds.), Springer- Verlag, Berlin, Chapter 11, pp. 219
– 260.

[14] Murota, Kazuo (2015), “Discrete Convex Analysis”,
Hausdorff Institute of Mathematics, Summer School
(September 21 – 25, 2015).

	II. LITERATURE REVIEW
	A. Costs of Enterprise (BI) Software Upgrade and Simple Mathematical Model

	To do testing, we need to prepare a UAT system: several Computer/Machine/Virtual Machines with enough RAM and hard disk, warehouse database (WH RDBMS) for testing data, etc. Let’s assume the set-up cost to prepare all of these hardware and test data i...
	It is typical that once the UAT system is up and running, the BI team (or IT department) will perform automated testing for some benchmark reports. MicroStrategy, as an enterprise (BI) software provider, has a tool such as MicroStrategy Integrity Mana...
	When the enterprise (BI) software provider observes the above phenomenon, naturally, the reaction is to modify the cadence of the release software. Many enterprises (BI) software providers change their release cadence into a much more predictable cade...
	B. More Realistic Model for Optimal Upgrade Interval
	Algorithm to Find the Optimal Upgrade Interval
	C. Numerical Examples and Observations

