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Abstract—The regression of the elderly body condition over 

time causes the elderly to be more susceptible to illness and other 

accidents. When the elderly experience illness or an accident 

such as a fall, it is necessary for the family to realize this and 

take prompt treatment immediately. However, with relatively 

many elderly people in Indonesia choosing to live independently, 

it will be difficult for families to find out and provide help 

instantly. Therefore, in this study, the authors form a model for 

recognizing basic human activities with deep learning-based 

computer vision that can be implemented in a supervisory 

system in a room. A deep-learning approach is needed because 

of the complexity and variance of body postures and forms of 

human activities. However, the deep learning approach requires 

extensive resources and computational capabilities. Therefore, 

the model is formed by the YOLOv4-tiny method, one of the tiny 

versions of YOLO. Model training using the author's laptop and 

model inference testing was carried out on the Jetson Nano and 

the author's laptop to compare the inference time between the 

two devices. We investigate the performance of the YOLOv4-

tiny model application on the Jetson Nano and a laptop, as well 

as the accuracy of recognizing human activities. This study 

shows that this particular vision-based human activity 

recognition model formed using YOLOv4-tiny as a deep 

learning method can be applied using Jetson Nano as an 

embedded device in real-time, with a speed of about 20 frames 

per second, mAP@0.50 of 99.04%, and an average F1-Score of 

94.18%. 

Keywords—Human Activity Recognition, Deep Learning, 

Computer Vision, YOLOv4-tiny, Jetson Nano 

I. INTRODUCTION

When reaching old age, some choose to stay with their 
extended family, and the others decided to live. Not only are 
the elderly who live alone, but elderly who are left alone at 
home are a group at risk and require special attention. As 
people age, the muscles will weaken and affect the strength 
and balance of the body, causing the elderly to fall easily. 
Approximately 28-35% of people aged of 65 and over fall 
each year [1, 2, 3] increasing to 32-42% for those over 70 
years of age [4, 5, 6]. In addition, the potential for loss of 
consciousness due to heart problems, problems with feet, 
vision, and hearing can make the elderly easily slip, hit 
furniture, and fall. A sudden fall can be fatal for the elderly, 
especially if they don't get immediate help [7]. Therefore, it 
would be better if there is a supervisory system that could 
detect the basic activities of the elderly, especially for 
activities that are not commonly done, such as sitting on the 
floor and lying on the floor. 

Several methods that can be used to detect the posture of 
the elderly are by using wearable devices [8, 9] and 

nonwearable devices. Nonwearable devices can be divided 
into non vision-based devices [10] and vision-based. The 
development of computer vision and artificial intelligence 
technology has prompted various research to be carried out in 
the vision-based recognition of human activities, known as 
HAR or Human Activities Recognition [11]. The method that 
can be used to recognize humans is the hand-crafted features 
and feature learning approach. Feature learning methods can 
be categorized into non-deep-learning and deep learning. The 
feature learning approach with deep learning methods is a 
topic that is widely explored because of its excellent 
performance in extracting features from data and its ability to 
generalize various kinds of data. 

One algorithm that is often used for object recognition 
and classification is YOLO [12]. YOLO generally has a fast 
performance when compared to other algorithms. The YOLO 
algorithm has also been used several times in research for the 
YOLO human form and activity recognition system [13, 14, 
15]. Researchers found that from previous studies, no studies 
specifically identified and classified humans on mattresses 
and on the floor with human objects that might be blocked 
from view of the camera or occluded. This research was 
conducted to fill the gap from previous studies using the 
YOLOv4-tiny method to be tested on a laptop and the Jetson 
Nano as an embedded device to recognize basic human 
activities. 

II. LITERATURE REVIEW

In recent years, many researchers have adopted deep 
learning approaches such as the CNN approach to overcome 
problems in object classification in images and videos [16]. 
The algorithms that are the mainstay in detecting and 
classifying objects are faster R-CNN [17] and YOLO [12]. 
Faster R-CNN has a higher mean average precision value 
than YOLO, but it is different because YOLO detects and 
classifies objects simultaneously so that the process runs 
much faster and can be implemented in real-time. YOLO has 
begun to be widely used in research on making posture and 
activity detection systems. 

Jun Wu et al. [13] studied human pose recognition by 
utilizing Kinect V2 to capture temporal and spatial data of 
human objects in images. Then the data will be converted to 
RGB form and fed to the YOLO algorithm. There are 2000 
RGB images used for training with a size of 25x200. 
Activities that try to be recognized are standing, sitting, lying 
down, getting up (from lying down), eating, reading, and 
drinking. The results of the training system were designed to 
run well in real-time with the mean average precision of 
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81.88%. However, the system's performance is not good at 
detecting humans whose body parts are occluded by other 
objects. 

Shinde et al. [14] conducted a study on the introduction 
of human interaction both with fellow humans and other 
objects using YOLO. Ten activities are trying to be identified 
from 367 actions contained in 167 videos. The 167 videos 
were divided into 109 videos for training and 58 videos for 
testing. YOLO training is carried out for 40000 iterations. 
The model results have an accuracy rate of 88.378%. The 
system created can be said to run very well. However, for the 
system to run at real-time speed, it requires a GPU with 
medium to high quality. The GPU used by the researchers is 
a Gigabyte GeForce GTX 1050Ti, which in terms of 
performance can be considered as mid-tier processing unit. 

Gul et al. [15] conducted a study to identify patients' 
activities that were considered abnormal, especially those 
related to a sick body condition using YOLO. There are 
23040 frames that are used as a set of data. The training was 
carried out twice. In the first experiment, the dataset was 
divided into a ratio of 60:40, while in the second experiment, 
the dataset was divided into a ratio of 70:30. The test results 
are very good, with an accuracy rate of 95.7% and 96.8%. 
The system can be run in real-time conditions with excellent 
performance. The training and testing were carried out using 
the Titan XP GPU, which in terms of performance can be 
considered as high-tier processing unit. 

Heriyanto [27] conducted a thesis in the form of research 
on a defect detection system of beverage packaging using 
YOLOv3-tiny on Jetson Nano. YOLOv3-tiny [23] is one of 
the lightweight versions of the YOLO method based on 
YOLOv3 [24], which can be applied using embedded devices 
such as the Jetson Nano, which in terms of their performance 
can be considered as low-tier processing unit. The dataset 
used is 200 images. The system made can only display at a 
speed of 2-3 FPS. 

III. PROPOSED METHODOLOGY 

This study uses an experimental method that aims to test 
the performance of the model that will be formed when run 
both on the researcher's laptop and on the Jetson Nano as an 
embedded device to introduce basic human activities. 

The modeling process includes system design, software 
and hardware used, datasets, training and testing 
preparations, and metric equations. 

A. System Design 

The workflow that the author implemented is explained 
in Fig. 1. The author chose a one-stage regression approach 
with the YOLOv4-tiny method [20] for model training and 
testing. The training and model testing were carried out on 
the author's laptop using a personal dataset in images 
containing predetermined human activities. 

Next, the model is loaded into OpenCV to run the object 
detection and classification process simultaneously using the 
help of CUDA and cuDNN. Boundary boxes and labels will 
appear on the object of human activity that corresponds to the 
class being trained. To reduce redundant boundary boxes and 
ensure that the detection obtained is good, the authors set a 
threshold score and a non-maximum suppression threshold, 
respectively, with a value of 0.5. The test is carried out to see 
the speed of the system in making inferences if the system is 

run on a laptop or on an embedded device with either a CPU 
or a GPU. The embedded device used in this study is the 
Nvidia Jetson Nano. 

 

Fig. 1. The workflow of the proposed system 

B. YOLOv4-tiny 

YOLOv4-tiny [20] is one of the lighter versions of the 
YOLO (You Only Look Once) model series. YOLOv4-tiny 
was designed based on the YOLOv4 method [19]. The 
backbone that YOLOv4-tiny uses is CSPDarknet53-tiny, a 
lightweight version of CSPDarknet53 used in YOLOv4. To 
reduce detection duration, YOLOv4-tiny uses FPN (Feature 
Pyramid Network), and 2 YOLO heads compared to 
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YOLOv4, which uses SPP (Spatial Pyramid Pooling) and 
PANet (Path Aggregation Network) as well as 3 YOLO 
heads. YOLOv4-tiny was trained with 29 convoluted pre-
trained layers, while YOLOv4 was trained with 137 
convolutional pre-trained layers. This allows YOLOv4-tiny 
to detect faster than YOLOv4 while taking a slight dip in 
accuracy. 

C. CUDA and cuDNN toolkit 

The CUDA toolkit is provided by Nvidia for developing 
applications requiring GPU acceleration. In the CUDA 
toolkit there are libraries, compilers, CUDA runtime and 
several other development tools. cuDNN is a GPU-
accelerated library for deep learning applications. 

D. OpenCV 

OpenCV (Open Source Computer Vision Library) [18] is 
a computer vision and machine learning software library. 
OpenCV provides a common infrastructure for computer 
vision applications. OpenCV is equipped with more than 
2500 computer vision and machine learning algorithms. 
OpenCV also provides a module for deep learning inference 
since version 3.3 is called OpenCV DNN. OpenCV DNN is 
optimized specifically for Intel processors but can also be 
used on other processors. 

E. Hardware 

We used a Jetson Nano and a laptop for our experiments. 
Jetson Nano is an embedded device developed by Nvidia. The 
specification of Jetson Nano used is 128-Core NVidia 
Maxwell GPU, Quad-core ARM A57 @ 1.43GHz CPU, 2.00 
GB RAM which in terms of performance can be considered as 
low-tier GPU. The laptop used in this study is a laptop with 
an Intel(R) Core i7-7500U CPU @ 2.70GHz, GPU NVidia 
940MX 2GB RAM 20.00 GB which in terms of performance 
can be considered mid-tier processing unit. 

F. Dataset 

The author created and used his own dataset for this study 
which consist of 1619 images with a size of 1280 x 720, of 
which the image contains a person who is doing or posing one 
of 5 simple activities as listed in Table 1. namely: lying on 
the mattress, lying on the floor, standing, sitting on the 
mattress, and sat on the floor. Classes are not evenly 
distributed. The dataset consists of images with a bedroom 
background containing a mattress and one person. The 
picture is taken in a bird's-eye view from 4 different positions 
which is shown in Fig. 2. In addition, the person uses three 
different sets of clothes to add variety to the dataset. The 
author also incorporated occluded human pose to improve the 
model’s recognition capability which previously the model 
could not do [13]. The lying on the mattress and sitting on the 
pose are mostly not occluded. On the contrary, the standing 
pose, sitting on the floor pose and lying on the floor pose used 
for the dataset are mostly occluded. The image is obtained by 
taking frames from the recorded video. Images are captured 
every 1 second, which equals to every 60 frames.  

Furthermore, the dataset will be tidied up by deleting 
images that do not match the desired criteria. After the dataset 
has been tidied up, each image will be labeled and drawn 
using the image annotation tool [21] to get a .txt file 
containing 5 values: class, x-axis center value, y-ordinate 
center value, width, and height. The dataset was randomly 
divided into 1267 images for the training dataset and 352 
images for testing, as shown in Table 2. 

 

Fig. 2. Some samples of images in the dataset. (a) point of view 1, pose: 

lying on the floor; (b) point of view 2, pose: standing; (c) point of view 3 
pose: sitting on the floor; (d) point of view 4 pose: lying on the mattress; (e) 

point of view 4, pose: sitting on the mattress. 

TABLE I.  CATEGORIES OF BASIC HUMAN ACTIVITIES IN THE 
DATASET. 

No. Activity Abbreviation 

1 Lying on The Mattress LB 

2 Lying on The Floor LF 

3 Standing S 

4 Sitting on The Mattress SB 

5 Sitting on The Floor SF 

TABLE II.  DISTRIBUTION OF BASIC HUMAN ACTIVITY RECOGNITION 
DATASET. 

No. 
Abbreviated 

Label 
Training Testing   

1 LM 361 99 460 

2 LF 199 54 253 

3 S 231 65 296 

4 SM 259 73 332 

5 SF 217 61 278 

    1267 352 1619 

 

G. Training and Testing Preparation 

The block diagram for training the YOLOv4-tiny model 
is explained in Fig. 3. which will be described in the next 
chapter. The YOLOv4-tiny method requires several files to 
be prepared and placed in the darknet folder [20], which will 
then be accessed to carry out the training process. The files 
that need to be prepared include: 

• The .txt file which contains the path to all the images 
that are going to be used for training 

• The .txt file contains the path to all the pictures that 
are going to be used for testing 

• The file which contains the name of the entire class 
(obj.names) 

• obj.data file 

• Pre-trained convolutional weights (.weights) files 

• YOLOv4-tiny configuration file (.cfg) for training 

• YOLOv4-tiny configuration file (.cfg) for testing 
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The author set the values for several parameters in the 
training configuration file, such as the following: 

• Batch = 64 

• Subdivision = 32 

• Max batch = 10000 

• Steps = 8000, 9000 (80% and 90% of max batch) 

• Filter (linear convolution layer) = 30 

The author set the values for several parameters in the 
testing configuration file, such as the following: 

• Batch = 1 

• Subdivision = 1 

• Max batch = 10000 

• Steps = 8000, 9000 (80% and 90% of max batch) 

• Filter (linear convolution layer) = 30 

Fig. 3. The block diagram of YOLOv4-tiny training process. 

H. Evaluation Metrics 

The metrics that are sought from the test results apart from 
the average accuracy are precision, recall, and F1-Score [16]. 
These metrics can show the fine-grain insight of how well the 
detection and recognition model performs, compared to just 
knowing the accuracy value. The parameters required are true 
positive (TP), false positive (FP), and false negative (FN). 

Precision is a metric that shows how many positive 
predictions are true. To calculate the precision value [22]: 

    



 (1) 

Recall, or sensitivity, is a metric that shows how many 
true cases were correctly predicted. To calculate the recall 
value [22]: 

    



 (2) 

F1-Score, or harmonic mean, is a metric that combines the 
results of the precision and recall metrics harmonically. The 
F1-Score can provide a more precise indication of the model's 
performance, especially if the classes in the dataset have an 
uneven distribution. To calculate the F1-Score [22]: 

 1     2 ∗
∗


 (3) 

There are two other parameters which can help give 
contexts to the training result and discussion, which is mAP 
and IoU. The mean Average Precision or mAP score is 
calculated by taking the mean AP over all classes and/or 
overall IoU thresholds, depending on different detection 
challenges that exist [25]. 

IoU (Intersection Over Union) is a metric that measures 
the overlap between 2 boundaries. IoU is used to measure 
how much our predicted boundary overlaps with the ground 
truth (the real object boundary). In this dataset, we predefine 
an IoU threshold at 0.50 in classifying whether the prediction 
is a true positive or a false positive [26]. 

    
  

  
 (4) 

 

IV. RESULT AND DISCUSSIONS 

The training was run on the author's laptop and took 
approximately 80 hours. Each iteration takes 8.69 seconds in 
the training process with an average loss of 0.079. The 
training process speed depends on the GPU's capabilities. The 
training is carried out in up to 10000 iterations. The results of 
the training are in the form of several .weights files. The 
author uses the results of the best .weights files for testing. As 
for the test, it was carried out using a Jetson Nano and the 
author's laptop as a comparison. The selected .weights files, 
.cfg files for training, and class label files will be loaded by 
the program that has been built using the OpenCV DNN 
library when the program is run. Programs run on the GPU 
with CUDA and cuDNN. The mean average precision with 
intersection over union threshold at 0.50 or mAP@0.50 
obtained from training YOLOv4-tiny model is 99.04%. This 
parameter shows that the predictions given by the model is 
mostly consistent and has high accuracy and sensitivity. 

TABLE III.  COMPARISON OF THE MEAN INFERENCE TIME AND FRAMES 
PER SECOND OF THE RECOGNITION MODEL. 

No. Device/Hardware 
Average Inference 

time (ms) 

Frames Per 
Second 
(FPS) 

1 
NVIDIA GeForce 
940MX (Laptop)  

                              
3.50    285.71  

2 NVIDIA Jetson Nano 
                            

51.00      19.61  

 

As shown in Table 3. the inference time consumed to 
perform activity recognition when the model is run on a 
laptop has an average speed of about 3.5 milliseconds or 
about 285 - 286 FPS (frames per second). Meanwhile, the 
average time required to perform activity recognition 
inference when the model is deployed on the Jetson Nano is 
about 51 milliseconds or about 19 - 20 FPS. Although the 
speed of the Jetson Nano is not as fast as the laptop, it is 
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relatively close to real-time speed with a delay of less than 1 
second.  

TABLE IV.  COMPARISON OF THE DEVICE USED FOR YOLO INFERENCE 
AND INFERENCE TIME NEEDED. 

No.  YOLO Version Device 
Performance 
Tier 

Frames Per 
Second 
(FPS) 

1 
Not Specified 
[14] 

GeForce 
GTX 
1050 Ti Mid-tier 15 - 16 

2 
Not Specified 
[15] Titan XP High-tier 45 

3 
YOLOv3-tiny 
[27] 

NVIDIA 
Jetson 
Nano Low-tier 2 - 3 

4 YOLOv4-tiny 

NVIDIA 
Jetson 
Nano Low-tier 19.6 

5 YOLOv4-tiny 
GeForce 
940MX Mid-tier 285 - 286 

 

We also tried to compare the performance of YOLO 
method used on previous researches with disregard to their 
model purpose. As shown in Table 4. YOLOv4-tiny deployed 
on mid-tier processing unit has a speed of 285 - 286 FPS 
which far outperforms unspecified YOLO version model 
which is deployed on high-tier processing unit [15]. 
YOLOv4-tiny deployed on low-tier processing unit has a 
speed of 19.6 FPS, which also outperforms unspecified 
YOLO version model which is deployed on mid-tier 
processing unit and YOLOv3-tiny on low-tier processing unit 
[14, 27].  

Fig. 4. New point of view in the same room. (a) pose: sitting on the 
mattress, (b) pose: sitting on the floor, (c) pose: lying on the mattress, (d) 
pose: lying on the floor, (e) pose: standing 

Fig. 5. Occluded human poses. (a) pose: lying on the floor with the upper 

body colluded (b) pose: standing with the head and legs occluded. 

The model can recognize basic human activities and 
recognize them well when tested from the point of view of a 
different room while still in the same room. Fig. 4. shows that 
the model can detect and classify each class with a confidence 
value successively (a) sitting on the mattress with the 
confidence of 1.00, (b) sitting on the floor with the confidence 
of 0.99, (c) lying on the mattress with the confidence of 1.00, 

(d) lying on the floor with the confidence of 0.89, and (e) 
standing with the confidence of 0.98. The model can also 
recognize humans as objects that are occluded or part of the 
body that is occluded by other objects (see Fig. 5). Where the 
model can detect and classify each class with successive 
confidence values (a) sitting on the mattress with the 
confidence of 1.00, and (b) sitting on the floor with the 
confidence of 0.99. 

The values derived from the test dataset are the primary 
metric for evaluating the model's performance. Table 5. 
shows the true positive, false positive, and false negative 
values for each class from the test results. Table 6 shows each 
class's calculation results of precision, recall, and F1-Score. 

TABLE V.  PRECISION, RECALL, F1-SCORE FOR EACH CATEGORY. 

No. 
Abbreviated 

Label 
 Precision 

(%)  
 Recall 

(%)  
 F1-Score 

(%)  

1 LM 
            

98.00  
            

98.99  
             

98.49  

2 LF 
            

94.64  
            

98.15  
             

96.36  

3 S 
            

77.78  
            

98.44  
             

86.90  

4 SM 
            

86.75  
            

98.63  
             

92.31  

5 SF 
            

95.31  
            

98.39  
             

96.83  

  
Mean 

            
90.50  

            
98.52  

             
94.18  

 

Table 5. shows that the model can recognize activities 
lying on the mattress, lying on the floor, standing, sitting on 
the mattress, and sitting on the floor with very high precision, 
recall, and F1-Score values with mean values of 90.50%, 
98.52% and 94.18. %. This shows that in general the model 
can predict each activity extremely well. However, based on 
its precision value in, it can be seen that sometimes the model 
incorrectly predicts supposed-to-be other activities as 
standing or sitting on the mattress. 

TABLE VI.  TRUE POSITIVE, FALSE POSITIVE, AND FALSE NEGATIVE FOR 
EACH CATEGORY. 

No. 
Abbreviated 

Label TP FP 
 

FN 

1 LM 98 2  1 

2 LF 53 3  1 

3 S 63 18  2 

4 SM 72 11  1 

5 SF 61 3  0 

 

As shown in Table 5. and 6. the standing class has a 
precision value of 77.78% with a positive predictive error 
(FP) of 18 from the validation dataset other than standing 
images. The class sitting on the mattress has a precision value 
of 86.75% with a positive predictive error (FP) of 11 from the 
image validation dataset sitting on the mattress. 

The author conjecture that these false positive predictions 
arise due to author’s attempt in making a model which can 
predict occluded objects. The author incorporated image with 
occluded objects for all but sitting on the mattress activity 
which can be seen in Fig. 4. and Fig. 5 to make a YOLO 
model which can comfortably recognize human activities 
even when the object is partially obscured. YOLO annotation 

 

541



captures the class value, center of axis, center of ordinate, 
width, and height. Some poses such as lying on the mattress, 
lying on the floor, and sitting on the floor can be easily 
distinguished by the model due to their unique combination 
of annotation value. On the other hand, some standing pose 
and sitting on the mattress pose can actually have identical 
value combination especially on parameter center of axis, 
center of ordinate, width, and height. 

 

V. CONCLUSIONS 

The conclusions obtained from our research are as 
follows: 

1. YOLOv4-tiny can be deployed on low-tier 
processing unit such as NVIDIA Jetson Nano with a 
speed of 19 – 20 FPS which is close to real-time 
speed, making it a suitable deep learning model for 
smart surveillance system. 

2. The high mean average precision (mAP) value 
(99.04%) and F1-Score (94.18%) in the model 
indicates that YOLOv4-tiny as a deep learning 
model can be used to comfortably recognize 
different static human activities.   

3. Including images with occluded objects as part of 
model training results in better occluded activity 
detection, with a slight decrease of recognition 
precision, which results in the increase of false 
positive predictions, as its drawback.   

In the future, we will focus on testing deep learning 
models on other embedded devices and various libraries to 
compare. In addition to the devices and libraries used, similar 
research, such as optimizing the YOLOv4-tiny method, can 
also be carried out to improve the performance of the tiny 
series YOLO model when the model is implemented using 
embedded devices. 
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