
A Deep Learning Approach for Basic Human
Activity Recognition with YOLOv4-tiny

Jason Halim
Electrical Engineering Department

Petra Christian University

Surabaya, Indonesia
jhelectrical101@gmail.com

Handy Wicaksono
Electrical Engineering Department

Petra Christian University

Surabaya, Indonesia
handy@petra.ac.id

Abstract—The regression of the elderly body condition over

time causes the elderly to be more susceptible to illness and other

accidents. When the elderly experience illness or an accident

such as a fall, it is necessary for the family to realize this and

take prompt treatment immediately. However, with relatively

many elderly people in Indonesia choosing to live independently,

it will be difficult for families to find out and provide help

instantly. Therefore, in this study, the authors form a model for

recognizing basic human activities with deep learning-based

computer vision that can be implemented in a supervisory

system in a room. A deep-learning approach is needed because

of the complexity and variance of body postures and forms of

human activities. However, the deep learning approach requires

extensive resources and computational capabilities. Therefore,

the model is formed by the YOLOv4-tiny method, one of the tiny

versions of YOLO. Model training using the author's laptop and

model inference testing was carried out on the Jetson Nano and

the author's laptop to compare the inference time between the

two devices. We investigate the performance of the YOLOv4-

tiny model application on the Jetson Nano and a laptop, as well

as the accuracy of recognizing human activities. This study

shows that this particular vision-based human activity

recognition model formed using YOLOv4-tiny as a deep

learning method can be applied using Jetson Nano as an

embedded device in real-time, with a speed of about 20 frames

per second, mAP@0.50 of 99.04%, and an average F1-Score of

94.18%.

Keywords—Human Activity Recognition, Deep Learning,

Computer Vision, YOLOv4-tiny, Jetson Nano

I. INTRODUCTION

When reaching old age, some choose to stay with their
extended family, and the others decided to live. Not only are
the elderly who live alone, but elderly who are left alone at
home are a group at risk and require special attention. As
people age, the muscles will weaken and affect the strength
and balance of the body, causing the elderly to fall easily.
Approximately 28-35% of people aged of 65 and over fall
each year [1, 2, 3] increasing to 32-42% for those over 70
years of age [4, 5, 6]. In addition, the potential for loss of
consciousness due to heart problems, problems with feet,
vision, and hearing can make the elderly easily slip, hit
furniture, and fall. A sudden fall can be fatal for the elderly,
especially if they don't get immediate help [7]. Therefore, it
would be better if there is a supervisory system that could
detect the basic activities of the elderly, especially for
activities that are not commonly done, such as sitting on the
floor and lying on the floor.

Several methods that can be used to detect the posture of
the elderly are by using wearable devices [8, 9] and

nonwearable devices. Nonwearable devices can be divided
into non vision-based devices [10] and vision-based. The
development of computer vision and artificial intelligence
technology has prompted various research to be carried out in
the vision-based recognition of human activities, known as
HAR or Human Activities Recognition [11]. The method that
can be used to recognize humans is the hand-crafted features
and feature learning approach. Feature learning methods can
be categorized into non-deep-learning and deep learning. The
feature learning approach with deep learning methods is a
topic that is widely explored because of its excellent
performance in extracting features from data and its ability to
generalize various kinds of data.

One algorithm that is often used for object recognition
and classification is YOLO [12]. YOLO generally has a fast
performance when compared to other algorithms. The YOLO
algorithm has also been used several times in research for the
YOLO human form and activity recognition system [13, 14,
15]. Researchers found that from previous studies, no studies
specifically identified and classified humans on mattresses
and on the floor with human objects that might be blocked
from view of the camera or occluded. This research was
conducted to fill the gap from previous studies using the
YOLOv4-tiny method to be tested on a laptop and the Jetson
Nano as an embedded device to recognize basic human
activities.

II. LITERATURE REVIEW

In recent years, many researchers have adopted deep
learning approaches such as the CNN approach to overcome
problems in object classification in images and videos [16].
The algorithms that are the mainstay in detecting and
classifying objects are faster R-CNN [17] and YOLO [12].
Faster R-CNN has a higher mean average precision value
than YOLO, but it is different because YOLO detects and
classifies objects simultaneously so that the process runs
much faster and can be implemented in real-time. YOLO has
begun to be widely used in research on making posture and
activity detection systems.

Jun Wu et al. [13] studied human pose recognition by
utilizing Kinect V2 to capture temporal and spatial data of
human objects in images. Then the data will be converted to
RGB form and fed to the YOLO algorithm. There are 2000
RGB images used for training with a size of 25x200.
Activities that try to be recognized are standing, sitting, lying
down, getting up (from lying down), eating, reading, and
drinking. The results of the training system were designed to
run well in real-time with the mean average precision of

979-8-3503-9961-5/22/$31.00 ©2022 IEEE 537

81.88%. However, the system's performance is not good at
detecting humans whose body parts are occluded by other
objects.

Shinde et al. [14] conducted a study on the introduction
of human interaction both with fellow humans and other
objects using YOLO. Ten activities are trying to be identified
from 367 actions contained in 167 videos. The 167 videos
were divided into 109 videos for training and 58 videos for
testing. YOLO training is carried out for 40000 iterations.
The model results have an accuracy rate of 88.378%. The
system created can be said to run very well. However, for the
system to run at real-time speed, it requires a GPU with
medium to high quality. The GPU used by the researchers is
a Gigabyte GeForce GTX 1050Ti, which in terms of
performance can be considered as mid-tier processing unit.

Gul et al. [15] conducted a study to identify patients'
activities that were considered abnormal, especially those
related to a sick body condition using YOLO. There are
23040 frames that are used as a set of data. The training was
carried out twice. In the first experiment, the dataset was
divided into a ratio of 60:40, while in the second experiment,
the dataset was divided into a ratio of 70:30. The test results
are very good, with an accuracy rate of 95.7% and 96.8%.
The system can be run in real-time conditions with excellent
performance. The training and testing were carried out using
the Titan XP GPU, which in terms of performance can be
considered as high-tier processing unit.

Heriyanto [27] conducted a thesis in the form of research
on a defect detection system of beverage packaging using
YOLOv3-tiny on Jetson Nano. YOLOv3-tiny [23] is one of
the lightweight versions of the YOLO method based on
YOLOv3 [24], which can be applied using embedded devices
such as the Jetson Nano, which in terms of their performance
can be considered as low-tier processing unit. The dataset
used is 200 images. The system made can only display at a
speed of 2-3 FPS.

III. PROPOSED METHODOLOGY

This study uses an experimental method that aims to test
the performance of the model that will be formed when run
both on the researcher's laptop and on the Jetson Nano as an
embedded device to introduce basic human activities.

The modeling process includes system design, software
and hardware used, datasets, training and testing
preparations, and metric equations.

A. System Design

The workflow that the author implemented is explained
in Fig. 1. The author chose a one-stage regression approach
with the YOLOv4-tiny method [20] for model training and
testing. The training and model testing were carried out on
the author's laptop using a personal dataset in images
containing predetermined human activities.

Next, the model is loaded into OpenCV to run the object
detection and classification process simultaneously using the
help of CUDA and cuDNN. Boundary boxes and labels will
appear on the object of human activity that corresponds to the
class being trained. To reduce redundant boundary boxes and
ensure that the detection obtained is good, the authors set a
threshold score and a non-maximum suppression threshold,
respectively, with a value of 0.5. The test is carried out to see
the speed of the system in making inferences if the system is

run on a laptop or on an embedded device with either a CPU
or a GPU. The embedded device used in this study is the
Nvidia Jetson Nano.

Fig. 1. The workflow of the proposed system

B. YOLOv4-tiny

YOLOv4-tiny [20] is one of the lighter versions of the
YOLO (You Only Look Once) model series. YOLOv4-tiny
was designed based on the YOLOv4 method [19]. The
backbone that YOLOv4-tiny uses is CSPDarknet53-tiny, a
lightweight version of CSPDarknet53 used in YOLOv4. To
reduce detection duration, YOLOv4-tiny uses FPN (Feature
Pyramid Network), and 2 YOLO heads compared to

538

YOLOv4, which uses SPP (Spatial Pyramid Pooling) and
PANet (Path Aggregation Network) as well as 3 YOLO
heads. YOLOv4-tiny was trained with 29 convoluted pre-
trained layers, while YOLOv4 was trained with 137
convolutional pre-trained layers. This allows YOLOv4-tiny
to detect faster than YOLOv4 while taking a slight dip in
accuracy.

C. CUDA and cuDNN toolkit

The CUDA toolkit is provided by Nvidia for developing
applications requiring GPU acceleration. In the CUDA
toolkit there are libraries, compilers, CUDA runtime and
several other development tools. cuDNN is a GPU-
accelerated library for deep learning applications.

D. OpenCV

OpenCV (Open Source Computer Vision Library) [18] is
a computer vision and machine learning software library.
OpenCV provides a common infrastructure for computer
vision applications. OpenCV is equipped with more than
2500 computer vision and machine learning algorithms.
OpenCV also provides a module for deep learning inference
since version 3.3 is called OpenCV DNN. OpenCV DNN is
optimized specifically for Intel processors but can also be
used on other processors.

E. Hardware

We used a Jetson Nano and a laptop for our experiments.
Jetson Nano is an embedded device developed by Nvidia. The
specification of Jetson Nano used is 128-Core NVidia
Maxwell GPU, Quad-core ARM A57 @ 1.43GHz CPU, 2.00
GB RAM which in terms of performance can be considered as
low-tier GPU. The laptop used in this study is a laptop with
an Intel(R) Core i7-7500U CPU @ 2.70GHz, GPU NVidia
940MX 2GB RAM 20.00 GB which in terms of performance
can be considered mid-tier processing unit.

F. Dataset

The author created and used his own dataset for this study
which consist of 1619 images with a size of 1280 x 720, of
which the image contains a person who is doing or posing one
of 5 simple activities as listed in Table 1. namely: lying on
the mattress, lying on the floor, standing, sitting on the
mattress, and sat on the floor. Classes are not evenly
distributed. The dataset consists of images with a bedroom
background containing a mattress and one person. The
picture is taken in a bird's-eye view from 4 different positions
which is shown in Fig. 2. In addition, the person uses three
different sets of clothes to add variety to the dataset. The
author also incorporated occluded human pose to improve the
model’s recognition capability which previously the model
could not do [13]. The lying on the mattress and sitting on the
pose are mostly not occluded. On the contrary, the standing
pose, sitting on the floor pose and lying on the floor pose used
for the dataset are mostly occluded. The image is obtained by
taking frames from the recorded video. Images are captured
every 1 second, which equals to every 60 frames.

Furthermore, the dataset will be tidied up by deleting
images that do not match the desired criteria. After the dataset
has been tidied up, each image will be labeled and drawn
using the image annotation tool [21] to get a .txt file
containing 5 values: class, x-axis center value, y-ordinate
center value, width, and height. The dataset was randomly
divided into 1267 images for the training dataset and 352
images for testing, as shown in Table 2.

Fig. 2. Some samples of images in the dataset. (a) point of view 1, pose:

lying on the floor; (b) point of view 2, pose: standing; (c) point of view 3
pose: sitting on the floor; (d) point of view 4 pose: lying on the mattress; (e)

point of view 4, pose: sitting on the mattress.

TABLE I. CATEGORIES OF BASIC HUMAN ACTIVITIES IN THE
DATASET.

No. Activity Abbreviation

1 Lying on The Mattress LB

2 Lying on The Floor LF

3 Standing S

4 Sitting on The Mattress SB

5 Sitting on The Floor SF

TABLE II. DISTRIBUTION OF BASIC HUMAN ACTIVITY RECOGNITION
DATASET.

No.
Abbreviated

Label
Training Testing

1 LM 361 99 460

2 LF 199 54 253

3 S 231 65 296

4 SM 259 73 332

5 SF 217 61 278

 1267 352 1619

G. Training and Testing Preparation

The block diagram for training the YOLOv4-tiny model
is explained in Fig. 3. which will be described in the next
chapter. The YOLOv4-tiny method requires several files to
be prepared and placed in the darknet folder [20], which will
then be accessed to carry out the training process. The files
that need to be prepared include:

• The .txt file which contains the path to all the images
that are going to be used for training

• The .txt file contains the path to all the pictures that
are going to be used for testing

• The file which contains the name of the entire class
(obj.names)

• obj.data file

• Pre-trained convolutional weights (.weights) files

• YOLOv4-tiny configuration file (.cfg) for training

• YOLOv4-tiny configuration file (.cfg) for testing

539

The author set the values for several parameters in the
training configuration file, such as the following:

• Batch = 64

• Subdivision = 32

• Max batch = 10000

• Steps = 8000, 9000 (80% and 90% of max batch)

• Filter (linear convolution layer) = 30

The author set the values for several parameters in the
testing configuration file, such as the following:

• Batch = 1

• Subdivision = 1

• Max batch = 10000

• Steps = 8000, 9000 (80% and 90% of max batch)

• Filter (linear convolution layer) = 30

Fig. 3. The block diagram of YOLOv4-tiny training process.

H. Evaluation Metrics

The metrics that are sought from the test results apart from
the average accuracy are precision, recall, and F1-Score [16].
These metrics can show the fine-grain insight of how well the
detection and recognition model performs, compared to just
knowing the accuracy value. The parameters required are true
positive (TP), false positive (FP), and false negative (FN).

Precision is a metric that shows how many positive
predictions are true. To calculate the precision value [22]:

  



 (1)

Recall, or sensitivity, is a metric that shows how many
true cases were correctly predicted. To calculate the recall
value [22]:

  



 (2)

F1-Score, or harmonic mean, is a metric that combines the
results of the precision and recall metrics harmonically. The
F1-Score can provide a more precise indication of the model's
performance, especially if the classes in the dataset have an
uneven distribution. To calculate the F1-Score [22]:

 1    2 ∗
∗


 (3)

There are two other parameters which can help give
contexts to the training result and discussion, which is mAP
and IoU. The mean Average Precision or mAP score is
calculated by taking the mean AP over all classes and/or
overall IoU thresholds, depending on different detection
challenges that exist [25].

IoU (Intersection Over Union) is a metric that measures
the overlap between 2 boundaries. IoU is used to measure
how much our predicted boundary overlaps with the ground
truth (the real object boundary). In this dataset, we predefine
an IoU threshold at 0.50 in classifying whether the prediction
is a true positive or a false positive [26].

  
  

  
 (4)

IV. RESULT AND DISCUSSIONS

The training was run on the author's laptop and took
approximately 80 hours. Each iteration takes 8.69 seconds in
the training process with an average loss of 0.079. The
training process speed depends on the GPU's capabilities. The
training is carried out in up to 10000 iterations. The results of
the training are in the form of several .weights files. The
author uses the results of the best .weights files for testing. As
for the test, it was carried out using a Jetson Nano and the
author's laptop as a comparison. The selected .weights files,
.cfg files for training, and class label files will be loaded by
the program that has been built using the OpenCV DNN
library when the program is run. Programs run on the GPU
with CUDA and cuDNN. The mean average precision with
intersection over union threshold at 0.50 or mAP@0.50
obtained from training YOLOv4-tiny model is 99.04%. This
parameter shows that the predictions given by the model is
mostly consistent and has high accuracy and sensitivity.

TABLE III. COMPARISON OF THE MEAN INFERENCE TIME AND FRAMES
PER SECOND OF THE RECOGNITION MODEL.

No. Device/Hardware
Average Inference

time (ms)

Frames Per
Second
(FPS)

1
NVIDIA GeForce
940MX (Laptop)

3.50 285.71

2 NVIDIA Jetson Nano

51.00 19.61

As shown in Table 3. the inference time consumed to
perform activity recognition when the model is run on a
laptop has an average speed of about 3.5 milliseconds or
about 285 - 286 FPS (frames per second). Meanwhile, the
average time required to perform activity recognition
inference when the model is deployed on the Jetson Nano is
about 51 milliseconds or about 19 - 20 FPS. Although the
speed of the Jetson Nano is not as fast as the laptop, it is

540

relatively close to real-time speed with a delay of less than 1
second.

TABLE IV. COMPARISON OF THE DEVICE USED FOR YOLO INFERENCE
AND INFERENCE TIME NEEDED.

No. YOLO Version Device
Performance
Tier

Frames Per
Second
(FPS)

1
Not Specified
[14]

GeForce
GTX
1050 Ti Mid-tier 15 - 16

2
Not Specified
[15] Titan XP High-tier 45

3
YOLOv3-tiny
[27]

NVIDIA
Jetson
Nano Low-tier 2 - 3

4 YOLOv4-tiny

NVIDIA
Jetson
Nano Low-tier 19.6

5 YOLOv4-tiny
GeForce
940MX Mid-tier 285 - 286

We also tried to compare the performance of YOLO
method used on previous researches with disregard to their
model purpose. As shown in Table 4. YOLOv4-tiny deployed
on mid-tier processing unit has a speed of 285 - 286 FPS
which far outperforms unspecified YOLO version model
which is deployed on high-tier processing unit [15].
YOLOv4-tiny deployed on low-tier processing unit has a
speed of 19.6 FPS, which also outperforms unspecified
YOLO version model which is deployed on mid-tier
processing unit and YOLOv3-tiny on low-tier processing unit
[14, 27].

Fig. 4. New point of view in the same room. (a) pose: sitting on the
mattress, (b) pose: sitting on the floor, (c) pose: lying on the mattress, (d)
pose: lying on the floor, (e) pose: standing

Fig. 5. Occluded human poses. (a) pose: lying on the floor with the upper

body colluded (b) pose: standing with the head and legs occluded.

The model can recognize basic human activities and
recognize them well when tested from the point of view of a
different room while still in the same room. Fig. 4. shows that
the model can detect and classify each class with a confidence
value successively (a) sitting on the mattress with the
confidence of 1.00, (b) sitting on the floor with the confidence
of 0.99, (c) lying on the mattress with the confidence of 1.00,

(d) lying on the floor with the confidence of 0.89, and (e)
standing with the confidence of 0.98. The model can also
recognize humans as objects that are occluded or part of the
body that is occluded by other objects (see Fig. 5). Where the
model can detect and classify each class with successive
confidence values (a) sitting on the mattress with the
confidence of 1.00, and (b) sitting on the floor with the
confidence of 0.99.

The values derived from the test dataset are the primary
metric for evaluating the model's performance. Table 5.
shows the true positive, false positive, and false negative
values for each class from the test results. Table 6 shows each
class's calculation results of precision, recall, and F1-Score.

TABLE V. PRECISION, RECALL, F1-SCORE FOR EACH CATEGORY.

No.
Abbreviated

Label
 Precision

(%)
 Recall

(%)
 F1-Score

(%)

1 LM

98.00

98.99

98.49

2 LF

94.64

98.15

96.36

3 S

77.78

98.44

86.90

4 SM

86.75

98.63

92.31

5 SF

95.31

98.39

96.83

Mean

90.50

98.52

94.18

Table 5. shows that the model can recognize activities
lying on the mattress, lying on the floor, standing, sitting on
the mattress, and sitting on the floor with very high precision,
recall, and F1-Score values with mean values of 90.50%,
98.52% and 94.18. %. This shows that in general the model
can predict each activity extremely well. However, based on
its precision value in, it can be seen that sometimes the model
incorrectly predicts supposed-to-be other activities as
standing or sitting on the mattress.

TABLE VI. TRUE POSITIVE, FALSE POSITIVE, AND FALSE NEGATIVE FOR
EACH CATEGORY.

No.
Abbreviated

Label TP FP

FN

1 LM 98 2 1

2 LF 53 3 1

3 S 63 18 2

4 SM 72 11 1

5 SF 61 3 0

As shown in Table 5. and 6. the standing class has a
precision value of 77.78% with a positive predictive error
(FP) of 18 from the validation dataset other than standing
images. The class sitting on the mattress has a precision value
of 86.75% with a positive predictive error (FP) of 11 from the
image validation dataset sitting on the mattress.

The author conjecture that these false positive predictions
arise due to author’s attempt in making a model which can
predict occluded objects. The author incorporated image with
occluded objects for all but sitting on the mattress activity
which can be seen in Fig. 4. and Fig. 5 to make a YOLO
model which can comfortably recognize human activities
even when the object is partially obscured. YOLO annotation

541

captures the class value, center of axis, center of ordinate,
width, and height. Some poses such as lying on the mattress,
lying on the floor, and sitting on the floor can be easily
distinguished by the model due to their unique combination
of annotation value. On the other hand, some standing pose
and sitting on the mattress pose can actually have identical
value combination especially on parameter center of axis,
center of ordinate, width, and height.

V. CONCLUSIONS

The conclusions obtained from our research are as
follows:

1. YOLOv4-tiny can be deployed on low-tier
processing unit such as NVIDIA Jetson Nano with a
speed of 19 – 20 FPS which is close to real-time
speed, making it a suitable deep learning model for
smart surveillance system.

2. The high mean average precision (mAP) value
(99.04%) and F1-Score (94.18%) in the model
indicates that YOLOv4-tiny as a deep learning
model can be used to comfortably recognize
different static human activities.

3. Including images with occluded objects as part of
model training results in better occluded activity
detection, with a slight decrease of recognition
precision, which results in the increase of false
positive predictions, as its drawback.

In the future, we will focus on testing deep learning
models on other embedded devices and various libraries to
compare. In addition to the devices and libraries used, similar
research, such as optimizing the YOLOv4-tiny method, can
also be carried out to improve the performance of the tiny
series YOLO model when the model is implemented using
embedded devices.

VI. REFERENCES

[1] Blake A et al. “Falls by elderly people at home: prevalence and
associated factors.” Age Ageing, 1988, 17:365-372.

[2] Prudham D, Evans J. “Factors associated with falls in the elderly: a
community study.” Age Ageing, 1981, 10:141-146.

[3] Campbell AJ et al. “Falls in old age: a study of frequency and related
clinical factors.” Age Ageing, 1981, 10:264-270.

[4] Tinetti ME, Speechley M, Ginter SF. “Risk factors for falls among
elderly persons living in the community.” New England Journal of
Medicine, 1988, 319:1701-1707.

[5] Downton JH, and Andrews K. “Prevalence, characteristics and factors
associated with falls among the elderly living at home.” Aging
(Milano), 1991, 3(3):219-28.

[6] Stalenhoef PA et al. “A risk model for the prediction of recurrent falls
in communitydwelling elderly: A prospective cohort study.” Journal of
Clinical Epidemiology, 2002, 55(11):1088- 1094.

[7] “Magnitude of Falls - A Worldwide Overview.” Who Global Report
on Falls Prevention in Older Age, World Health Organization, Geneva,
2008, pp. 2–4.

[8] Liu, Junxiu, et al. "Human Body Posture Recognition Using Wearable
Devices." SpringerLink, Springer International Publishing, 9 Sept.
2019, https://link.springer.com/chapter/10.1007/978-3-030-30493-
5_33.

[9] Özgül, Gizem, and Fatma Patlar Akbulut. "Wearable Sensor Device for
Posture Monitoring and Analysis during Daily Activities: A
Preliminary Study." International Advanced Researches and

Engineering Journal, 15 Apr. 2022,
https://doi.org/10.35860/iarej.1018977.

[10] Huang, Xiaoping, et al. "A Posture Recognition Method Based on
Indoor Positioning Technology." MDPI, Multidisciplinary Digital
Publishing Institute, 26 Mar. 2019,
https://doi.org/10.3390/s19061464.

[11] Beddiar, Djamila Romaissa, et al. "Vision-Based Human Activity
Recognition: A Survey - Multimedia Tools and Applications."
SpringerLink, Springer US, 15 Aug. 2020,
https://link.springer.com/article/10.1007/s11042-020-09004-3.

[12] Redmon, Joseph et al. "You Only Look Once: Unified, Real-Time
Object Detection". Arxiv.Org, 2022,
https://doi.org/10.48550/arXiv.1506.02640.

[13] Jun Wu et al. "Skeleton Based Temporal Action Detection with
YOLO." Journal Of Physics: Conference Series, 1237(2), 022087.
https://doi.org/10.1088/1742-6596/1237/2/022087.

[14] Shinde, Shubham, et al. "YOLO based Human Action Recognition and
Localization." Procedia Computer Science, 133, 831-838.
https://doi.org/10.1016/j.procs.2018.07.112.

[15] Gul, Malik Ali et al. "Patient Monitoring By Abnormal Human
Activity Recognition Based On CNN Architecture". Electronics, vol 9,
no. 12, 2020, p. 1993. MDPI AG,
https://doi.org/10.3390/electronics9121993.

[16] O'Shea, Keiron, and Ryan Nash. "An Introduction to Convolutional
Neural Networks." ArXiv.org, 2 Dec. 2015,
https://arxiv.org/abs/1511.08458.

[17] Ren, Shaoqing, et al. "Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks." ArXiv.org, 6 Jan. 2016,
https://arxiv.org/abs/1506.01497.

[18] Culjak, Ivan, et al, "A brief introduction to OpenCV," 2012
Proceedings of the 35th International Convention MIPRO, 2012, pp.
1725-1730.

[19] Bochkovskiy, Alexey, et al. “Yolov4: Optimal Speed and Accuracy of
Object Detection.” ArXiv.org, 23 Apr. 2020,
https://arxiv.org/abs/2004.10934.

[20] Bochkovskiy, Alexey, Darknet: Open Source Neural Networks in
Python. 2020. https://github.com/AlexeyAB/darknet.

[21] Yonghye, Kwon. "Yolo Label." 2021
https://github.com/developer0hye/Yolo_Label.

[22] Kanstrén, Teemu. "A Look at Precision, Recall, and F1-Score."
Medium, Towards Data Science, 19 May 2021,
https://towardsdatascience.com/a-look-at-precision-recall-and-f1-
score-36b5fd0dd3ec.

[23] Adarsh, Pranav, et al. "Yolo v3-Tiny: Object Detection and
Recognition Using One Stage Improved Model." 2020 6th
International Conference on Advanced Computing and
Communication Systems (ICACCS), 2020,
https://doi.org/10.1109/icaccs48705.2020.9074315.

[24] Redmon, Joseph, and Ali Farhadi. "Yolov3: An Incremental
Improvement." ArXiv.org, 8 Apr. 2018,
https://doi.org/10.48550/arXiv.1804.02767.

[25] Yohanandan, Shivy. “Map (Mean Average Precision) Might Confuse
You!” Medium, Towards Data Science, 9 June 2020,
https://towardsdatascience.com/map-mean-average-precision-might-
confuse-you-5956f1bfa9e2.

[26] Hui, Jonathan. “Map (Mean Average Precision) for Object Detection.”
Medium, Medium, 3 Apr. 2019, https://jonathan-
hui.medium.com/map-mean-average-precision-for-object-detection-
45c121a31173.

[27] Heriyanto, Joshua Alexander. “Pengenalan Objek Untuk Mendeteksi
Cacat Kemasan Pada Sistem Otomatis Berbasis PLC.” Online Catalog
| Library@Petra, 2021,
https://dewey.petra.ac.id/catalog/digital/detail?id=49872.

542

