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software architecture ABSTRACT A robot may need

to use a tool to solve a complex

problem. Currently, tool use must be pre-programmed by a human. However, this is a difficult task and can
be helped if the robot is able to learn how to use a tool by itself. Most of the work in tool use learning by a
robot is done using a feature-based representation. Despite many successful results, this representa- tion is
limited in the types of tools and tasks that can be handled. Furthermore, the complex relationship between a
tool and other world objects cannot be captured easily. Relational learning methods have been proposed to
overcome these weaknesses [1, 2]. However, they have only been evaluated in a sensor-less simulation to
avoid the complexities and uncer- tainties of the real world. We present a real world implementation of a

relational tool use learning system for a robot. In our experiment, a

robot requires around ten examples to
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learn to use a hook-like tool to pull a cube from

a narrow tube. Copyright ○c 2018 Institute of Advanced Engineering and Science. All rights reserved.
Corresponding Author: Handy Wicaksono School of Computer Science and Engineering, University of New
South Wales handyw@cse.unsw.edu.au

1. INTRODUCTION Humans use tools to help them complete everyday

tasks. The ability to use tools is a feature of

humans intelligence [3]. Like humans, a robot also needs to be

able to use a tool to solve a complex task. As an

example, in the RoboCup@Home competition, a robot is asked to demonstrate several tool use abilities
such as opening a bottle by using a bottle opener or watering a plant with a watering can [4]. The robot is
given complete knowledge of the tools and how to use them. When such knowledge is not available, a robot
must learn it. Most work in tool use learning has used a feature-based representation that is dependent on
an object’s primitive features. Thus, it is not flexible enough to be applied to different tools and
environments. Learning is also limited to tool selection only. Brown proposed a relational approach which
can overcome these limitations. Furthermore, Wicaksono & Sammut ([5]) have suggested that this
representation has potential to solve a more complex problem, such as tool creation.

We define a tool as an object that is deliberately employed by an agent to

help it achieve a goal, which would be too difficult to achieve without the

tool. We want to learn a tool action model that

explains

changes in the properties of one or more objects affected by the tool,
given that certain preconditions are met. Following Brown [1],

learning is performed

by trial and error in an Inductive Logic Programming (ILP)

setting [6]. Brown [1] carried out tool use learning in a sensor-less simulation. This means that a robot has
perfect knowledge of the world and uncertainties in the sensors’ readings are eliminated. In this paper, we
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would present a complete robotic system for tool use learning following a relational learning approach. This
includes three components: 1. Developing a robot software architecture that consists of primitive and
abstract layers and facilitates communi- cation between them. 2. Creating a mechanism to detect objects
and generating primitive behaviors for tool use. 3. Extending relational learning methods and conducting tool
use learning experiments using a real robot.

In the following sections, we describe relevant previous work, the

knowledge representation

formalism used, the software architecture, and the tool use learning mechanism. Finally, we perform several
real world experiments and draw conclusions. Journal Homepage:
http://iaesjournal.com/online/index.php/IJECE 2. RELATED WORK An intelligent robot is identified by its
ability to make a decision and learn autonomously in an unstructured environment. Machine learning
techniques could be useful as they can compensate for the imperfect model of a robot in a real world. For
example, control of a robot manipulator can be improved by equipping a PD torque controller with Adaptive
Neuro-Fuzzy Inference System [7] or combining sliding mode control with genetic algorithm [8]. In a
behavior-based robotics approach, reinforcement learning can be used to learn the robot’s behavior [9].
Here we describe the

previous work in tool use learning by a robot.

Wood et al. [10] use a neural network

to learn appropriate posture of a Sony Aibo robot so it can reach an

object by using a tool placed on its back. Stoytchev

[11] learns

to select a correct tool via its affordances which are grounded in robot

behaviors. However, its result can not be generalized to other new tools.

More

recent work by Tikhanoff et al. [12]) combine exploratory behaviors and a

geometrical feature extraction to learn affordances and tool use. Mar et
al. [13] extend their work by learning a grasp configuration which influences the

outcome of a tool use action. The limitations of feature-
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based representations were mentioned above. Only recently have such representa- tions been extended so
that a robot can learn to grasp a tool [13]. An ILP system can overcome these limitations, as it represents
the tools and other objects in a relational representation [1, 2]. However, previous work has been done
previously in sensor-less simulation only. This means the complexities of acquiring perceptions, generating
precise movements, and dealing with world uncertainties, are avoided. We aim to develop a complete
robotic system that facilitates this learning in a real world. 3. REPRESENTING

STATES AND ACTIONS We maintain two representations of states and

actions in primitive

and abstract form. Primitive states are the positions of all objects in the world that are captured by vision
sensors using a mechanism described in section 4.2.. As we only use simple objects, they

can be detected by their two-dimensional appearance only.

Abstract states are represented as expressions in first-order logic, to be more specific as Horn clauses.
Primi- tive states are translated to an abstract state by calling relevant Prolog programs with the primitive
states as their bound values.

To be classified as a tool, an object must possess particular structural

properties (e.g. a particular side where a hook is attached to the handle)

and spatial properties (e.g. a hook is touching the back side of a cube). We

collect these

properties in a hypothesis, namely tool pose, which is shown below in simplified form.

tool pose(Handle ,Hook,Box, Tube):− attached end(Handle ,Hook,back),

% a structural property attached side(Handle ,Hook,Side),

% a structural property touching(Hook,Box,back). % a spatial property We use an extended STRIPS action
model [14] to describe an abstract action and how it affects the world. A primitive goal that has to be
achieved by a robot is added at the end of the model. Action name PRE : states that must be true so that an
action can be performed ADD : conditions that become true as a result of the action DELETE : conditions
that are no longer true following the action CONSTRAINTS : the physical limits of actuators that constrain
the action This action model is also a planning operator. Thus, action learning does not happen in isolation,
as it is a part of a problem solving scenario. Every abstract action is linked to a set of primitive behaviors.
This will be discussed later in section 4.3. 4. ROBOTIC SYSTEM In this section, we explain our software
architecture, objects detection method, and behavior generation mechanism. 4.1. Software Architecture We
use a relational representation in the high-level layer to take advantage of the expressiveness of first-order
logic (FOL) clauses, especially Horn clauses, and equip a robot with useful symbolic techniques. We
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implement this layer in SWI Prolog. Most modern Prolog implementations, including SWI, incorporate a
constraint solver which provide advanced numerical reasoning capabilities. 1232 ISSN: 2088-8708 In the
low-level layer, a robot operates in a world of continuous, noisy and uncertain measurements. Its sensors
return readings in numeric ranges, and its actuators operate based on numerical set points. As we aim to
use Robot Operating System (ROS1) as our middleware, we implement this layer in Python. The Baxter
robot, from Re- think Robotics, has its own ROS-Python API, a set of classes that provides wrappers around
the ROS communication. Another layer, namely the translator, is needed to map primitive to abstract states
and to link an abstract action to corresponding primitive behaviors. It is written in C++ which has an interface
to SWI Prolog as the language for the abstract layer. Communication to the primitive layer is done via ROS
using a simple publish and subscribe mechanism. Our robot software architecture is shown in Fig. 1a. We
give a simple illustration of action execution, namely find tool, which involves communication be- tween
layers. In the primitive layer, a cube and a tube are detected, their corners are acquired and published to-
gether by a ROS node, namely /translator, as a ROS topic, /pri states. The translator also has a ROS node,
/translator, that subscribes to that topic. Then it evaluates the status of the abstract state, in tube
(Cube,Tube), by calling the relevant Prolog predicate. In the abstract layer, in tube(Cube,Tube) is called. If it
is true, as it is the only the precondition of the find tool action, then the translator will publish it as the ROS
topic, /abs action that represents the currently active action. The primitive layer subscribes to this topic. If it
recognizes find tool as an active action, then it triggers the corresponding primitive behaviors. See Fig. 1b
for detail. Abstract layer Abstract layer

ILP Learner Planner Constraint Logical Abstract Action 1 Solver / State

Abstract Action n Pose Selector Tool Selector Abstract

Tool Abstract Tool states Translator identity actions pose States translator Actions translator Primitive
Primitive layer Primitive action + states Primitive Object states Detection Pixels Perception parameters
Behaviors

Generation Motors commands PID Controller Real World (a) Software

architecture

STRIPS action model PRE: EFF: NAME: in_tube(Cube,Tube) tool_found(Tool) find_tool Translator call
Prolog predicate: in_tube(Cube,Tube) publish "find_tool" abstract action ROS node: /translator ROS topic:
/pri_states ROS topic: /abs_action Primitive layer ROS node: /primitive cube(12,6,15,9) tube(0,0,15,20)
behaviors generation objects detection go to tool area, find correct tool (b) Simplified example Figure 1.
Robot software architecture and its example 4.2. Object Detection We detect all objects (i.e. different tools, a
cube, and a tube) by their two-dimensional appearances only. We use the Baxter camera to detect objects
locally, while an external web camera provides the global world state. We combine local and global images
from both cameras to achieve our goal. The OpenCV library is used for object detection. In pre-processing,
Gaussian smoothing is applied. Later, the edges of objects in an image are detected with

a Canny Edge detector, and their contours are found. Each contour is

tested to
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check whether it has the properties of a particular object. The contour properties include the

number of edges, the area, the angle formed by two adjacent parts, the

convexity, and the perimeter.

Tools are treated specially as they have more than one shape. After being detected as a tool, the object’s
type is determined, and its handle and hook(s) are acquired. All objects are represented 1 http://www.ros.org
Int J Elec & Comp Eng Vol. 8, No. 2, April 2018: 1230 – 1237 by their minimum and maximum corner points
in Cartesian coordinates (Xmin, Ymin, Xmax, Ymax ). The complete mechanism

is shown in Algorithm 1. Algorithm 1 Objects detection 1: Capture an

image 2: Perform Gaussian smoothing 3: Detect the edges of objects
using Canny detector 4: Find the contours of the objects 5: for each contour
do 6: Classify the contour 7: if The contour is either cube, tube, or tool then 8:

Find its minimum & maximum corner points 9:

return all minimum & maximum corner points 4.3. Behavior Generation In our tool use application, a
sequence of actions, or a plan, must be performed to achieve the goal, pulling a cube from a narrow tube.
Each action uses different strategies (inverse kinematics solving, visual servoing, gripper activation,
constraints solving) depending on whether the primitive goal is known or not, and whether the visual
information is needed or not. We show an example of the plan in Table 1. Table 1. The actions sequence for
pulling a cube from a narrow tube No Action Technique Goal Visual 1 Find the tool 2 Grip the tool 3 Position
the tool 4 Pull the cube 5 Move the tool away 6 Ungrip the tool Inverse Kinematics (IK) solving, visual
servoing Known Close the gripper Known Constraints solving, IK solving Unknown IK solving Known IK
solving Known Open the gripper Known Yes No Yes No No No An abstract action is directly linked to
corresponding primitive actions. For simplicity, we only consider movement in two-dimensional Cartesian
coordinates. A primitive goal is a target location in that coordinate system. When a goal is known, we use an
inverse kinematics (IK) solver to compute the angles of all joints and move the arm towards that goal.
However, if it is unknown, we use a constraint solver to create a numerical goal from abstract states which
are the preconditions of an abstract action model (see Fig. 2a). To perform an accurate tool picking action,
we use a simple version of image-based visual servoing [15], where an error signal is determined directly in
terms of image feature parameters. We locate the robot arm in a position where a chosen tool is located in
the center of an image captured by Baxter’s wrist camera, so the arm can move downward perpendicularly
to take the tool. See Fig. 2b for the detail. Start Plan Action Model Abstract goal Detect a chosen tool in the
Action 1 image (see Alg. 1) Constraint Solver Primitive goal Action 2 Is the tool on IK Solver the center of
image? Goal in joints movement No Action n Controller Move arm towards center Motor commands Yes Go
down to pick the tool Finish (a) Constraints solving to get a primitive goal (b) A visual servoing process
Figure 2. behaviors generation 1234 ISSN: 2088-8708 5.

TOOL USE LEARNING In this section, we describe relational tool use
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learning [1, 2]. The

robot must learn a tool action model that describes the properties of a tool and other objects in the world that
enable a robot to use a tool successfully. Specifically, the robot learns a tool pose predicate, which
describes the structural and spatial conditions that must be met for the tool to be used. We maintain a
version space of hypotheses, following Mitchell [16]. A version space is bounded by the most general
hypothesis (hg) and the most specific hypothesis (hs). As we explain below, the version space is used to
determine what experiments the robot should perform to generalize or specialize the tool action model.

Initially, a robot may not have a complete action

model for a tool, so it cannot construct a plan. After a tutor gives a tool use example, the robot segments the
observed behavior into discrete actions, matches them to actions already in its background knowledge, and
constructs a new action if there is no match for a particular behavior. This construction may not be sufficient
to describe the tool action in a general enough form that it can be applied in different situations. Therefore,
trial and error learning is performed to refine the initial action model. Trial and error involved performing
experiments in which a different tool is selected or its pose is changed to test the current hypothesis for the
tool action. In tool selection, an object that has properties that are most similar to a previously useful tool is
chosen.

More specifically, we test whether an object satisfies all primary

structural properties, stored in hg, and most of the secondary ones, stored

in

hs, given its primitive states.

Having a correct tool is useless when it is

located in an incorrect position before it trying to pull the target object. We select the pose by solving the
constraints of the spatial literals in the tool pose predicate. We check whether the spatial constraints of an
object can be solved or not. The unsolved constraints are ignored, and the final result is used as the
numerical goal for the robot. After a tool use learning experiment is performed, its result, whether successful
or not, is passed to the ILP learner so the hypothesis can be refined. Our learning is derived from Golem
[17], an ILP algorithm. Refinement of hs is done

by finding the constrained Least General Generalization (LGG) of a

positive examples pair, and hg is refined by performing the negative-based

reduction.
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The learning algorithm is a modification of Haber [2] and is shown in

Algorithm 2. Algorithm 2 Tool use learning

1: input: new action model M , hg = true, hs = preconditions of M ,N trials, K consecutive success 2:

while success < K or index < N do 3: e = generate experiment(

hs, hg) 4: tool = select tool(hs, hg) // select a tool with highest rank 5: for each ei in e do 6: pose = select
pose(ei) // performing constraint solving on preconditions of the relevant action model 7:

if pose = null then 8: break 9: success = execute exp(tool, pose)

// performing a tool use experiment 10:

if success then 11: label pose positive 12: increment cons success 13:

hs = generalise

hs // via Least General Generalisation 14: else 15: label pose negative 16: cons success ← 0 17: hg =
specialise hg // via negative based reduction 18: add ei to training data 19: increment index 6. RESULTS
AND DISCUSSIONS The Baxter research robot is used in this experiment (see Fig. 3a). The

objects in the scene include a cube, a tube, and five objects of a different

shape that potential tools.

We also have another set of tool candidates whose hooks are narrower

than their handles

(see Fig. 3b). We use Baxter’s wrist camera for visual servoing. We add an external web camera facing the
tube to provide the global state. We divide the experiments into two stages.

Initially, we evaluate the performance of our object detection algorithm and

action execution. Later, we conduct tool use learning experiments.

Int J Elec & Comp Eng Vol. 8, No. 2, April 2018: 1230 – 1237 web camera Baxter hand's camera cube tube
5 tools (a) Scene details (b) All set of tools Figure 3. Experimental scene 6.1. Object Detection and
Execution Experiments The contours of all objects (cube, tube, and tools) are detected, using Baxter’s wrist
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camera, and their min- imum and maximum points are acquired. These are marked with colored dots in the
object corners in Fig. 4. Even when the tool is held by the gripper, our algorithm is still able to detect the
object. However, the vision system may fail in a low-light environment. It also assumes that all objects are
aligned perpendicular to each other and the camera. baxter_cam: cube detection web_cam: cube detection
baxter_cam: tube detection web_cam: tube detection baxter_cam: tools detection web_cam: tools detection
1 web_cam: tools detection 2 web_cam: selected tool detection Figure 4. Objects detection in images
captured by the Baxter hand camera and the web camera We also evaluate the capability of the Baxter to
move accurately to accomplish a tool use task based on the actions sequence in Table 1. In Fig. 5 we
illustrate these actions: find tool action which uses visual servoing, grip tool action, which activates the
robot’s gripper, and position tool actions, which tries to satisfy a prim- itive goal given by a constraint solver.
From these trials, it was determined that the Baxter can move smoothly to complete the task. We observe
that most errors are caused by the perception system, not the action mechanism. find_tool grip_tool
position_tool Figure 5. Sample of the robot’s actions 6.2. Learning Experiments In this experiment, we use
five different candidate tools with narrow and wide hooks. The cube, as a target object, is located at a
particular position inside the tube, which is changed after the Baxter can withdraw it from the tube
successfully. We adopt an initial action model which was created by Brown ([1]). Learning by trial and error
is then performed to refine the tool pose hypothesis. We stop learning if the robot accomplishes the task
three times consecutively. The complete learning sequence is shown in Fig. 6. We need at least ten
examples to learn to perform this task. However, more experiments may be needed if any errors occur (e.g.
a change in lighting or an invalid move produced by the IK solver).

The first positive example is given by a teacher. In the

second example, the robot attempts to imitate the tool and location of the first one,

but it fails as the cube location is changed. In the third example, the robot

finds that the attachment side of the hook should be the same as the

location of the cube inside the

tube. Later on, the robot still makes mistakes as it tends to choose

a tool with a narrow hook. This narrower property is eliminated from hs in

the generalization process in 1236 ISSN: 2088-8708 example 1: + example 6: + example 2: - example 7: -
example 3: + example 4: - example 5: - example 8: + example 9: + example 10: + Figure 6. Tool use
learning experiments in a real world the eighth example. Finally, learning is completed in the tenth example,
as it performs three consecutive successful experiments. The final hypothesis is shorter (hs is reduced from
14 literals to 11 literals) and more general than the initial hypothesis. 6.3. Discussions Our result is similar to
the previous relational learning approach [1], they learn tool-use in 12 experiments, as we use the relatively
same mechanism. However, we perform our experiment on a real robot, while the former only do it on a
sensor-less simulation. This includes bridging the gap between low-level layer (in ROS environment) and
high-level layer (in SWI Prolog). We also build objects detection system that has to deal with the noisy

javascript:openDSC(1390119393, 3265, '7354');
javascript:openDSC(1390119393, 3265, '7356');
javascript:openDSC(1390119393, 3265, '7365');
javascript:openDSC(1390119393, 3265, '7354');
javascript:openDSC(1390119393, 3265, '7356');
javascript:openDSC(1390119393, 3265, '7365');
javascript:openDSC(1390119393, 3265, '7354');
javascript:openDSC(1390119393, 3265, '7354');
javascript:openDSC(1390119393, 3265, '7354');
javascript:openDSC(1390119393, 3265, '7356');
javascript:openDSC(1390119393, 3265, '7356');
javascript:openDSC(1390119393, 3265, '7356');
javascript:openDSC(1390119393, 3265, '7356');
javascript:openDSC(1390119393, 3265, '7356');
javascript:openDSC(1390119393, 3265, '7356');
javascript:openDSC(1390119393, 3265, '7356');
javascript:openDSC(1390119393, 3265, '7356');
javascript:openDSC(1390119393, 3265, '7356');
javascript:openDSC(1390119393, 3265, '7365');
javascript:openDSC(1390119393, 3265, '7365');
javascript:openDSC(1390119393, 3265, '7365');
javascript:openDSC(1390119393, 3265, '7365');
javascript:openDSC(1390119393, 3265, '7365');


2

environment. Previous work did not do any detections, as it acquires perfect data from a simulator.
Compared to the line of work in feature-based representation, such as work of Tikhanoff et al. [12], our
approach can learn faster (theirs needs at least 120 trials in various learning stages) as we can easily
incorporate human expertise in the background knowledge. Our experiment scenario is also more
complicated, as we locate the target object inside a tube. We exploit the ability of the relational
representation to represent a complex relationship between objects compactly. We also learn the tool-pose,
where the tool should be located to be able to pull the tool successfully, while it is predefined in their work.
There are limitations in our work, especially in the perception system which can only handle 2D images and
not robust in changing environments. In this area, previous work [12, 13] is better than ours. Despite these
limitations, the experiment demonstrates that the learning system is capable of relational tool use learning in
the real world. In other work of us, we also use a physics simulator to assist a real robot performs tool use
learning [18]. 7. CONCLUSIONS AND FUTURE WORK We have developed a complete robot system for
relational tool use learning in the real world. The primitive, translator and abstract layers have been built,
along with with their interfaces. We have also implemented a system to detect objects and generate
primitive behaviors by inverse kinematics, a constraint solver and a visual servoing mechanism. Finally, we
have extended a tool use learning system, which has been tested in experiments in the real world. For a
relatively simple tool use scenario, the robot at needs at least ten examples to learn the tool’s properties. In
the future, we want our robot to do tool creation when the available tools cannot be used to solve the current
problem. Those tools can then be tested in the simulator, to save time and materials, and manufactured by
using a 3D printer. The development of a more robust perception and a more accurate movement systems
will improve our system performance. The system will be tested on a wider variety of tool use scenarios, with
different tools and different tasks. ACKNOWLEDGEMENT
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