Plagiarism Percentage	
sources:	
3% match (Internet from 01-Feb-2017)	
http://www.matec-	
conterences.org/anticles/mateccon//poi/2017/11/mateccont_enc2017_01026.poi	
2% match (Internet from 07-Mar-2014) http://core.kmi.open.ac.uk/download/pdf/11346106.pdf	
1% match (publications)	
Antoni, Stephen Wibiatma Wijaya, Juan Satria, Agung Sugiarto, Diwantoro Hardjito, "The Use	
of Borax in Deterring Flash Setting of High Calcium Fly Ash Based Geopolymer*, Materials Science Forum, 2016	
4 1% match (Internet from 14-Mar-2014) http://www.claisse.info/Theses/Seema.pdf	
5 1% match (Internet from 10-Feb-2014)	
http://www.cbu-uwm.info/Papers/2003%20CBU%20Reports/CBU-2003-07.pdf	
1% match (publications)	
Chrismer, J. L., and S. A. Durham, "High Volume Fly Ash Concrete for Highway Pavements".	
Green Streets and Highways 2010, 2010.	
7 1% match (publications)	
Antoni, Rianto Gunawan, and Diwantoro Hardjito. "Rapid Indicators in Detecting Variation of	
<u>- Fly Ash for Making HVFA Concrete", Applied Mechanics and Materials, 2015.</u>	
8 1% match (Internet from 21-Oct-2009)	
http://digital.lib.kmutt.ac.th/journal/kmuttv23n2_2.pdf	
1% match (nublications)	
Antoni, , Stephen Wibiatma Wijaya, and Djwantoro Hardjito. "Factors Affecting the Setting Time	
of Fly Ash-Based Geopolymer". Materials Science Forum, 2016.	
1% match (publications)	
Jang, J.G. Ahn, Y.B. Souri, H. Lee, H.K., "A novel eco-friendly porous concrete fabricated with	
<u>Coar asn'and geopolymenc binder. Heavy metal 1, Construction and Building Materials, March 15</u> 2015 Issue	
1% match (Internet from 04-Sep-2012) http://www.ijera.com/papers//ol2_issue4/LX2419861991.pdf	
<u>Ingentiamajora.comepapoier voic i bado vica ze 1300 133 Lipul</u>	
<pre>12 < 1% match (Internet from 19-Sep-2015)</pre>	
http://www.researchgate.net/profile/Smith Songpiriyakij/publication/237405287 1 Fly Ash and Biom;	ass Ash Based Geopolymer Pastes Part I Effect of Mix Proportion on Compressive Strength/links/00b7d529d7b463
13 <1% match (Internet from 25-Feb-2015) http://www.azhousing.gov/azem/interde/adha/asperament.headhack.dd.00 adf	
http://www.aziousing.gov/azons/upioaus/cobg/procurement_nanopook_11-os.pdf	
<pre>14 < 1% match (Internet from 14-Dec-2016)</pre>	
http://wlv.openrepository.com/wlv/bitstream/2436/332182/1/Hamood-PhD+Thesis.pdf	
(1) match (nublications)	
15 Antoni, Lucky Chandra, and Djwantoro Hardijto. "The Impact of Using Fly Ash, Silica Fume	
and Calcium Carbonate on the Workability and Compressive Strength of Mortar", Procedia	
Engineering, 2010.	
16 < 1% match (Internet from 09-Feb-2017)	
16 < 1% match (Internet from 09-Feb-2017) http://www4.uwm.edu/cbu/Papers/2002%20CBU%20Reports/REP-491.pdf	
16 < 1% match (Internet from 09-Feb-2017)	
16 < 1% match (Internet from 09-Feb-2017)	

18	< 1% match (publications)		
	"Materials' Specifications: The Missing Link to Sustainability Planning", Green Building with		
Conci	<u>ete, 2015.</u>		
19	< 1% match (publications)		
Comb	Ahmaruzzaman, M., "A review on the utilization of fly ash", Progress in Energy and ustion Science, 201006		
Com			
	40/ metab (latera of from 20 Mar 2040)		
20	< 1% match (internet from 23-Mai-2016)		
	http://www.ironet.de/daten/iconda/CIB13607.pdf		
21	< 1% match (Internet from 28-Mar-2016)		
0210/	http://darts.jaxa.jp/iss/smiles/data/l2/L2Product/007-08-		
0310/0	5/200911/20/3MILE3_L2MIeasureL0C_C_007-06-0310_20091120.ne5		
22	< 1% match (Internet from 20-Mar-2014)		
	http://en.fsajedi.ir/wp-content/uploads/2012/06/Construction-and-Building-Materials-4th-P.pdf		
23	< 1% match (Internet from 11-Mar-2016)		
	http://www.mdpi.com/1996-1944/8/2/638/htm		
24	< 1% match (Internet from 06-Dec-2016)		
24	http://www.myjurnal.my/filebank/published_article/43987/14_839_2024_1_SM.pdf		
	< 1% match (Internet from 08-Jan-2014)		
25	http://etd.lsu.edu/docs/available/etd-0703103-124620/uprestricted/Druta_thesis.pdf		
	40/ metab //stars times 20 Aug 2045)		
26	< 1% match (internet from 29-Aug-2015)		
http://	www.lowcarbonlivingcrc.com.au/sites/all/files/publications file attachments/rp1004 fly ash and barri	ers tr	commercialisation report.pdf
	< 1% match (Internet from 15-Jul-2015)		
27	http://repository.petra.ac.id/view/subjects/TA.html		
28	< 1% match (Internet from 06-Apr-2016)		
	http://ethesis.nitrkl.ac.in/7243/1/2015_Effect_Choudhury.pdf		
29	< 1% match (publications)		
fabrics	Uygunoglu, T., "The effect of fly ash content and types of aggregates on the properties of pre- ted concrete interlocking blocks (PCIBs)". Construction and Building Materials, 201205		
launca	ted concrete interiocking blocks (FCDS) , construction and building waterials, 201203		
30	< 1% match (publications)		
Qualit	Kalousova, Hana, Eva Bartonickova, and Tomas Opravil. "Influence of Storage Conditions on v of Elv Ashes". Advanced Materials Research. 2014.		
Guan			
	(A) (model (multipations)		
31	< 1% match (publications)		
Africa	n Fly Ashes and Their Structural Changes with β-Cyclodextrin". Particulate Science And		
Techr	ology, 2014.		
-	< 1% match (Internet from 31-Mav-2016)		
32	http://espace.cdu.edu.au/eserv/cdu:46192/Thesis_CDU_46192_Rkein_M.pdf		
	40/ metab //stars times 20 New 2045)		
33	< 1% match (internet from 20-NOV-2015)		
	http://cutifi.ac.in/put/taipce%2015.put		
34	< 1% match (publications)		
Com	Glaccio, G., "Hallure mechanism of normal and high-strength concrete with rice-husk ash".		
Conte	na ana avita da dompositos, 2001.00		
35	< 1% match (publications)		
in the	Patricio R. Desjardins. "Ichnology of the latest Carboniferous-earliest Permian transgression Paganzo Basin of western Argenting: The interplay of ecology sequence rise, and		
paleo	geography during postglacial times in Gondwana", Geological Society of America Special		
Pape	s, 08/2010		
	< 1% match (publications)		
36	Wei, Hong Yun, Yu Guo Wei, Xiu Li Zhang, Wei Feng Zhou, and Yuan Yuan Li. "Study on		
Influe	nces of Slag Powder and Fly Ash on Concrete Penetration Performance", Applied Mechanics		
and M	laterials, 2013.		
27	< 1% match (publications)		

Zeolit	O. B. Kotova, D. A. Shushkov, E. L. Kotova, Yu. S. Simakova, E. V. Popova, "Chapter 47 e Synthesis as Potential Application of Coal Fly Ash", Springer Nature, 2016
38 and C	< 1% match (publications) Gopalan, M.K "Mix design for optimal strength development of fly ash concrete", Cement concrete Research, 198907
39 paste Issue	< 1% match (publications) Tang, S.W. Cai, X.H. He, Z. Shao, H.Y. L. "Hydration process of fly ash blended cement s by impedance measurement.(Report)", Construction and Building Materials. June 15 2016
40 extrac	< 1% match (publications) Bai, G., "Thermal decomposition of coal fly ash by concentrated sulfuric acid and alumina tion process based on it". Fuel Processing Technology, 201106
41 Porou Cerar	< 1% match (publications) Angono, Juliana, Ida A.O.R.S. Shavitri, and Soejono Tjitro. "Microstructural Study of Alumina is Ceramic Produced by Reaction Bonding of Aluminium Powder Mixed with Corn Starch", mic Engineering and Science Proceedings, 2011.
42	< 1% match (Internet from 04-Jan-2017) http://researchbank.rmit.edu.au/eserv/rmit:161589/Ling.pdf
43	< 1% match (Internet from 25-Oct-2012) http://www.nebrconcagg.com/assets/PromotionPages/Mix%20Design/flyash1.pdf
44	< 1% match (Internet from 10-Nov-2014) http://www.researchgate.net/publication/50361090_STEEL_FIBER_REINFORCED_SELF-
45 concre	< 1% match (Internet from 11-Aug-2016) http://www.troij.com/open-access/strength-and-behaviour-of-high-volume-flyash- atephp?aid=47364
46	< 1% match (Internet from 13-Dec-2009) http://www.efn.unc.edu.ar/departamentos/estruct/ciath/cenizavo.pdf
47	< 1% match (Internet from 13-Jan-2007) http://www.hvg-dgg.de/sitemap.html
48	< 1% match (Internet from 19-May-2016) http://discovery.dundee.ac.uk/portal/files/1060347/Thesis-Final%20corrections%20Zahir.pdf
49 <u>a Par</u>	< 1% match (publications) Case, Reagan J., Kai Duan, and Thuraichamy G. Suntharavadivel, "On Effects of Fly Ash as tial Replacement of Cement on Concrete Strength", Applied Mechanics and Materials, 2012,
50 types	< 1% match (publications) Yildirim, Hasan Sumer, Mansur Akyuncu, V. "Comparison on efficiency factors of F and C of fly ashes.(Report)", Construction and Building Materials, June 2011 Issue
51 High- Journ	< 1% match (publications) Bentz, Dale P., Kenneth A. Snyder, and Amzaray Ahmed. "Anticipating the Setting Time of Volume Fly Ash Concretes Using Electrical Measurements: Feasibility Studies Using Pastes", al of Materials in Civil Engineering. 2014.
52 geopo	< 1% match (publications) Guo, X., "Compressive strength and microstructural characteristics of class C fly ash olymer". Cement and Concrete Composites, 201002
53	< 1% match (publications)
<u>a Ble</u>	Join, Sine-Suna, Nuair rew Sinww, and nee-Nati Unitolig. Multicipal Sund waste Fty Ash as aded Cement Material", Journal of Materials in Civil Engineering, 2003.
54 Conc	< 1% match (publications) <u>Wiyono, David, Antoni, and Diwantoro Hardjito. "Improving the Durability of Pozzolan</u> rete Using Alkaline Solution and Geopolymer Coating". Procedia Engineering, 2015.
i per t e rnal Te	axt: eknologi Full Paper CONSISTENCY

	CONCRETE			
Antoni	a*, Alvin Krisnanta Widiantoa, Jerry Lakshmana Wiranegaraa, Djwantoro Hardjitoa aC	Civil		
	Engineering Department, Petra Christian University, Surabaya 60236, Indonesia Graphical abstract	41		
	Compressive strength (MPa) 80 70 60 50 40 30	2		
Initial 60%	setting time (mins) 720 600 480 360 240 120 0 60% FA 30% FA 840 0% 10% 20% 30	1% 40% 5		
	Compressive strength (MPa) 70 60 50 40 30 20 10 0 30% FA 60%	8		
FA 80 Receiv	10 10.5 11 pH 11.5 12 70 75 80 85 90 95 Passing sieve #325 (%) 100 Article history ved in revised foXrXmX Accepted XXX *Corresponding author antoni@petra.ac.id	Received		
	Abstract Fly ash is a by-product of coal burning and is widely used as a substitute for cement material.	17		
The				
	advantages of using fly ash in concrete include the improvement of	32		
worka	bility and reduction of bleeding and segregation. The problem often encountered			
	when using fly ash is the uncertainly of the fly ash quality. The quality is influenced by the	26		
coal o	igin, burning technique, mineral content, and capturing method. In this			
	study, the consistency of fly ash from one power plant source was investigated for making	1		
а	a			
	high- volume fly ash (HVFA) mortar. Variations in fly ash	51		
can be	detected by applying rapid indicators as suggested			
	in this paper; i.e., the pH of the fly ash in aqueous solution and the percentage of	30		
fly ash mass.	particles passing sieve #325. The fly ash replacement ratio was varied from 10–60% The results showed a	of cemer		
	large variation in the chemical content of the fly ash	1		
as sho	wn by variation in pH, whereas only slight variation in the			
	physical properties of the fly ash, i.e., particle size and shape.	3		
Super	plasticizer demand for the same flow was reduced			
	with the increase of fly ash content and the optimum fly ash	28		
replac streng	ement ratio for strength varied among fly ash from different sampling periods. The cor th could reach that of control specimens at a replacement ratio of 20–30% for some	npressive		
	fly ash, and mortar compressive strength of 42 MPa was	14		

still achievable at a replacement ratio of 50%.	
Keywords: Fly ash; pH; HVFA; LOI; setting time; compressive stree	ngth 7
© 2017	
Penerbit UTM Press. All rights reserved 1.0 INTRODUCTION The utilization of	24
fly ash as an additive to concrete mixtures has	19
gained popularity in past decades.	
The addition of fly ash is known to	19
have beneficial effects such as increased workability, reduction of water requirement and segregation, reduction of alkali silica reaction, and other benefits. Many papers	nt, reduction of blee have been
published on the properties of fly ash and its	37
effects on concrete mixtures [1–5].	
The use of fly ash in concrete mixtures should be	13
suitability and use	and 38
organizations [6- 14] that show	
fly ash can be used in large volume for concrete casting. The charac of	teristics 33
ly ash have been studied extensively by many authors [15-22]. Simple methods to	characterize the
variation of fly ash properties also have been presented by the author	ors 3
[23] that can detect changes in fly ash properties more quickly and inexpensively th Research on improving fly ash properties also has been done to increase utilization [24,25]. The quality of	an other methods. of lower-quality fly
fly ash, a by-product of coal-burning, is	6
not a concern for the power plant, which is	
only interested in obtaining the highest energy output. Given the of compositions of coal, fly ash quality can deviate significantly	lifferent 1
in	
in both its physical and chemical properties, which could lead to prob when mixed with	lems 9
in both its physical and chemical properties, which could lead to prob when mixed with concrete. xx:x (201x) x-x www.jurnalteknologi.utm.my eISSN 2180–3722 Variat characteristics include chemical properties, calcium content, particle size and shap	lems 9

ASTM	C1679 [34] The compressive strength	
/10/11		
	was measured at mortar age of 3, 7, 14, 28, and 56 days.	23
	Three specimens were made for each compressive test. 3. 0 RESULTS AND DISCUSSION 3.1	10
	Fly ash variation Ten fly ash samples were obtained from one power plant	46
source	during the experimental period. The pH and percentage of material passing sieve #32	24
	are shown in Table 1. All fly ash samples were shown to	31
have a values ash sa shown conter	fine particle size exceeding the ASTM C618 requirement of 66% passing the sieve [3 ranged from 10.4 to 11.8, indicating a potentially large variation in chemical compositi mples were sent for XRF analysis to measure their chemical compositions. The XRF n in Table 2. It was found that the pH had good correlation with the CaO and MgO conte t	5]. The p on. Sele esults ar ent. The
	was in the range of medium to high; hence, the fly ash	40
can be affects	categorized as class C fly ash. The chemical composition had a broad range of perce the predictability of	ntages,
	the properties of the fresh and hardened concrete. Table 1 pH and	42
Particl	e Size	
	FA- FA- FA- FA- FA- FA- FA- FA- FA- II III IV V	21
	VIII IX X	
	pH 10.9 11.1 10.4 11.8 10.6 10.8 10.6 11.7 11.4 11.2 Passing sieve #325	1
(%) 84	88 76 88 80 84 84 88 92 84	
	Table 2 XRF of Selected Fly Ash Compound Chemical Composition (% mass)	1
	FA-II FA-III FA-IV FA-V	47
SiO ₂ 4 20.42 0.18 0 0.44	3.74 43.36 32.47 42.26 Al ₂ O ₂ 22.03 29.74 14.92 24.43 Fe ₂ O ₂ 14.68 7.33 16.50 12.91 C 11.19 K ₂ O 1.55 0.42 1.32 0.80 MgO 4.33 1.80 7.95 3.69 SO ₂ 0.53 0.40 1.88 0.91 Mn ₂ C 1.24 TiO ₂ 1.28 1.00 0.71 1.01 Cr ₂ O ₂ 0.14 0.01 0.14 0.01 Na ₂ O 1.56 1.88 2.92 1.85 LOI C	CaO 9.40 D₃ 0.15 0 0.80 0.60
	The loss on ignition (LOI) values of the fly ash are also shown in	2
Table an exc where	 It was found that the fly ash from this source had a good and constant low LOI (< 1% ellent burning process in the power plant. Thus, there was no large variation in physica as 	6), indica al proper
	the chemical properties of fly ash from the same	1
plant v 14±2 6 The co	aried between collections. 3.2 Fresh mortar behavior The superplasticizer demand for 500 cm by flow table test and the resulting flow diameters are shown in Figures 1 and 2 ontrol 480 specimen required up to 2% of SP	a target 2, respec
	to achieve a flow 360 diameter of 11 cm. The	15

increase of the fly ash 240 replacement ratio reduced SP demand and increased 120 the flow diameter. This is the norm with fly ash Initial setting time (mins) 0 replacement due to the increase of round particles in the mixture, which increases the bearing ball effect. 0% 10% 20% 30% 40% 50% 60% 2.5% Figure 3 Initial setting time of the paste SP demand (%) 2.0% 1.5% 3.3 Strength development 1.0% The compressive strength values of the mortar 0.5% specimens for all mixtures are shown in Figures 4-13. The control specimens had compressive strength of 0.0% 45.8 MPa at 3 days and developed up to 67.4 MPa at 56 days. As expected, higher fly ash replacement 0% 10% 20% 30% 40% 50% 60% ratios reduced the compressive strength compared with the control specimen. The highest compressive Figure 1 Superplasticizer demand for targeted flow strength of 73.27 MPa at 56 days was attained from FA- VIII at 30% replacement ratio, which was greater than Flow diameter (cm) 18 100 the control specimen. The lowest compressive strength at 37.07 MPa at 56 days was recorded for FA-VI. At the 16 75 10% fly ash replacement ratio, there was a slight drop 14 50 of compressive strength as the workability of the mixture was lower compared with higher replacement 12 25 ratios as shown in Figures 9 and 10. 10 0 Passing sieve #325 80 70 60 0% 10% 20% 30% 40% 50% 60% sieve Compressive strength (MPa) 50 Figure 2 Flow of the fly ash mortar and percentage passing 40 sieve #325 30 20 FA-I 56 days 10 28 days 14 days The SP demand for FA-IV and FA-V at 30% and 40% 7 days 3 days 0 replacement ratio was slightly higher than other fly ash; 0% 10% 20% 30% 40% 50% 60% however, there was no detrimental effect on the flow Fly ash replacement (%) properties. The SP demand needs to be determined Figure 4 Strength development of FA-I for the concrete mixture when obtaining a new batch of fly ash as it could affect the concrete's workability. Compressive strength (MPa) 80 The increase of the

	fly ash replacement ratio 70 increased the setting time of the mixture. The	43	
initial s	setting times		
	of the mixture with different fly ash	7	
and 60) replacement ratios are shown in Figure 3. The initial 50 setting time was increased		
	with the increase of fly ash 40 content at different rate depending on the	36	
differe in situ	nt fly 30 ash samples. The increase of setting time could be 20 FA-II 56 days benefici as it would have a 10	al when ca	sting
	28 days 14 days 7 days 3 days	12	
longer	handling time. However, the opposite effect 0 occurs when large		
	volumes of fly ash are used in the	6	
0% 10 (%) pre increa:	% 20% 30% 40% 50% 60% precast industry as the increased setting time would Fly a olong the demolding cycle. A higher replacement Figure 5 Strength development of Fi ses the setting time at higher rate as shown by FA-IX and FA-IV.	ash replace A-II ratio	∍mer
	Compressive strength (MPa) 70 60 50 40 30 20 10 0	5	
FA-III :	56		
	days 28 days 14 days 7 days 3 days	12	
	80 Compressive strength (MPa) 70 60 50 40 30 20 10 0	20	
FA-IV	56 days 28 days 14		
	days 7 days 3 days 80 0% 10% 20% 30% 40% 50%	4	
Fly as	n replacement (%) Figure 6 Strength development of FA-III 60%		
	Compressive strength (MPa) 70 60 50 40 30 20 10 0	5	
FA-V 5	56 days 28 days 14		
	days 7 days 3 days 80 0% 10% 20% 30% 40% 50% Fly ash replacement	16	

FA-VU 60% Compressive strength (MPa) 70 60 50 40 30 20 10 0 FA-VI 56 days 28 days 14 days 7 days 3 days 80 0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50% 60% Fly ash replacement (%) Figure 8 Strength development of FA-V 60% 0% 10% 20% 30% 40% 50% 60% Fly ash replacement (%) Figure 9 Strength development of FA-VII Compressive strength (MPa) 60 50 40 30 20 Z FA-VII 56 days 10 28 days 14 days 0 7 days 3 days Compressive strength (MPa) 70 60 50 40 30 20 Z FA-VIII 56 days 10 28 days 14 days 7 days 3 days 0 0% 10% 20% 30% 40% 50% 60% Gays 7 days 3 days 0 0% 10% 20% 30% 40% 50% 60% FY ash replacement (%) Figure 10 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 Z FA-X5 66 days 10 28 days 14 days 0 7 days 3 days 0%, 10% 20% 30% 40% 50% 60% FIy ash 1 replacement (%) Figure 11 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 Z FA-X 56 days 10 28 days 14 days 0 7 days 3 days 0% 10% 20% 30% 40% 50% 60% FIy ash 1 replacement (%) Figure 12 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20		(%) Figure 7 Strength development of	
Compressive strength (MPa) 70 60 50 40 30 20 10 0 5 FA-VI 56 days 28 days 14 days 7 days 3 days 80 0% 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60% Fy ash replacement (%) Figure 8 Strength development of FA-V 60% 0% 10% 20% 30% 40% 50% 60% 2 Fy ash replacement (%) Figure 9 Strength development of FA-VI 2 FA-VII 56 days 10 28 days 14 days 0 7 days 3 2 days Compressive strength (MPa) 70 60 50 40 30 20 2 FA-VII 56 days 10 28 days 14 2 days 7 days 3 days 0 0% 10% 20% 30% 40% 50% 60% 4 Fy ash replacement (%) Figure 10 Strength development of FA-VII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-XI 56 days 10 28 days 14 days 0 7 days 3 1 1 days 0% 10% 20% 30% 40% 50% 60% Fly ash 1 1 septacement (%) Figure 11 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 1 1 1 replacement (%) Figure 11 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 1 1 1 replacement (%) Figure 13 Strength development of FA-X 100 % 1 2 replacem	FA-IV 6	0%	
FA-VI 56 days 28 days 14 days 7 days 3 days 80 0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50% 60% Fy ash replacement (%) Figure 8 Strength development of FA-VI Compressive strength (MPa) 60 50 40 30 20 2 FA-VII 56 days 10 28 days 14 days 0 7 days 3 days 7 days 3 days 0 0% 10% 20% 30% 40% 50% 60% 4 FA-VII 56 days 10 28 days 14 days 7 days 3 days 0 0% 10% 20% 30% 40% 50% 60% 4 FA-VIII 56 days 10 28 days 14 days 7 days 3 days 0 0% 10% 20% 30% 40% 50% 60% 4 Fy ash replacement (%) Figure 10 Strength development of FA-VII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-VI 56 days 10 28 days 14 days 0 7 days 3 days 0% 10% 20% 30% 40% 50% 60% Fly ash 1 replacement (%) Figure 11 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 days 0% 10% 20% 30% 40% 50% 60% Fly ash 1 replacement (%) Figure 13 Strength development of FA-X IB 1 replacement (%) Figure 13 Strength development of FA-X B0 dwy 100% 10% 20% 30% 40% 50% 60% Fly ash 1 replacement (%) Figure 13 Strength development of FA-X The SP limit of 2% aso limited the mature 5 workable fiftect of a more workable mix. The increase of compressive streng		Compressive strength (MPa) 70 60 50 40 30 20 10 0	5
days 7 days 3 days 80 0% 10% 20% 30% 40% 50% 4 Fly ash replacement (%) Figure 8 Strength development of FA-V1 60% 0% 10% 20% 30% 40% 50% 60% 2 FA-VII 56 days 10 28 days 14 days 0 7 days 3 2 fA-VIII 56 days 10 28 days 14 3 days 7 days 3 days 0 0% 10% 20% 30% 40% 50% 60% 4 FS ash replacement (%) Figure 10 Strength development of FA-VII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-VIII 56 days 10 28 days 14 1 1 days 7 days 3 days 0 0% 10% 20% 30% 40% 50% 60% 4 FV ash replacement (%) Figure 10 Strength development of FA-VII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X56 days 10 28 days 14 days 0 7 days 3 1 1 replacement (%) Figure 11 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X56 days 10 28 days 14 days 0 7 days 3 1 1 replacement (%) Figure 13 Strength development of FA-XIII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 1 1 1 replacement (%) Figure 13 Strength development of FA-X 180 0% 10% 20% 30% 40% 50% 60% FIY ash 1 1 replacement (%) Figure 13 Strength development of FA-X 180 0% 10% 20% 30% 40% 50% 60% FIY a	FA-VI 5	6 days 28 days 14	
Fly ash replacement (%) Figure 8 Strength development of FA-V 60% 0% 10% 20% 30% 40% 50% 60% Fly ash replacement (%) Figure 9 Strength development of FA-VI Compressive strength (MPa) 60 50 40 30 20 2 FA-VII 56 days 10 28 days 14 days 0 7 days 3 2 FA-VIII 56 days 10 28 days 14 2 days 7 days 3 days 0 0% 10% 20% 30% 40% 50% 60% 4 Fy ash replacement (%) Figure 10 Strength development of FA-VII 8 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-VIII 56 days 10 28 days 14 days 0 7 days 3 2 days 0%, 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 10 Strength development of FA-VIII 8 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 11 replacement (%) Figure 11 Strength development of FA-VIII 8 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 11 replacement (%) Figure 12 Strength development of FA-VIII 11 replacement (%) Figure 12 Strength development of FA-X TRe 9T Time 72% at 60% 60% Fly ash 11 replacement (%) Figure 13 Strength development of FA-X TRe 9T Time 72% at 60% 60% 60% Fly ash 11 replacement (%) Figure 13 Strength development of FA-X TRe 9T Time 72% at 60% 60%		days 7 days 3 days 80 0% 10% 20% 30% 40% 50%	4
Compressive strength (MPa) 60 50 40 30 20 2 FA-VII 56 days 10 28 days 14 days 0 7 days 3 2 FA-VIII 56 days 10 28 days 14 2 Gays 7 days 3 days 0 0% 10% 20% 30% 40% 50% 60% 4 Fy ash replacement (%) Figure 10 Strength development of FA-VII 8 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-IX 56 days 10 28 days 14 days 0 7 days 3 1 days 0% 10% 20% 30% 40% 50% 60% Fly ash 1 replacement (%) Figure 11 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 1 1 replacement (%) Figure 11 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 1 1 1 replacement (%) Figure 12 Strength development of FA-X The SP limit of 2% also limited the mixture's workability. Thus, it is suggested that the fly ash replacement ratio should be higher than 10% to benefit reflect of a more workabile mix. The increase of compressive strength with age was shown to be not undo for the entire 2 replacement—	Fly ash Fly ash	replacement (%) Figure 8 Strength development of FA-V 60% 0% 10% 20% 30% 40 replacement (%) Figure 9 Strength development of FA-VI	0% 50% 60%
FA-VII 56 days 10 28 days 14 days 0 7 days 3 days Compressive strength (MPa) 70 60 50 40 30 20 25 FA-VIII 56 days 10 28 days 14 days 7 days 3 days 0 0% 10% 20% 30% 40% 50% 60% 4 Fy ash replacement (%) Figure 10 Strength development of FA-VII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-XIX 56 days 10 28 days 14 days 0 7 days 3 days 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 11 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 days 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 11 Strength development of FA-VIII 11 replacement (%) Figure 12 Strength development of FA-X The SP limit of 2% also limited the mixture's avortability. Thus, it is suggested that the fly ash replacement of SP ash ash replacement of SP ash replacement of		Compressive strength (MPa) 60 50 40 30 20	2
days Compressive strength (MPa) 70 60 50 40 30 20 25 FA-VIII 56 days 10 28 days 14 days 7 days 3 days 0 0% 10% 20% 30% 40% 50% 60% 4 Fly ash replacement (%) Figure 10 Strength development of FA-VII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-IX 56 days 10 28 days 14 days 0 7 days 3 11 11 replacement (%) Figure 11 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-IX 56 days 10 28 days 14 days 0 7 days 3 11 11 replacement (%) Figure 11 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 11 11 replacement (%) Figure 12 Strength development of FA-VIII 11 replacement (%) Figure 13 Strength development of FA-X 180 0% 10% 20% 30% 40% 50% 60% FFy ash replacement (%) Figure 13 Strength development of FA-X 180 0% 10% 20% 30% 40% 50% 60% FFy ash replacement (%) Figure 13 Strength development of FA-X 180 0% 10% 20% 30% 40% 50% 60% FFy ash replacement (%) Figure 13 Strength development of FA-X 180 0% 10% 20% 30% 40% 50% 60% FFy ash replacement (%) Figure 13 Strength development of FA-X 180 0% 10% 20% 30% 40% 50% 60% FFy ash replacement (%) Figure 13 Strength at the fty ash replacement ratio should be higher than 10% to benefit effect of a more workable mix. The increase of compressive strength with age was shown to be not under for the entire 12 replacement—normally at a later age <td< td=""><td>FA-VII 5</td><td>i6 days 10 28 days 14 days 0 7 days 3</td><td></td></td<>	FA-VII 5	i6 days 10 28 days 14 days 0 7 days 3	
FA-VIII 56 days 10 28 days 14 days 7 days 3 days 0 0% 10% 20% 30% 40% 50% 60% Fly ash replacement (%) Figure 10 Strength development of FA-VII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-IX 56 days 10 28 days 14 days 0 7 days 3 days 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 11 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 days 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 12 Strength development of FA-VIII replacement (%) Figure 12 Strength development of FA-X The SP limit of 2% also limited the mixture's workability. Thus, it is suggested that the fly ash replacement ratio should be higher than 10% to benefit effect of a more workable mix. The increase of compressive strength with the fly ash to be not unite for the entire fly ash samples. An increase in compressive strength with the fly ash 29 replacement—normally at a later age 7 was found for some fly ash samples, but not all. 35 Vave strength increments at a later age, showing the pozzolanic reaction occurs at this stage. However FA-II, FA-II, FA-VII, FA-VII, and FA-X did not show significant increase of strength at a later age, whild could signal a low pozzolanic reaction rate. The different behavior of strength development could be		days Compressive strength (MPa) 70 60 50 40 30 20	25
days 7 days 3 days 0 0% 10% 20% 30% 40% 50% 60% 4 Fly ash replacement (%) Figure 10 Strength development of FA-VII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-IX 56 days 10 28 days 14 days 0 7 days 3 11 11 replacement (%) Figure 11 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-IX 56 days 10 28 days 14 days 0 7 days 3 11 11 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 11 days 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 12 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 12 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 12 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash 12 replacement (%) Figure 13 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash 12 replacement (%) Figure 13 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash 12 replacement (%) Figure 13 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash 12 replacement (%) Figure 13 Strength development of FA-IX 80 0% 10% 20% 30% 40% 10% replacement (%) Figure 13 Strength developme	FA-VIII	56 days 10 28 days 14	
Fly ash replacement (%) Figure 10 Strength development of FA-VII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-IX 56 days 10 28 days 14 days 0 7 days 3 11 days 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 11 Strength development of FA-VIII 2 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 2 days 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 12 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 13 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 13 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 13 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 13 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash 12 replacement (%) Figure 13 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 13 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash 12 replacement (%) Figure 13 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash 12 replacement (%) Figure 13 Strength development of FA-IX 80 0% 10% 20% 30% 12		days 7 days 3 days 0 0% 10% 20% 30% 40% 50% 60%	4
80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-IX 56 days 10 28 days 14 days 0 7 days 3 11 replacement (%) Figure 11 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 11 replacement (%) Figure 12 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash replacement (%) Figure 12 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash replacement (%) Figure 13 Strength development of FA-IX The SP limit of 2% also limited the mixture's workability. Thus, it is suggested that the fly ash replacement ratio should be higher than 10% to benefit effect of a more workable mix. The increase of compressive strength with age was shown to be not unite for the entire fly ash samples. An increase in compressive strength with the fly ash 29 replacement—normally at a later age 7 was found for some fly ash samples, but not all. 7 K have strength increments at a later age, showing the pozzolanic reaction occurs at this stage. However FA-II, FA-VI, FA-VII, FA-VIII, FA-VII, FA-VII, FA-VII, FA-VII, FA-VII, F	Fly ash	replacement (%) Figure 10 Strength development of FA-VII	
FA-IX 56 days 10 28 days 14 days 0 7 days 3 days 0% 10% 20% 30% 40% 50% 60% Fly ash replacement (%) Figure 11 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 days 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 12 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash replacement (%) Figure 13 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash replacement (%) Figure 13 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash replacement (%) Figure 13 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash replacement (%) Figure 13 Strength development of FA-X The SP limit of 2% also limited the mixture's workability. Thus, it is suggested that the fly ash replacement ratio should be higher than 10% to benefit effect of a more workabile mix. The increase of compressive strength with age was shown to be not unite for the entire fly ash samples. An increase in compressive strength with the fly ash 29 replacement—normally at a later age 7 was found for some fly ash samples, but not all. 5 L FA-I, FA-III, FA-IV, FA-V, and FA- 35 X have strength increments at a later age, showing the pozzolanic reaction occurs at this stage. However FA-II, FA-VII, FA-VIII, and FA-X did not show significant increase of stre		80 Compressive strength (MPa) 70 60 50 40 30 20	2
days 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 11 Strength development of FA-VIII 2 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 1 days 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 12 Strength development of FA-X The SP limit of 2% also limited the mixture's workability. Thus, it is suggested that the fly ash replacement ratio should be higher than 10% to benefit effect of a more workable mix. The increase of compressive strength with age was shown to be not unife for the entire fly ash samples. An increase in compressive strength with the fly ash 29 replacement—normally at a later age 7 was found for some fly ash samples, but not all. 7 K have strength increments at a later age, showing the pozzolanic reaction occurs at this stage. However FA-II, FA-VII, FA-VII, FA-VII, FA-VII, FA-VII, FA-VIII, and FA-X did not show significant increase of strength at a later age, which could signal a low pozzolanic reaction rate. The different behavior of strength development could be	FA-IX 5	6 days 10 28 days 14 days 0 7 days 3	
replacement (%) Figure 11 Strength development of FA-VIII 80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 1 days 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 12 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 13 Strength development of FA-X The SP limit of 2% also limited the mixture's workability. Thus, it is suggested that the fly ash replacement ratio should be higher than 10% to benefit effect of a more workable mix. The increase of compressive strength with age was shown to be not unife for the entire fly ash samples. An increase in compressive strength with the fly ash 29 replacement—normally at a later age 7 was found for some fly ash samples, but not all. 7 K have strength increments at a later age, showing the pozzolanic reaction occurs at this stage. However FA-II, FA-VII, FA-VII, FA-VII, FA-VII, FA-VII, FA-VII, FA-VIII, FA-VII, FA-VIII, and FA-X did not show significant increase of strength at a later age, which could signal a low pozzolanic reaction rate. The different behavior of strength development could be		days 0% 10% 20% 30% 40% 50% 60% Fly ash	11
80 Compressive strength (MPa) 70 60 50 40 30 20 2 FA-X 56 days 10 28 days 14 days 0 7 days 3 days 0% 10% 20% 30% 40% 50% 60% Fly ash days 0% 10% 20% 30% 40% 50% 60% Fly ash replacement (%) Figure 12 Strength development of FA-X The SP limit of 2% also limited the mixture's workability. Thus, it is suggested that the fly ash replacement ratio should be higher than 10% to benefit effect of a more workable mix. The increase of compressive strength with age was shown to be not unife for the entire fly ash samples. An increase in compressive strength with the fly ash replacement—normally at a later age of mortar from 28 days to 56 days— 7 was found for some fly ash samples, but not all. FA-1, FA-III, FA-IV, FA-V, and FA- 13 X have strength increments at a later age, showing the pozzolanic reaction occurs at this stage. However FA-II, FA-VII, FA-VII, FA-VII, FA-VII, FA-VII, FA-VII, FA-VII, FA-VIII, and FA-X did not show significant increase of strength at a later age, which could signal a low pozzolanic reaction rate. The different behavior of strength development could be	replace	ment (%) Figure 11 Strength development of FA-VIII	
FA-X 56 days 10 28 days 14 days 0 7 days 3 days 0% 10% 20% 30% 40% 50% 60% Fly ash replacement (%) Figure 12 Strength development of FA-X 7he SP limit of 2% also limited the mixture's workability. Thus, it is suggested that the fly ash replacement ratio should be higher than 10% to benefit effect of a more workable mix. The increase of compressive strength with age was shown to be not unife for the entire fly ash samples. An increase in compressive strength with the fly ash 29 replacement—normally at a later age 7 was found for some fly ash samples, but not all. 7 Khave strength increments at a later age, showing the pozzolanic reaction occurs at this stage. However FA-II, FA-VII, FA-VII, FA-VII, FA-VI, and FA-X did not show significant increase of strength at a later age, which could signal a low pozzolanic reaction rate. The different behavior of strength development could be		80 Compressive strength (MPa) 70 60 50 40 30 20	2
days 0% 10% 20% 30% 40% 50% 60% Fly ash 11 replacement (%) Figure 12 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash replacement (%) Figure 13 Strength development of FA-X The SP limit of 2% also limited the mixture's workability. Thus, it is suggested that the fly ash replacement ratio should be higher than 10% to benefit effect of a more workable mix. The increase of compressive strength with age was shown to be not unite for the entire fly ash samples. An increase in compressive strength with the fly ash 29 replacement—normally at a later age 7 of mortar from 28 days to 56 days— 7 was found for some fly ash samples, but not all. 35 IX have strength increments at a later age, showing the pozzolanic reaction occurs at this stage. However FA-II, FA-VII, FA-VII, FA-VII, FA-X did not show significant increase of strength at a later age, which could signal a low pozzolanic reaction rate. The different behavior of strength development could be	FA-X 56) days 10 28 days 14 days 0 7 days 3	
replacement (%) Figure 12 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% 60% Fly ash replacement (%) Figure 13 Strength development of FA-X The SP limit of 2% also limited the mixture's workability. Thus, it is suggested that the fly ash replacement ratio should be higher than 10% to benefit effect of a more workable mix. The increase of compressive strength with age was shown to be not unite for the entire fly ash samples. An increase in compressive strength with the fly ash replacement—normally at a later age of mortar from 28 days to 56 days— 7 was found for some fly ash samples, but not all. FA-I, FA-III, FA-IV, FA-V, and FA- 13 IX have strength increments at a later age, showing the pozzolanic reaction occurs at this stage. However FA- II, FA-VII, FA-VIII, and FA-X did not show significant increase of strength at a later age, which could signal a low pozzolanic reaction rate. The different behavior of strength development could be		days 0% 10% 20% 30% 40% 50% 60% Fly ash	11
fly ash samples. An increase in compressive strength with the fly ash 29 replacement—normally at a later age of mortar from 28 days to 56 days— 7 was found for some fly ash samples, but not all. 7 FA-I, FA-III, FA-IV, FA-V, and FA- 35 IX have strength increments at a later age, showing the pozzolanic reaction occurs at this stage. However, FA-II, FA-VII, FA-VII, FA-VIII, and FA-X did not show significant increase of strength at a later age, which could signal a low pozzolanic reaction rate. The different behavior of strength development could be	replace replace workabi effect of for the e	ment (%) Figure 12 Strength development of FA-IX 80 0% 10% 20% 30% 40% 50% ment (%) Figure 13 Strength development of FA-X The SP limit of 2% also limited th lity. Thus, it is suggested that the fly ash replacement ratio should be higher than 10 a more workable mix. The increase of compressive strength with age was shown to nitre	60% Fly ash e mixture's % to benefit be not unifo
replacement—normally at a later age of mortar from 28 days to 56 days— 7 was found for some fly ash samples, but not all. FA-I, FA-III, FA-IV, FA-V, and FA- 35 IX have strength increments at a later age, showing the pozzolanic reaction occurs at this stage. However, FA-II, FA-VII, FA-VIII, GA-VIII,		fly ash samples. An increase in compressive strength with the fly ash	29
of mortar from 28 days to 56 days— 7 was found for some fly ash samples, but not all.	replace	nent-normally at a later age	
was found for some fly ash samples, but not all. 35 FA-I, FA-III, FA-IV, FA-V, and FA- 35 IX have strength increments at a later age, showing the pozzolanic reaction occurs at this stage. However, FA-II, FA-VII, FA-VIII, FA-VIII, FA-VIII, FA-XII, FA-XII, FA-VIII, FA-VIII, FA-XIII, FA-XIIII, FA-XIII, FA-XIIII, FA-XIIII, FA-XIIII, FA-XIII, FA-XIIII, FA-XIII, FA-XIII, FA-XIII, FA-XIII, FA-XIII, FA-XIIII, FA-XIII, FA-XIIII, FA-XIII, FA-XIIII, FA-XIIII, FA-XIIII, FA-XIIII, FA-XIIII, FA-XIIII, FA-XIII, FA-XIIII, FA-XIII, FA-XIIII, FA-XIII, FA-XII, FA-XII, FA-XIII, FA		of mortar from 28 days to 56 days—	7
FA-I, FA-III, FA-IV, FA-V, and FA- 35 IX have strength increments at a later age, showing the pozzolanic reaction occurs at this stage. However, FA-II, FA-VII, FA-VII, FA-VIII, and FA-X did not show significant increase of strength at a later age, which could signal a low pozzolanic reaction rate. The different behavior of strength development could be	was fou	nd for some fly ash samples, but not all.	
IX have strength increments at a later age, showing the pozzolanic reaction occurs at this stage. However FA- II, FA-VII, FA-VII, FA-VIII, and FA-X did not show significant increase of strength at a later age, which could signal a low pozzolanic reaction rate. The different behavior of strength development could be		FA-I, FA-III, FA-IV, FA-V, and FA-	35
	IX have FA- II, F could si	strength increments at a later age, showing the pozzolanic reaction occurs at this st A-VI, FA-VII, FA-VIII, and FA-X did not show significant increase of strength at a late gnal a low pozzolanic reaction rate. The different behavior of strength development of	age. Howeve er age, which could be

due to the availability of calcium hydroxide in the gel solution. 39

60% FA 0 10 10.5 11 11.5 12 pH Figure 17 Relationship

pН

of compressive strength at 56 days and

18

FA 80 70 75 Passing sieve #325 (%) 80 85 90 95 100 Figure 18 Relationship

of compressive strength at 56 days and the

percentage of passing sieve #325 From the experimental data, it can be shown that the rapid indicator method can determine critical predictive properties in fly ash. However, variations in fly ash quality are not limited to particle size and pH only, as other factors, such as LOI and particle shape also vary depending on the coal-burning conditions. In particular, special care is needed when using fly ash after a power plant maintenance cycle, as the fly ash could have high LOI when the burning process is restarted. 4.0 CONCLUSIONS The consistency of fly ash quality was investigated in this research and the following conclusions can be identified: (a) There are changes of fly ash quality between shipments, especially in the chemical properties. It depends on the properties of coal that cannot be kept constant. Variation in fly ash quality affects

18

45

6

the fresh and hardened properties of mortar or concrete. (b) Higher workability and

longer setting time was found at higher fly ash replacement ratios. However, due to content variation, the optimum ratio needs to be determined for each shipment. (c) The optimum range of fly ash replacement ratio was found around 20–40%. Some fly ash samples could

have higher compressive strength than the control specimens at	48	
replacement ratio		1

of 30% and 40%, and mortar compressive strength of 42 MPa was still achievable with replacement ratio of 50%. (d) The rapid indicator method implemented in this study (i.e., using pH

and passing sieve #325) can be used to assess the quality of fly ash and	1
to estimate the	

resulting properties

when high volumes of fly ash is mixed in concrete.

Acknowledgements The authors gratefully acknowledge The Ministry of Research, Technology and Higher Education, Indonesia, who provided the research grant

under the Fundamental Research scheme. References [1] Ahmaruzzaman, M. 2010. A review on the utilization of fly ash. Progress in Energy and Combustion Science. 36, 327- 363. [2] Blissett, R. S., and Rowson, N. A. 2012. A review of the multi- component utilisation of coal fly ash, Fuel. 97, 1-23. [3] Deo, S. V. 2014. A Review of High Volume Low Lime Fly Ash Concrete, In International Conference on Biological, Civil and Environmental Engineering BCEE-2014. Dubai UAE.. [4] Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., and Xi, Y. Q. 2015. A comprehensive review on the applications of coal fly ash, Earth-Science Reviews. 141, 105-121. [5] Cao, D.-z., Selic, E., and Herbell, J.-D. 2008. Utilization of fly ash from coal-fired power plants in China, Journal of Zhejiang University science. 9, 681-687. [6] Australia, A. D. A. o. 2009. Guide to the use of fly ash in concrete in Australia, Fly ash reference data sheet no. 1, Ash Development Association of Australia. [7] Australia, A. D. A. o. 2009. Australian experience with fly ash in concrete: Applications and opportunities, Fly ash Technical Note no. 8, Ash Development Association of Australia, [8] Bentz, D. P., Ferraris, C. F., and Snyder, K. A. 2013. Best Practices Guide for High-Volume Fly Ash Concretes, NIST Technical Note 1812. [9] Obla, K. H. 2008. Specifying fly ash for use in concrete, Concrete InFocus, pp 60-66. [10] Rao, C., Stehly, R. D., and Ardani, A. 2011. Handbook for Proportioning Fly Ash as Cementitious Material in Airfield Pavement Concrete Mixtures, Foundation. I. P. R., Ed., p 74, IL, USA. [11] Rashad, A. M. 2015. A brief on high-volume Class F fly ash as cement replacement - A guide for Civil Engineer, International Journal of Sustainable Built Environment, 4, 278- 306, [12] Thomas, M. 2007. Optimizing the use of fly ash in concrete, Vol. 5420, Portland Cement Association Skokie, IL, USA. [13] Wesche, K. 2004, Fly ash in concrete; properties and performance, Vol. 7, CRC Press, [14] Rivera, F., Martínez, P., Castro, J., and López, M. 2015. Massive volume fly-ash concrete: A more sustainable material with fly ash replacing cement and aggregates, Cement and Concrete Composites. 63, 104-112. [15] Blanco, F., Garcia, M. P., and Ayala, J. 2005. Variation in fly ash properties with milling and acid leaching, Fuel. 84, 89-96. [16] Fernández-Jiménez, A., and Palomo, A. 2003. Characterisation of fly ashes. Potential reactivity as alkaline cements, Fuel, 82, 2259-2265, [17] Hemalatha, T., Mapa, M., George, N., and Sasmal, S, 2016. Physico-chemical and mechanical characterization of high volume fly ash incorporated and engineered cement system towards developing greener cement, Journal of Cleaner Production. 125, 268-281. [18] Jones, M., McCarthy, A., and Booth, A. 2006. Characteristics of the ultrafine component of fly ash, Fuel. 85,

2250-2259. [19] Romagnoli, M., Sassatelli, P., Lassinantti Gualtieri, M., and Tari, G. 2014. Rheological characterization of fly ash-based suspensions, Construction and Building Materials 65, 526-534. [20] Siddique, R. 2004. Performance characteristics of high- volume Class F fly ash concrete, Cement and Concrete Research. 34, 487-493. [21] Supit, S. W. M., Shaikh, F. U. A., and Sarker, P. K. 2014. Effect of ultrafine fly ash on mechanical properties of high volume fly ash mortar, Construction and Building Materials. 51, 278- 286. [22] Wang, X.-Y. 2014. Effect of fly ash on properties evolution of cement based materials, Construction and Building Materials. 69, 32-40. [23] Antoni, Gunawan, R., and Hardjito, D. 2015. Rapid indicators in detecting variation of fly ash for making HVFA concrete, Applied Mechanics and Materials. 815, 153-157. [24] Antoni, Satrya, V and Hardjito, D. 2015. Simple mechanical beneficiation method of coarse fly ash with high LOI for making HVFA mortar, Civil Engineering Dimension. 17. [25] Blanco, F., Garcia, M. P., Ayala, J., Mayoral, G., and Garcia, M. A. 2006. The effect of mechanically and chemically activated fly ashes on mortar properties. Fuel, 85, 2018-2026, [26] Shaikh, F. U. A., and Supit. S. W. M. 2015. Compressive strength and durability properties of high volume fly ash HVFA. concretes containing ultrafine fly ash UFFA., Construction and Building Materials. 82, 192-205. [27] Hela, R., Tazky, M., & Bodnarova, L. (2016). Possibilities of Determination of Optimal Dosage of Power Plant Fly Ash for Concrete. Jurnal Teknologi, 78(5-3). [28] Yazici, Ş., and Arel, H. Ş. 2012. Effects of fly ash fineness on the mechanical properties of concrete, Sadhana. 37, 389- 403. [29] Nawaz, A., Julnipitawong, P., Krammart, P., and Tangtermsirikul, S. 2016. Effect and limitation of free lime content in cement-fly ash mixtures, Construction and Building Materials. 102, 515-530. [30] Tkaczewska, E. 2014. Effect of the superplasticizer type on the properties of the fly ash blended cement, Construction and Building Materials. 70, 388-393. [31] ASTM. 2005. C778, Standard specification for standard sand, ASTM International. [32] ASTM. 2003. D5239, Standard Practice for Characterizing Fly Ash for Use in Soil Stabilization. American Society for Testing and Materials,, ASTM International, West Conshohocken, PA, USA. [33] ASTM. 2008. C 230, Standard Specification for Flow Table for Use in Tests of Hydraulic Cement, ASTM International, West Conshohocken, PA. [34] ASTM. 2014. C1679, Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry, ASTM International, West Conshohocken, PA., [35] ASTM, 2003, C618, Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete, ASTM International, West Conshohocken, PA, 2 Antoni et al. / Jurnal Teknologi (Sciences & Engineering) xx:x (201x) x-x 3 Antoni et al. / Jurnal Teknologi (Sciences & Engineering) xx:x (201x) x-x 840 720 4 Antoni et al. / Jurnal Teknologi (Sciences & Engineering) xx:x (201x) x-x 80 70 5 Antoni et al. / Jurnal Teknologi (Sciences & Engineering) xx:x (201x) x-x 80 70 6 Antoni et al. / Jurnal Teknologi (Sciences & Engineering) xx:x (201x) x-x 7 Antoni et al. / Jurnal Teknologi (Sciences & Engineering) xx:x (201x) x-x