Volume 26 Number 2 September 2024

Civil Engineering Dimension

JOURNAL OF CIVIL ENGINEERING SCIENCE AND APPLICATION

DIMENSI TEKNIK SIPIL - Jurnal Keilmuan dan Penerapan Teknik Sipil

Finite Element Analysis of The Effect of Fiber Content on The Flexural Strength of SFRC Beams with Steel Rebars

Nurhuda, I., Prasetya, B.H., Nuroji, and Priastiwi, Y.A.

Project Delivery Method Selection Criteria for Building Projects in Surabaya, Indonesia Andi, Sugianto, S.E., and Lukas, Y.S.

Measuring the Construction Risk Insurability through Fuzzy Inference System Tan, L.Y., Wibowo, A., and Pramudya, A.A.

Experimental Study of Bond Strength of Embedded Steel Reinforcement in Vibration-Based 3D Printed Concrete Mortar

Chandra, J., Halim, A., Budiman, F., Pudjisuryadi, P., and Antoni

Performance Optimization of Strengthened Slab-on-Pile Structure with Braced Frame Hidayat, M.F., Awaludin, A., and Supriyadi, B.

Optimization of Counterfort Retaining Wall Structure with Shear Key using Metaheuristic Method Budi, G.S., Chandra, J.G., Ongkowardhana, B.S., and Husada, W.

Risk Analysis of Modest Housing Projects Scheduling using Monte Carlo Simulation Djohim, M.F.N., Nugroho, A.S.B., and Handayani, T.N.

The Relationship between Hydro-Agricultural Drought in the Corong River Basin: A Causal Time Series Regression Model

Affandy, N.A., Iranata, D., Anwar, N., Maulana, M.A., Wardoyo, W., Prastyo, D.D., and Sukojo, B.M.

Accredited by DGHE No. 225/E/KPT/2022

ced.petra.ac.id

PETRA CHRISTIAN UNIVERSITY - SURABAYA, INDONESIA					
Civil Engineering Dimension	Vol. 26	No. 2	Page 101-190	Surabaya, September 2024	ISSN 1410-9530 (Print) / ISSN 1979-570X (Online)

Journal of Engineering Science and Application

Volume 26, Number 2, September 2024

ISSN 1410-9530 (print)/ISSN 1979-570X (online)

Editor in Chief:

Prof. Dr. Djwantoro Hardjito

(Petra Christian University, Surabaya, INDONESIA, SCOPUS ID = 6508089898)

Associate (Handling) Editors:

Prof. Dr. Benjamin Lumantarna

(Petra Christian University, Surabaya, INDONESIA, SCOPUS ID = 54179537600)

Dr. Doddy Prayogo

(Petra Christian University, Surabaya, INDONESIA, SCOPUS ID = 55959834900)

Advisory International Editorial Boards:

Prof. Dr. David Arditi

(Armour College of Engineering, Chicago, USA, SCOPUS ID = 35614735000)

Prof. Dr. Stephen Olu Ogunlana

(Heriot-Watt University, Edinburgh, UNITED KINGDOM, SCOPUS ID = 6701638480)

Prof. Dr. Priyan Mendis

(University of Melbourne, Melbourne, AUSTRALIA, SCOPUS ID = 7003700296)

Prof. Dr. Hu, Hsuan Teh

(National Cheng Kung University, Tainan, TAIWAN, SCOPUS ID = 55805441800)

Prof. Dr. Henk Marius Jonkers

(Delft University of Technology, Delft, NETHERLAND, SCOPUS ID = 7004676830)

Prof. Dr. Buntara S. Gan

(Nihon University, Tokyo, JAPAN, SCOPUS ID = 53864786800)

Prof. Dr. Worsak Kanok-Nukulchai

(Chulalongkorn University, Bangkok, THAILAND, SCOPUS ID = 7004839869)

Prof. Dr. Jeff Budiman

(Armour College of Engineering, Chicago, USA, SCOPUS ID = 6603239355)

Prof. Dr. Iswandi Imran

(Bandung Institute of Technology, Bandung, INDONESIA, SCOPUS ID = 6603209142)

Prof. Dr. Masyhur Irsyam

(Bandung Institute of Technology, Bandung, INDONESIA, SCOPUS ID = 6505844516)

A/Prof. Dr. Riza Yosia Sunindijo

(University of New South Wales, Sydney, AUSTRALIA, SCOPUS ID = 21741351400)

A/Prof. Dr. Benny Suryanto

(Heriot-Watt University, Edinburg, UNITED KINGDOM, SCOPUS ID = 36618184800)

Journal Manager:

Ambrosius Matthew Junius Reynaldo, S.T., M.T.

(Petra Christian University, Surabaya, INDONESIA, SINTA ID = 6872799)

Administrative Assistant: Sarita Budiyani

Editor and Administration Address:

Institute of Research and Community Outreach

Petra Christian University

Jl. Siwalankerto 121-131, Surabaya 60236 – Indonesia

Phone: +62-31-2983392; +62-31-2983147.

E-mail: dimensi-sipil@petra.ac.id; Home page: https://ced.petra.ac.id/;

Also available at: http://infotrac.galegroup.com.

The Civil Engineering Dimension (Dimensi Teknik Sipil) was first published in March 1999 to replace the civil engineering edition of Dimensi a journal published by Petra Christian University early in March 1980. The Civil Engineering Dimension was first accredited by the Directorate General of Higher Education of Indonesia in 2000, with its decree no 395/DIKTI/Kep/2000, dated 27 November 2000.

The Civil Engineering Dimension (Dimensi Teknik Sipil) is a refereed journal, published twice a year, in March and September. Subscription (Incl. postage) Rp. 150.000/year (for Indonesia), US \$65/year (for abroad), and should be transferred to Zeplin Jiwahusada Tarigan, acc no: 700-44-72058-00 Bank CIMB Niaga cab. Univ. Kristen Petra, Surabaya, Indonesia.

Journal of Engineering Science and Application

Volume 26, Number 2, September 2024

ISSN 1410-9530 (print)/ISSN 1979-570X (online)

International Peer-Reviewers List:

Dr. Robby Soetanto

 $Loughborouh\ University, Loughborough,\ UNITED\ KINGDOM,\ SCOPUS\ ID=8870442200$

Dr. Andreas Nataatmadja, MIEAust, M.ASCE.

University of Southern Queensland, Toowoomba, AUSTRALIA, SCOPUS ID = 6602640350

Prof. Dr. Han Ay Lie

Diponegoro University, Semarang, INDONESIA, SCOPUS ID = 57199323133

A/Prof. Dr. Andi

Petra Christian University, Surabaya, INDONESIA, SCOPUS ID = 7409720298

Dr. Elisa Lumantarna

University of Melbourne, Melbourne, AUSTRALIA, SCOPUS ID = 6504537022

Prof. Dr. Lin Shibin

Jianghan University, Wuhan, CHINA, SCOPUS ID = 56118969700

A/Prof. Dr. Kardi Teknomo

Petra Christian University, Surabaya, INDONESIA, SCOPUS ID = 14012002200

Prof. Dr. Antoni

Petra Christian University, Surabaya, INDONESIA, SCOPUS ID = 57212352092

A/Prof. Dr. Hartanto Wibowo

Iowa State University, Ames, USA, SCOPUS ID = 35249850200

Dr. Dario Rosidi

CH2M HILL Corporation, Oakland, USA, SCOPUS ID = 6506775115

A/Prof. Dr. Muslinang Moestopo

Indonesian Society of Civil and Structural Engineers, INDONESIA, SCOPUS ID = 36696777500

A/Prof. Ir. Johannes I. Suwono, M.Eng.

Petra Christian University, Surabaya, INDONESIA

Dr. Gogot Setyo Budi

Petra Christian University, Surabaya, INDONESIA, SCOPUS ID = 57170817700

Journal of Civil Engineering Science and Application

Note from the Editor

Welcome to Volume 26, Edition 2 of *Civil Engineering Dimension* (CED). As we begin another exciting edition filled with insightful research and innovations in civil engineering, I would like to take a moment to celebrate a significant achievement within our community.

We are immensely proud to share that our esteemed editor, Professor Benjamin Lumantarna, has been awarded the prestigious HAKI Achievement Award 2024. This accolade, presented by the *Himpunan Ahli Konstruksi Indonesia* (HAKI) during their annual meeting in August, is a well-deserved recognition of Professor Lumantarna's exemplary achievements and continuous contributions to the civil engineering profession and the Indonesian construction industries.

Prof. Benjamin Lumantarna, Recipient of the 2024 HAKI Achievement Award

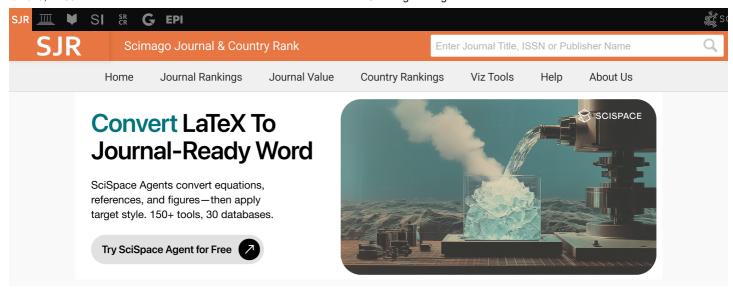
Professor Lumantarna has been at the helm of CED for many years, guiding the journal with his visionary leadership, editorial expertise, and passion for advancing civil engineering knowledge. His commitment to both academia and industry has left an indelible mark, making him a highly respected figure in the field.

We are honored to work alongside such a distinguished individual whose achievements inspire the next generation of civil engineers. On behalf of the editorial team and all contributors to this edition, we extend our heartfelt congratulations to Professor Lumantarna on this outstanding accomplishment.

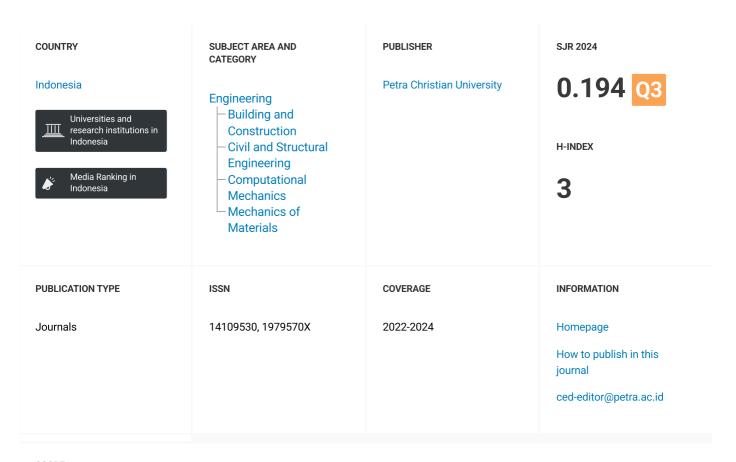
We hope this issue continues to inform and inspire, as we strive to uphold the standards of excellence that Professor Lumantarna embodies.

Happy reading!

Warm regards, Prof. Djwantoro Hardjito, Ph.D Editor in Chief Civil Engineering Dimension

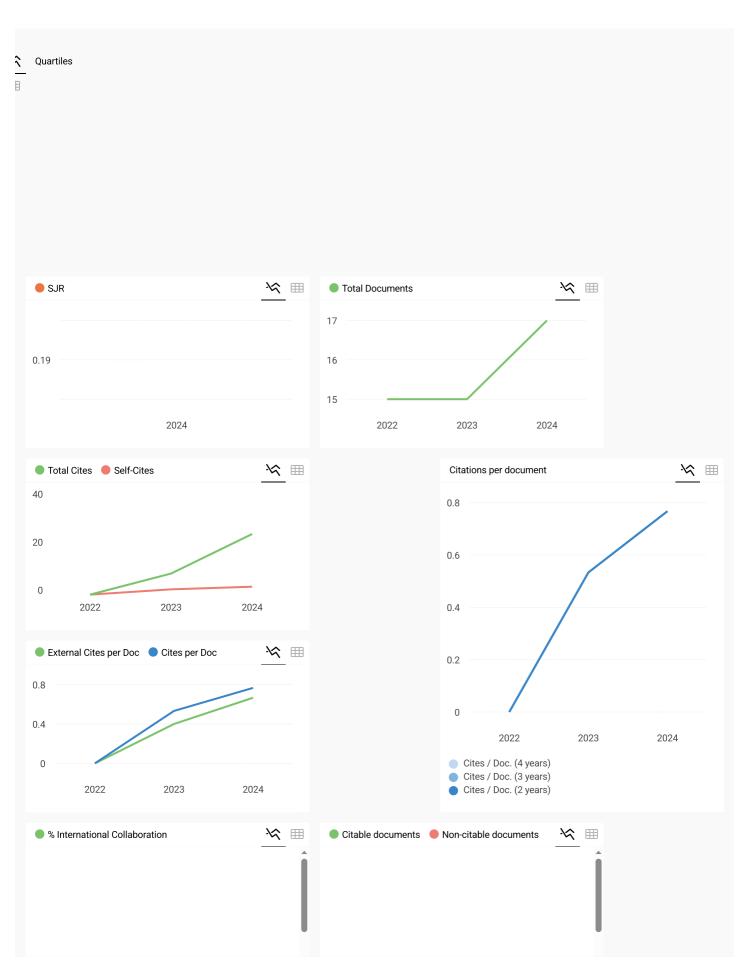

Journal of Civil Engineering Science and Application

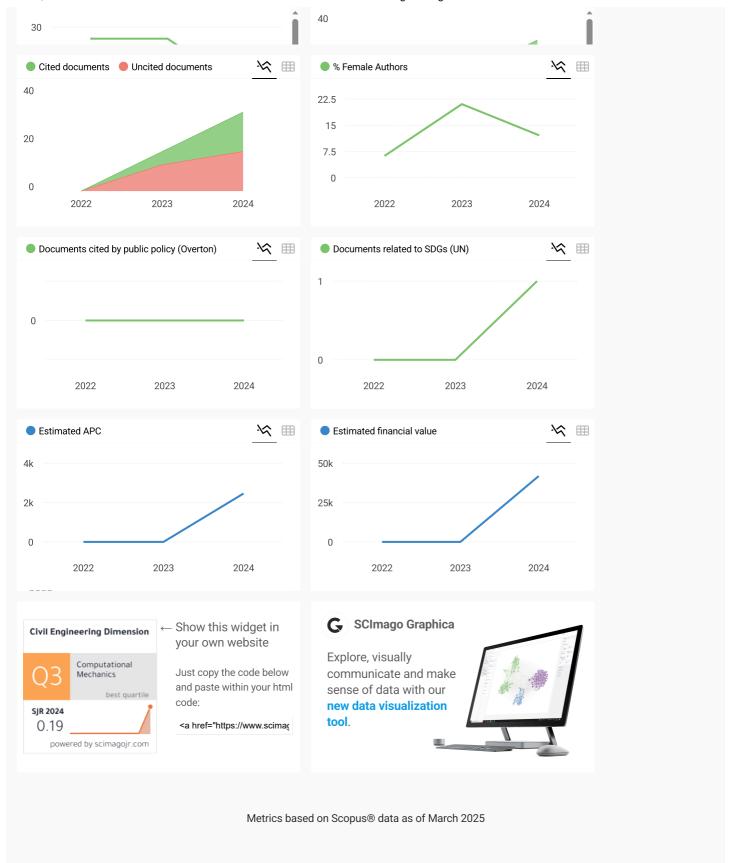
Volume 26, Number 2, September 2024


ISSN 1410-9530 (print)/ISSN 1979-570X (online)

CONTENTS

Finite Element Analysis of The Effect of Fiber Content on The Flexural Strength of SFRC Beamswith Steel Rebars Nurhuda, I., Prasetya, B.H., Nuroji, and Priastiwi, Y.A.	101-110
Project Delivery Method Selection Criteria for Building Projects in Surabaya, Indonesia	
Andi, Sugianto, S.E., and Lukas, Y.S.	111-119
Measuring the Construction Risk Insurability through Fuzzy Inference System	
Tan, L.Y., Wibowo, A., and Pramudya, A.A.	120-129
Experimental Study of Bond Strength of Embedded Steel Reinforcement in Vibration-Based 3DPrinted Concrete Mortar	
Chandra, J., Halim, A., Budiman, F., Pudjisuryadi, P., and Antoni	130-137
Performance Optimization of Strengthened Slab-on-Pile Structure with Braced Frame	
Hidayat, M.F., Awaludin, A., and Supriyadi, B.	138-150
Optimization of Counterfort Retaining Wall Structure with Shear Key using Metaheuristic Method	
Budi, G.S., Chandra, J.G., Ongkowardhana, B.S., and Husada, W.	151-159
Risk Analysis of Modest Housing Projects Scheduling using Monte Carlo Simulation	
Djohim, M.F.N., Nugroho, A.S.B., and Handayani, T.N.	160-172
The Relationship between Hydro-Agricultural Drought in the Corong River Basin: A Causal TimeSeries Regression Model	
Affandy, N.A., Iranata, D., Anwar, N., Maulana, M.A., Wardoyo, W., Prastyo, D.D., and Sukojo, B.M.	173-190


Civil Engineering Dimension ∂ ♥



SCOPE

Civil Engineering Dimension (CED), published biannually in March and September by Petra Christian University, is committed to the following objectives: Advancing a comprehensive approach to civil engineering by integrating perspectives from diverse disciplines. Fostering academic collaboration and exchange with institutions worldwide. Encouraging scientists, practicing engineers, and others to engage in research and related endeavours. We invite submissions aligned with these aims and scopes. The editorial board supported by appointed reviewers, evaluates and selects papers for publication. Authors receive feedback and guidance based on reviewers' comments and suggestions. We also consider papers previously presented at conferences not affiliated with Petra Christian University Publication, though a copyright release may be necessary in such cases. Additionally, papers exploring tutorial or historical aspects within the field are welcomed for review and consideration.

Q Join the conversation about this journal

Source details

Civil Engineering Dimension

Open Access 🕦

Years currently covered by Scopus: from 2022 to 2025

Publisher: Petra Christian University ISSN: 1410-9530 E-ISSN: 1979-570X

 $\textbf{Subject area:} \quad \text{ $\tt Engineering: Building and Construction} \quad \text{ $\tt Engineering: Civil and Structural Engineering} \\$

Engineering: Computational Mechanics Engineering: Mechanics of Materials

Source type: Journal

ice type. Journa

View all documents > Set document alert

Save to source list

CiteScore CiteScore rank & trend Scopus content coverage

CiteScore 2024

Calculated on 05 May, 2025

CiteScoreTracker 2025 ①

$$0.9 = \frac{62 \text{ Citations to date}}{67 \text{ Documents to date}}$$

CiteScore 2024

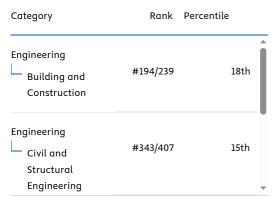
0.7

SJR 2024

0.194

SNIP 2024

0.526


①

(i)

(i)

Last updated on 05 November, 2025 • Updated monthly

CiteScore rank 2024 ①

View CiteScore methodology \gt CiteScore FAQ \gt Add CiteScore to your site \mathscr{P}

https://ced.petra.ac.id

Optimization of Counterfort Retaining Wall Structure with Shear Key using Metaheuristic Method

Budi, G.S.¹, Chandra, J.G.¹, Ongkowardhana, B.S.¹, and Husada, W.^{1*}

¹ Civil Engineering Department, Faculty of Civil Engineering and Planning, Petra Christian University Jl. Siwalankerto 121-131, Surabaya 60236, INDONESIA

DOI: https://doi.org/10.9744/ced.26.2.151-159

Article Info:

Submitted: Feb 02, 2024 Reviewed: Feb 19, 2024 Accepted: Jul 23, 2024

Keywords:

retaining wall, counterfort, shear key, optimization, metaheuristic, PSO, SOS.

Corresponding Author:

Husada, W.

Civil Engineering Department, Faculty of Civil Engineering and Planning, Petra Christian University Jl. Siwalankerto 121-131, Surabaya 60236, INDONESIA

Email: willy.husada@petra.ac.id

Abstract

This paper presents the optimization work to obtain the most economical of counterfort retaining wall structure with shear key attached at its base using metaheuristic method. The metaheuristic algorithm is a global optimization method that can be used to find the optimum solution of complex problems. In this research, optimization is carried out using the Particle Swarm Optimization (PSO) and Symbiotic Organisms Search (SOS) methods. This research utilizes a retaining wall sitting on stiff clay layer subjected to ten (10) m of granular soil of backfill. The scope of the study is limited to the material cost, that consists of the cost of concrete and reinforcement bars, of the counterfort retaining wall with shear key. The results show that the SOS algorithm resulted a lower cost and relatively faster in obtaining optimum retaining wall design compared to that of the PSO algorithm.

This is an open access article under the <u>CC BY</u> license.

Introduction

A retaining wall is a structure to withstand lateral active pressure of soil or water [1]. A retaining wall consists of vertical section, commonly known as a stem, and a base slab. There is a specific element beneath the base slab called a shear key, which enhances the stability of the retaining wall to anticipate lateral force by utilizing passive pressure below the base slab arising from the active lateral pressure of the soil [2].

In general, the dimension and reinforcement of the cantilever wall (stem) increases with the increase of its bending moment generated due to lateral pressure of soil. The generated bending moment in the stem can be reduced by employing counterforts (a vertical walls or slabs) that connect the stem and the base slab of the retaining wall. In other words, counterforts play an important role in restraining tensile/horizontal force developed in the stem of the retaining wall [3].

Studies on the optimization of retaining wall can be found in several publications. Kalemci et al. [2] developed a tool using Grey Wolf algorithm to determine the optimum design of cantilever wall with shear key to increase its horizontal capacity. The retaining walls with a 3m and 4.5m height of stem were designed to retain embankment consisting of both cohesive and non-cohesive soils. The optimization process of the two metaheuristic algorithms proceeded for 30 runs, where each run iterated 1000 times. It is stated that the results of the optimization of cantilever wall with shear key, developed using Grey Wolf algorithm, agree with other published results using different algorithms. Öztürk et al. [4] developed an application using Teaching-Learning Based Optimization (TLBO) and Jaya algorithms to obtain the optimum cost of a 10-m height counterfort retaining wall with shear key, which is built in cohesive soil. It is stated that the TLBO algorithm exhibits better performance compared to the Jaya algorithm.

Note: Discussion is expected before November, 1st 2024, and will be published in the "Civil Engineering Dimension",

volume 27, number 1, March 2025. : 1410-9530 print / 1979-570X online

Published by : Petra Christian University

ISSN

This research employes metaheuristic approach to optimize a counterfort retaining wall with a shear key subjected to gravity and seismic loads, which meets all existing constraints while considering safety requirements, and producing cost-effective solutions. Two metaheuristic algorithms, namely Particle Swarm Optimization (PSO) and Symbiotic Organisms Search (SOS), are utilized in this study. Both algorithms operate using a penalty function method to control the existing constraints during the design process, thereby achieving optimal and economical results while still satisfying safety requirements.

The PSO algorithm is inspired by natural conditions about food chains, such as the social behavior of a group of birds or insects looking for food. The concept is to mimic the social interaction between individuals in the group to find the optimal solution to the optimization problem. PSO is computationally efficient because it requires only a few computing resources to work, so the number of iterations used to produce optimal results is relatively small and fast [5].

The SOS algorithm uses mutualism, commensalism, and parasitism strategies to simulate interactions in a relationship. SOS uses simple mathematical operations, and can achieve efficient and effective optimization without the need to determine parameter tuning like other algorithms so that its performance stability is higher [6]. SOS is also proven to be able to solve optimization for continuous and non-linear problems on simple to complex problems, so these are the advantages of SOS.

Previously, the PSO algorithm has successfully aided in the optimization processes within the field of civil engineering, such as the estimation of the shear strength of reinforced concrete walls using support vector regression that optimized with the PSO and Harris Hawks algorithms [7]. In addition, the optimization of special concentrically braced steel frame structures was conducted using metaheuristic methods based on the Indonesian National Standards SNI 1729:2020 and SNI 7860:2020 [8].

Meanwhile, the SOS algorithm has also successfully contributed to solving optimization cases in the field of civil engineering. For example, it was applied in the optimization of multi-constraint frames under free vibration and transient behavior [9]. Additionally, it was used in optimizing the scheduling duration of housing projects using the line of balance method and metaheuristic methods with consideration for resource leveling [10].

The objective of this research is to provide alternative designs for a robust and economical counterfort retaining wall with shear key, in a relatively short of time. In addition, the seismic load is considered in this research.

Method

Cantilever retaining walls are designed to withstand all the loads that include gravity load and lateral load generated by soil pressure. The design of retaining wall is determined by several variables such as geometry/dimension, load and reinforcement, and geotechnical condition that meet structural safety requirements. Counterfort retaining wall with shear key is a modification of a cantilever retaining wall to reduce the thickness of the stem and increase its horizontal stability. In other words, counterfort is beneficial for very high retaining walls (10-12 m) since it reduces the shear and bending moment at the stem [11].

The optimization process of counterfort retaining wall with shear key in this research is carried out using metaheuristic method. In general, the optimization includes several aspects such as optimal shape, maximizing structural stability, minimizing bending moment, and optimizing the slope angle. The optimization process requires information that include variables, constraints, and objective functions. The solution that obtained from the optimization is in the form of variables, which represent the most economical retaining wall design.

The design variables used in the optimization process is presented in Figure 1. The range of design variables is limited by the upper and lower bounds, which are the maximum and minimum values of the design variables to be randomized. The ranges of the geometrical variables are based upon the recommendation given by SNI 8460:2017 [12]. A range of reinforcement area is applied to reduce the search field and improve the possibility of finding the optimal solution. By using both ranges of values recommended by SNI 8460:2017 [12] for the geometrical variables and a range of values for the reinforcement area, it will ensure that the optimal solution lies in these ranges. Constraints are used to ensure that the design results of the optimization process fall into the specifications. Table 1 shows the upper and lower bounds used in the design process. The constraints used in the optimization process can be seen in Table 2.

Civil Engineering Dimension

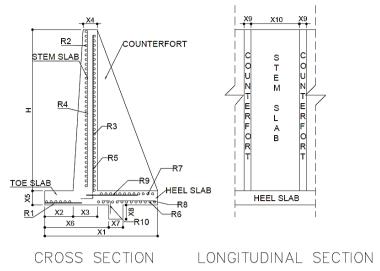


Figure 1. Modeling of Counterfort Retaining Wall with Shear Key

Descriptions	:
X_1	= total base width [m]
X_2	= toe projection width [m]
X_3	= stem thickness at bottom[m]
X_4	= stem thickness at top [m]
X_5	= base slab thickness [m]
X_6	= distance of the front shear key from the front of toe slab [m]
X_7	= width of the base shear key [m]
X_8	= height of the base shear key[m]
X_9	= counterfort thickness [m]
X_{10}	= Distance between counterforts [m]
R_1	= area of the horizontal reinforcement of the toe, per unit length of the wall [mm ²]
R_2	= area of the horizontal field reinforcement of the stem, per unit length of the wall [mm ²]
R_3	= area of the horizontal support reinforcement of the stem, per unit length of the wall [mm ²]
R_4	=area of the vertical field reinforcement of the stem, per unit length of the wall [mm ²]
R_5	= area of the vertical support reinforcement of the stem, per unit length of the wall [mm ²]
R_6	= area of the horizontal field reinforcement of the heel, per unit length of the wall [mm ²]
R_7	= area of the horizontal support reinforcement of the heel, per unit length of the wall [mm ²]
R_8	= area of the vertical field reinforcement of the heel, per unit length of the wall [mm ²]
R_9	= area of the vertical support reinforcement of the heel, per unit length of the wall [mm ²]
R_{10}	= area of reinforcement of the shear key, per unit length of the wall [mm ²]

Table 1. Upper Bound and Lower Bound

Parameter	Lower Bounds	Upper Bounds
X_1 (m)	0.4 <i>H</i>	0.7 <i>H</i>
X_2 (m)	0.4H/3	0.7 <i>H</i> /3
X_3 (m)	$\frac{H + 48X_4}{48}$	0.1 <i>H</i>
X_4 (m)	0.3	0.1H
X_5 (m)	H/12	<i>H</i> /10
X_6 (m)	0	$X_1 - X_7$
X_7 (m)	0	0.5
X_8 (m)	0	0.5
X_9 (m)	0.2	0.2
X_{10} (m)	0.3H	10 <i>H</i>
$R_1 \text{ (mm}^2)$	235.62 (3D10)	28,148.67 (35D32)
$R_2 \text{ (mm}^2\text{)}$	235.62 (3D10)	28,148.67 (35D32)
$R_3 (\mathrm{mm}^2)$	235.62 (3D10)	28,148.67 (35D32)
$R_4 (\mathrm{mm}^2)$	235.62 (3D10)	28,148.67 (35D32)
$R_5 \text{ (mm}^2\text{)}$	235.62 (3D10)	28,148.67 (35D32)
$R_6 (\mathrm{mm}^2)$	235.62 (3D10)	28,148.67 (35D32)
$R_7 (\text{mm}^2)$	235.62 (3D10)	28,148.67 (35D32)
$R_8 (\mathrm{mm}^2)$	235.62 (3D10)	28,148.67 (35D32)
$R_9 (\text{mm}^2)$	235.62 (3D10)	28,148.67 (35D32)
R_{10} (mm ²)	235.62 (3D10)	28,148.67 (35D32)

Note: H is the height of the stem

Table 2. Constraints and Failure Mode

Constraint	Requirement	Description
$g_1(x)$	Safety against overturning	$\frac{SF_{O\ design}}{SF_{O}} \le 1$
$g_2(x)$	Safety against lateral shear	$\frac{SF_{S \ design}}{SF_{S}} \le 1$
$g_3(x)$	Safety against bearing capacity	$\frac{SF_{B\ design}}{SF_{B}} \le 1$
$g_4(x)$	Safety against earthquake-induced overturning	$\frac{SF_{OE\ design}}{SF_{OE}} \le 1$
$g_5(x)$	Safety against earthquake-induced lateral shear	$\frac{SF_{SE\ design}}{SF_{SE}} \le 1$
$g_6(x)$	Safety against earthquake-induced bearing capacity	$\frac{SF_{BE\ design}}{SF_{BE}} \le 1$
$g_7(x)$	Base slab uplifted	$q_{min} \geq 0$
$g_8(x)$	Toe moment	$\frac{M_d}{M_n} \le 1$
$g_{[9-12]}(x)$	Stem Moment	$\frac{M_d}{M_n} \le 1$
$g_{[13-16]}(x)$	Heel Slab Moment	$\frac{M_d^n}{M_n} \le 1$
$g_{[13-16]}(x)$	Heel Slab Moment	$\frac{M_d}{M_n} \le 1$ $\frac{V_d}{V_n} \le 1$
$g_{17}(x)$	Shear toe	$\frac{V_d}{V_n} \le 1$
$g_{[18,19]}(x)$	Stem shear	$\frac{V_d}{V_n} \le 1$
$g_{[19,20]}(x)$	Slab heel shear	$\frac{V_d}{V_n} \le 1$
$g_{[21]}(x)$	Slab heel shear	$\frac{V_d}{V_n} \le 1$
$g_{[21]}(x)$	Slab heel shear	$\frac{V_d}{V_n} \le 1$
$g_{[21-29]}(x)$	Minimum reinforcement	$\frac{A_{smin}}{A_s} \le 1$
$g_{[30-38]}(x)$	Maximum reinforcement	$\frac{A_{s \max}}{A_s} \ge 1$
$g_{39}(x)$	Development length of horizontal reinforcement of the toe	$\frac{\iota_d}{X_1 - X_2 - c_c} \le 1$
$g_{40}(x)$	Development length of the vertical support reinforcement of stem	$\frac{l_d}{X_5 - c_c} \le 1$
$g_{41}(x)$	Development length of the vertical support reinforcement of the heel	$\frac{l_d^2}{X_5 - c_c} \le 1$ $\frac{l_d}{X_1 - X_2 - X_3 - c_c} \le 1$
$g_{42}(x)$	Development length of reinforcement of the shear key	$\frac{l_d}{X_5 - 2 \times c_c} \le 1$

Where: $SF_{O\ design}$ = overturning safety factor limit given by SNI 8460:2017 [12] = overturning safety factor SF_{o} = sliding safety factor limit given by SNI 8460:2017 [12] $SF_{S \ design}$ SF_S = overturning safety factor $SF_{B \ design}$ = bearing safety factor limit given by SNI 8460:2017 [12] SF_B = bearing safety factor $SF_{OE\ design}$ = overturning safety factor limit with earthquake load given by SNI 8460:2017 [12] = overturning safety factor limit with earthquake load SF_{OE} = sliding safety factor limit with earthquake load given by SNI 8460:2017 [12] $SF_{SE\ design}$ = sliding safety factor limit with earthquake load SF_{SE} $SF_{BE\ design}$ = bearing safety factor limit with earthquake load given by SNI 8460:2017 [12] SF_{BE} = bearing safety factor limit with earthquake load = minimum soil reaction [kN/m] q_{min}

```
M_d
               = driving moment [kNm]
M_n
               = nominal moment capacity [kNm]
V_d
               = driving shear [kN]
               = nominal shear capacity [kN]
A_{s min}
               = maximum reinforcement area [mm<sup>2</sup>]
               = maximum reinforcement area [mm<sup>2</sup>]
A_{s max}
A_s
               = reinforcement area [mm<sup>2</sup>]
l_d
               = required development length [mm]
X_1
               = total base width [mm]
X_2
               = toe projection width [mm]
X_3
               = stem thickness at the bottom[mm]
               = base slab thickness [mm]
               = concrete cover [mm]
```

The boundaries used in this study refer to Geotechnical specification SNI 8460:2017 [12], Structural Concrete for Building specifications SNI 2847:2019 [13], and Rankine Theory for calculating the lateral earth pressure on the wall.

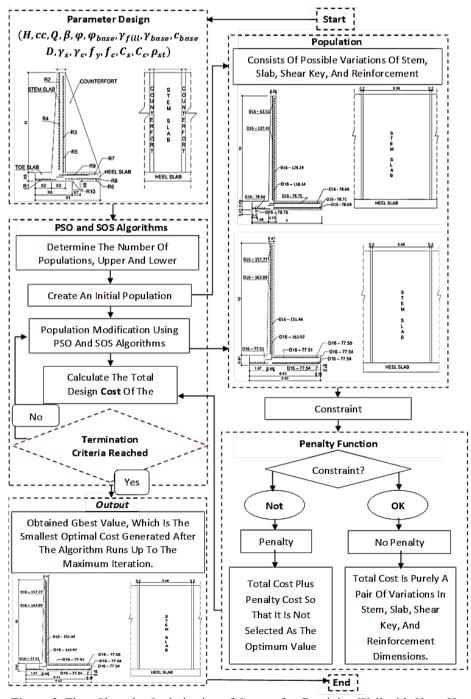


Figure 2. Flow Chart the Optimization of Counterfort Retaining Wall with Shear Key

Formulation that describes a value of the goal of the optimization process, which is called objective function, in this study is the cost optimization, as presented in Equation 1.

$$f_{obj} = V_c C_c + w_s C_s \tag{1}$$

Where:

 V_c = concrete volume per unit length of the wall length $[m^3]$

 C_c = concrete material cost per unit volume $[Rp/m^3]$

 w_s = mass of steel reinforcement used per unit length of the wall [kg]

 C_s = steel material cost per unit mass [Rp/kg]

The optimization process, namely PSO and SOS, in this research was developed using MATLAB R2019b. The algorithm performs iteration until the result meets all the specified constraints. If the results do not meet the constraints, the algorithm will provide a penalty function. Initially, the PSO and SOS algorithms execute the input data, then work using random variables to obtain a result that meets the constraints. The iteration process stops when the number of iterations set in the input parameter is reached. Details of the optimization process is presented in Figure 2.

Results and Discussion

PSO and SOS algorithms require initial settings in the form of inputting several parameter values. The setting parameters used include particle weight (w) that set at 0.5 and constant c_1 and c_2 are both set at 2. The soil parameters used for the base consist internal friction angle (ϕ base) of 0°, density (γ base) of 18.5 kN/m³, and cohesion (cB) of 125 kPa. For the retained soil, the input internal friction angle (f) is 36°, soil density (γ fill) was 17.5 kN/m³, and the cohesion (cF) is 0 kPa. Meanwhile, the groundwater level in this study is not taken into account. Other input parameters are presented in Table 3.

Symbol Input Value **Input Parameter** Stem height (m) Н 10 Concrete Cover (cm) 7 ccSurcharge Load (kPa) Q 20 Backfill Slope (°) В 10 36 Backfill Soil Friction Angle (°) φ Base Soil Friction Angle (°) 0 ϕ_{base} Backfill Soil Unit Weight (kN/m³) 17.5 γ_{fill} 18.5 Base Soil Unit Weight (kN/m³) γ_{base} Base Soil Cohesion (kPa) cВ 125 Backfill Soil Cohesion (kPa) cF 0 Depth of Soil in Front of Wall D 0.5 Steel Unit Weight (kN/m³) 78.5 γ_s Concrete Unit Weight (kN/m³) 23.5 γ_c Steel Yield Strength (MPa) 400 f_{v} Concrete Compressive Strength (MPa) 25

Table 3. Input Parameters for Counterfort Retaining Wall Case Study with Shear Key

The optimization results, in the form of the final cost, for the both algorithms of SOS and PSO obtained after thirty (30) runs are summarized in Table 4.

Table 4. The Best Results of Optimization of Counterfort Retaining Wall Structure with Shear Key

Subject	PSO (Rp)	SOS (Rp)
Best (Rp/m ¹)	24,525,850.19	23,956,617.73
Worst (Rp/m^1)	35,912,845.30	25,831,324.00
Median (Rp/m ¹)	26,974,742.70	24,405,457.67
Average (Rp/m ¹)	26,898,545.24	24,436,104.20
Std. Deviation (Rp/m ¹)	2,136,661.22	503,180.24
Coeff. Variation (%)	7.94%	2.06%

Table 5 shows the detail comparison of the optimization results of the counterfort retaining wall structure with shear keys design, obtained from the PSO and SOS algorithms process.

Civil Engineering Dimension

Table 5. The Detail Comparison of Optimization Results Obtained from the PSO and SOS Algorithms.

Variabal	PSO	SOS
Variabel	(Best)	(Best)
X1	7.00	6.82
X2	1.66	1.67
X3	0.75	0.68
X4	0.54	0.47
X5	0.89	0.91
X6	0.00	6.43
X7	0.50	0.39
X8	0.43	0.44
X9	0.20	0.20
X10	6.69	5.48
D 1	2556.86	2593.98
R1	(D16 - 78.64)	(D16 - 77.51)
D2	3166.03	1274.41
R2	(D16 - 63.51)	(D16 - 157.77)
D2	1567.90	1327.63
R3	(D16 - 128.24)	(D16 - 151.44)
D 4	1462.98	1226.81
R4	(D16 - 137.43)	(D16 - 163.89)
D.5	1453.42	1226.21
R5	(D16 - 138.34)	(D16 - 163.97)
D.C	2555.04	2593.09
R6	(D16 - 78.69)	(D16 - 77.54)
D.7	2555.35	2594.46
R7	(D16-78.68)	(D16 - 77.50)
D.O.	2554.35	2593.09
R8	(D16 - 78.71)	(D16 - 77.54)
D.O.	2553.08	2594.00
R9	(D16 - 78.75)	(D16 - 77.51)
D10	2553.01	2593.09
R10	(D16 - 78.75)	(D16 - 77.54)

The results show that SOS algorithm exhibits coefficient of variation of 2.06% compared to that of 7.49 resulted from PSO. In other words, the SOS algorithm exhibits better performance in the process of optimizing the counterfort retaining wall structure with shear keys, compared to that of PSO algorithm. The most optimal result of the design performed by PSO and SOS algorithms is presented in Figure 3 and Figure 4, respectively.

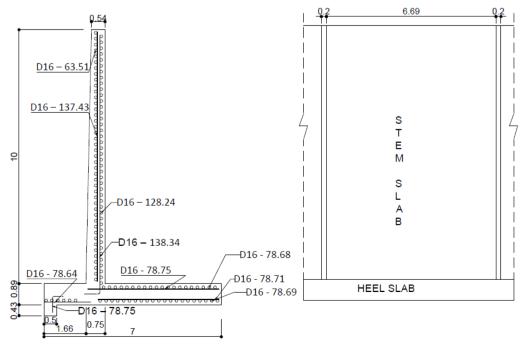


Figure 3. Retaining Wall Structure Design based on PSO Algorithm

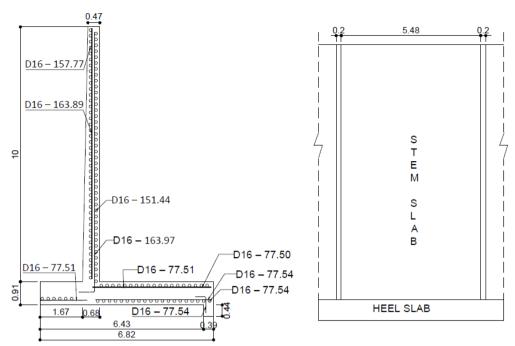


Figure 4. Retaining Wall Structure Design based on Cost SOS Algorithm

Figure 5 shows the rate of convergence of both algorithms on the optimization of the counterfort retaining wall structure with shear keys using input parameters presented in Table 3.

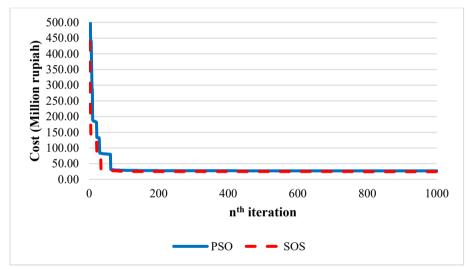


Figure 5. Convergence Graph of Median Run Results in the Case of Counterfort Retaining Wall with Shear Key

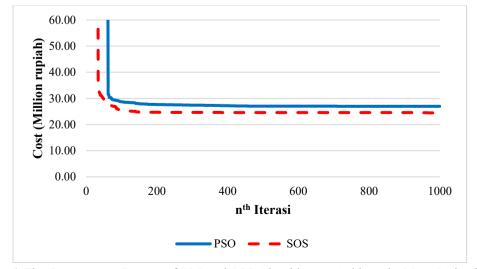


Figure 6. The Convergence Process of PSO and SOS Algorithms to Achieve the Most Optimal Costs

It can be seen in Figure 5 that the rate of convergence of the SOS algorithm is faster than that of PSO, where the lowest cost (or the best result) can be achieved in smaller number of iteration.

Figure 6 shows the rate of convergence process of the two algorithms. The curve generated from the SOS algorithm almost constant from about 300th iteration compared to that generated based on the PSO algorithm, which still decreasing up to 1000th iteration. Based on the results presented in Figure 5 and Figure 6, it can be stated that in this research, the SOS algorithm is faster than that of the PSO algorithm.

Conclusions

Based on the results of the analysis, it can be concluded that the metaheuristic method using the SOS algorithm produces the most optimum result in terms of the material cost of the counterfort retaining wall with shear key. In addition, the SOS algorithm is relatively faster in achieving the optimum result (as indicated by the rate of convergence) compared to the PSO algorithm.

References

- 1. Khuzaifah, E., Studi tentang Dinding Penahan (Retaining Wall), Swara Patra: Majalah Ilmiah PPSDM Migas, 9(1), 2019, pp. 7–18, Accessed: Jul. 25, 2023. [Online]. Available: http://ejurnal.ppsdmmigas.esdm.go.id/sp/ index.php/swarapatra/article/view/189
- 2. Kalemci, E.N., İkizler, S.B., Dede, T., and Angın, Z., Design of Reinforced Concrete Cantilever Retaining Wall using Grey Wolf Optimization Algorithm, Structures, 23, 2020, pp. 245–253, doi: 10.1016/j.istruc.2019.09.013.
- Fardilla, H., Perencanaan Dinding Penahan Sebagai Alternatif Pencegah Bahaya Longsor pada Konstruksi Pangkal Jembatan, Journal Rekayasa Sipil dan Desain (JRSDD), 2018, [Online]. Available: http://digilib.unila. ac.id/30392/11/SKRIPSI%20TANPA%20BAB%20PEMBAHASAN.pdf
- Öztürk, H.T., Dede, T., and Türker, E., Optimum Design of Reinforced Concrete Counterfort Retaining Walls using TLBO, Jaya Algorithm, Structures, 25, 2020, pp. 285–296, doi: 10.1016/j.istruc.2020.03.020.
- Khajehzadeh, M., Taha, M.R., El-Shafie, A., and Eslami, M., Modified Particle Swarm Optimization for Optimum Design of Spread Footing and Retaining Wall, Journal of Zhejiang University: Science A, 12(6), 2011, pp. 415–427, doi: 10.1631/jzus.A1000252.
- 6. Cheng, M.Y., Prayogo, D., and Tran, D.H., Optimizing Multiple-resources Leveling in Multiple Projects using Discrete Symbiotic Organisms Search, Journal of Computing in Civil Engineering, 30(3), 2016, doi: 10.1061/ (asce)cp.1943-5487.0000512.
- Parsa, P. and Naderpour, H., Shear Strength Estimation of Reinforced Concrete Walls using Support Vector Regression Improved by Teaching-learning-based Optimization, Particle Swarm Optimization, and Harris Hawks Optimization Algorithms, Journal of Building Engineering, 44, 2021, p. 102593, doi: 10.1016/j.jobe.2021. 102593.
- 8. Prayogo, D., Santoso, H., Budiman, F., and Jason, M., Layout, Topology, and Size Optimization of Steel Frame Design using Metaheuristic Algorithms: A Comparative Study, Civil Engineering Dimension, 24(1), 2022, pp. 31-37, doi: 10.9744/ced.24.1.31-37.
- 9. Nguyen-Van, S., Nguyen, K.T., Dang, K.D., Nguyen, N.T.T., Lee, S., and Lieu, Q.X., An Evolutionary Symbiotic Organisms Search for Multiconstraint Truss Optimization under Free Vibration and Transient Behavior, Advances in Engineering Software, 160, 2021, p. 103045, doi: 10.1016/j.advengsoft.2021.103045.
- 10. Husada, V.N. and Tanara, A.C., Optimasi Durasi Penjadwalan Proyek Perumahan X menggunakan Metode Line of Balance dan Metode Metaheuristik dengan Memperhatikan Resource Leveling, Undergraduate Thesis, Petra Christian University, 2022. Accessed: Sep. 17, 2023. [Online]. Available: https://dewey.petra.ac.id/digital/view/ 55660
- 11. Clayton, C.R.I., Woods, R.I., Bond, A.J., and Milititsky, J., Earth Pressure and Earth Retaining Structures, 3rd ed., CRC Press, 2013.
- 12. Badan Standardisasi Nasional, SNI, 8460:2017: Persyaratan Perancangan Geoteknik, 2017.
- 13. Badan Standardisasi Nasional, SNI, 2847:2019: Persyaratan Beton Struktural untuk Bangunan Gedung dan Penjelasan, 2019.

Optimization of Counterfort Retaining Wall Structure with Shear Key using Metaheuristic Method

by Perpustakaan Referensi

Submission date: 02-Oct-2024 03:01PM (UTC+0700)

Submission ID: 2472497756

File name: 27937-Article_Text-51680-1-10-20240913_Journal_Paper.pdf (872.46K)

Word count: 4199

Character count: 20584

Civil Engineering Dimension

https://ced.petra.ac.id

Optimization of Counterfort Retaining Wall Structure with Shear Key using Metaheuristic Method

Budi, G.S.¹, Chandra, J.G.¹, Ongkowardhana, B.S.¹, and Husada, W.^{1*}

¹ Civil Engineering Department, Faculty of Civil Engineering and Planning, Petra Christian University Jl. Siwalankerto 121-131, Surabaya 60236, INDONESIA

DOI: https://doi.org/10.9744/ced.26.2.151-159

Article Info:

Submitted: Feb 02, 2024 Reviewed: Feb 19, 2024 Accepted: Jul 23, 2024

Keywords:

retaining wall, counterfort, shear key, optimization, metaheuristic, PSO, SOS.

Corresponding Author:

🗾 usada, W.

Civil Engineering Department, Faculty of Civil Engineering and Planning, Petra Christian University Jl. Siwalankerto 121-131, Surabaya 60236, INDONESIA Email: willy.husada@petra.ac.id

Abstract

This paper presents the optimization work to obtain the most economical of counterfort retaining wall structure with shear key attached at its base using metaheuristic method. The metaheuristic algorithm is a global optimization method that can be used to find the optimum solution of complex problems. In this research, optimization is carried out using the Particle Swarm Optimization (PSO) and Symbiotic Organisms Search (SOS) methods. This research utilizes a retaining wall sitting on stiff clay layer subjected to ten (10) m of granular soil of backfill. The scope of the study is limited to the material cost, that consists of the cost of concrete and reinforcement bars, of the counterfort retaining wall with shear key. The results show that the SOS algorithm resulted a lower cost and relatively faster in obtaining optimum retaining wall design compared to that of the PSO algorithm.

This is an open access article under the CC BY license.

Introduction

A retaining wall is a structure to withstand lateral active pressure of soil or water [1]. A retaining wall consists of vertical section, commonly known as a stem, and a base slab. There is a specific element beneath the base slab called a shear key, which enhances the stability of the retaining wall to anticipate lateral force by utilizing passive pressure below the base slab arising from the active lateral pressure of the soil [2].

In general, the dimension and reinforcement of the cantilever wall (stem) increases with the increase of its bending moment generated due to lateral pressure of soil. The generated bending moment in the stem can be reduced by employing counterforts (a vertical walls or slabs) that connect the stem and the base slab of the retaining wall. In other words, counterforts play an important role in restraining tensile/horizontal force developed in the stem of the retaining wall [3].

Studies on the optimization of retaining wall can be found in several publications. Kalemci et al. [2] developed a tool using Grey Wolf algorithm to determine the optimum design of cantilever wall with shear key to increase its horizontal capacity. The retaining walls with a 3m and 4.5m height of stem were designed to retain embankment consisting of both cohesive and non-cohesive soils. The optimization process of the two metaheuristic algorithms proceeded for 30 runs, where each run iterated 1000 times. It is stated that the results of the optimization of cantilever wall with shear key, developed using Grey Wolf algorithm 12 gree with other published results using different algorithms. Öztürk et al. [4] developed an application using Teaching-Learning Based Optimization (TLBO) and Jaya algorithms to obtain the optimum cost of a 10-m height counterfort retaining wall with shear key, which is built in cohesive soil. It is stated that the TLBO algorithm exhibits better performance compared to the Jaya algorithm.

Note: Discussion is expected before November, 1st 2024, and will be published in the "Civil Engineering Dimension",

volume 27, number 1, March 2025. : 1410-9530 print / 1979-570X online

Published by : Petra Christian University

This research employes metaheuristic approach to optimize a counterfort retaining wall with a shear key subjected to gravity and seismic loads, which meets all existing constraints while considering safety requirements, and producing cost-effective solutions. Two metaheuristic algorithms, namely Particle Swarm Optimization (PSO) and Symbiotic Organisms Search (SOS), are utilized in this study. Both algorithms operate using a penalty function method to control the existing constraints during the design process, thereby achieving optimal and economical results while still satisfying safety requirements.

The PSO algorithm is inspired by natural conditions about food chains, such as the social behavior of a group of birds or insects looking for food. The concept is to mimic the social interaction between individuals in the group to find the optimal solution to the optimization problem. PSO is computationally efficient because it requires only a few computing resources to work, so the number of iterations used to produce optimal results is relatively small and fast [5].

The SOS algorithm uses mutualism, commensalism, and parasitism strategies to simulate interactions in a relationship. SOS uses simple mathematical operations, and can achieve efficient and effective optimization without the need to determine parameter tuning like other algorithms so that its performance stability is higher [6]. SOS is also proven to be able to solve optimization for continuous and non-linear problems on simple to complex problems, so these are the advantages of SOS.

Previously, the PSO algorithm has successfully aided in the optimization processes within the field of civil engineering, such as the estimation of the shear strength of reinforced concrete walls using support vector regression that optimized with the PSO and Harris Hawks algorithms [7]. In addition, the optimization of special concentrically braced steel frame structures was conducted using metaheuristic methods based on the Indonesian National Standards SNI 1729:2020 and SNI 7860:2020 [8].

Meanwhile, the SOS algorithm has also successfully contributed to solving optimization cases in the field of civil engineering. For example, it was applied in the optimization of multi-constraint frames under free vibration and transient behavior [9]. Additionally, it was used in optimizing the scheduling duration of housing projects using the line of balance method and metaheuristic methods with consideration for resource leveling [10].

The objective of this research is to provide alternative designs for a robust and economical counterfort retaining wall with shear key, in a relatively short of time. In addition, the seismic load is considered in this research.

Method

Cantilever retaining walls are designed to withstand all the loads that include gravity load and lateral load generated by soil pressure. The design of retaining wall is determined by several variables such as geometry/disension, load and reinforcement, and geotechnical condition that meet structural safety requirements. Counterfort retaining wall with shear key is a modification of a cantilever retaining wall to reduce the thickness of the stem and increase its horizontal stability. In other words, counterfort is beneficial for very high retaining walls (10-12 m) since it reduces the shear and bending moment at the stem [11].

The optimization process of counterfort retaining wall with shear key in this research is carried out using metaheuristic method. In general, the optimization includes several aspects such as optimal shape, maximizing structural stability, minimizing bending moment, and optimizing the slope angle. The optimization process requires information that include variables, constraints, and objective functions. The solution that obtained from the optimization is in the form of variables, which represent the most economical retaining wall design.

The design variables used in the optimization process is presented in Figure 1. The range of design variables is limited by the upper and lower bounds, which are the maximum and minimum values of the design variables to be randomized. The ranges of the geometrical variables are based upon the recommendation given by SNI 8460:2017 [12]. A range of reinforcement area is applied to reduce the search field and improve the possibility of finding the optimal solution. By using both ranges of values recommended by SNI 8460:2017 [12] for the geometrical variables and a range of values for the reinforcement area, it will ensure that the optimal solution lies in these ranges. Constrains are used to ensure that the design results of the optimization process fall into the specifications. Table 1 shows the upper and lower bounds used in the design process. The constraints used in the optimization process can be seen in Table 2.

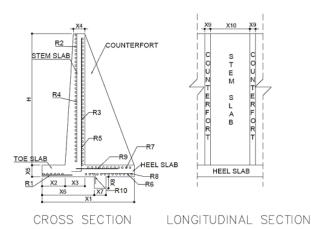


Figure 1. Modeling of Counterfort Retaining Wall with Shear Key

Descriptions: total base width [m] X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8} X_{9} X_{10} = toe projection width [m] = stem thickness at bottom[m] = stem thickness at top [m] = base slab thickness [m] = 5 stance of the front shear key from the front of toe slab [m] = width of the base shear key [m] = height of the base shear key[m] = counterfort thickness [m] = Distance between counterforts [m] R₁ R₂ R₃ R₄ = area of the horizontal reinforcement of the toe, per unit length of the wall [mm²] = area of the horizontal field reinforcement of the stem, per unit length of the wall [mm²] = area of the horizontal support reinforcem 1 of the stem, per unit length of the wall [mm²] =area of the vertical field reinforcement of t4 stem, per unit length of the wall [mm²] R₅ = area of the vertical support reinforcement of the stem, per unit length of the wall [mm²] = area of the horizontal field reinforcement of the heel, per unit length of the wall [mm²] R_7 = area of the horizontal support reinforcement of the teel, per unit length of the wall [mm²] R_8 = area of the vertical field reinforcement of the heel, per unit length of the wall [mm²] R_9 = 1rea of the vertical support reinforcement of the heel, per unit length of the wall [mm²] = area of reinforcement of the shear key, per unit length of the wall [mm²]

Table 1. Upper Bound and Lower Bound

P: 9 ameter	Lower Bounds	Upper Bounds
X_1 (m)	0.4 <i>H</i>	0.7 <i>H</i>
X_2 (m)	0.4H/3	0.7H/3
X_3 (m)	$\frac{H + 48X_4}{48}$	0.1 <i>H</i>
X_4 (m)	0.3	0.1H
X_5 (m)	H/12	H/10
X_6 (m)	0	$X_1 - X_7$
X_7 (m)	0	0.5
X_8 (m)	0	0.5
X_9 (m)	0.2	0.2
11 ₀ (m)	0.3H	10H
$R_1 (\text{mm}^2)$	235.62 (3D10)	28,148.67 (35D32)
$R_2 \text{ (mm}^2\text{)}$	235.62 (3D10)	28,148.67 (35D32)
R_3 (mm ²)	235.62 (3D10)	28,148.67 (35D32)
$R_4 \text{ (mm}^2\text{)}$	235.62 (3D10)	28,148.67 (35D32)
R_5 (mm ²)	235.62 (3D10)	28,148.67 (35D32)
$R_6 \text{ (mm}^2\text{)}$	235.62 (3D10)	28,148.67 (35D32)
$R_7 \text{ (mm}^2\text{)}$	235.62 (3D10)	28,148.67 (35D32)
$R_8 \text{ (mm}^2\text{)}$	235.62 (3D10)	28,148.67 (35D32)
$R_9 \text{ (mm}^2\text{)}$	235.62 (3D10)	28,148.67 (35D32)
$R_{10} (\mathrm{mm}^2)$	235.62 (3D10)	28,148.67 (35D32)

Note: *H* is the height of the stem

Table 2. Constraints and Failure Mode

Constraint	Requirement	3)escription
$g_1(x)$	Safety against overturning	$\frac{SF_{O \ design}}{8 \ SF_{O}} \le 1$
$g_2(x)$	Safety against lateral shear	$\frac{SF_{S \ design}}{SF_{S}} \le 1$
$g_3(x)$	Safety against bearing capacity	$\frac{SF_{B \ design}}{SF_{B}} \le 1$
$g_4(x)$	Safety against earthquake-induced overturning	$\frac{SF_{OE \ design}}{8 \ SF_{OE}} \le 1$
$g_5(x)$	Safety against earthquake-induced lateral shear	$\frac{SF_{SE\ design}}{SF_{SE}} \le 1$
$g_6(x)$	Safety against earthquake-induced bearing capacity	$\frac{SF_{BE\ design}}{SF_{BE}} \le 1$
$g_7(x)$	Base slab uplifted	$a_{min} \geq 0$
$g_8(x)$	Toe moment	$\frac{\stackrel{m}{M_d}}{\stackrel{m}{M_n}} \le 1$
$g_{[9-12]}(x)$	Stem Moment	$\frac{M_d}{M_n} \le 1$
$g_{[13-16]}(x)$	Heel Slab Moment	$\frac{M_d^N}{M_n} \le 1$
$g_{[13-16]}(x)$	Heel Slab Moment	$\frac{M_d}{M_n} \le 1$
$g_{17}(x)$	Shear toe	$\frac{V_d}{V_n} \le 1$
$g_{[18,19]}(x)$	Stem shear	$\frac{V_d}{V_n} \le 1$
$g_{[19,20]}(x)$	Slab heel shear	$\frac{V_d}{V_n} \le 1$
$g_{[21]}(x)$	Slab heel shear	$\frac{V_d}{V_n} \le 1$
$g_{[21]}(x)$	Slab heel shear	
$g_{[21-29]}(x)$	Minimum reinforcement	$\frac{A_{s min}}{A_s} \le 1$
$g_{[30-38]}(x)$	Maximum reinforcement	$\frac{A_{s \max}}{A_s} \ge 1$
$g_{39}(x)$	Development length of horizontal reinforcement of the toe	$\frac{11}{X_1 - X_2 - c_c} \le 1$
$g_{40}(x)$	Development length of the vertical support reinforcement of stem	$\frac{l_d}{X_5 - c_c} \le 1$
$g_{41}(x)$	Development length of the vertical support reinforcement of the heel	$\frac{t_d}{X_1 - X_2 - X_3 - c_c} \le 1$
$g_{42}(x)$	Development length of reinforcement of the shear key	$\frac{l_d}{X_5 - 2 \times c_c} \le 1$

Where: $SF_{O\ design}$ = overturning safety factor limit given by SNI 8460:2017 [12] $3F_0$ = overturning safety factor SF_{S design} = sliding safety factor limit given by SNI 8460:2017 [12] SF_S = overturning safety factor $SF_{B \ design}$ = bearing safety factor limit given by SNI 8460:2017 [12] = bearing safety factor SF_{OE design} = overturning safety factor limit with earthquake load given by SNI 8460:2017 [12] 3F_{OE} = overturning safety factor limit with earthquake load SF_{SE design} = sliding safety factor limit with earthquake load given by SNI 8460:2017 [12] SF_{SE} = sliding safety factor limit with earthquake load $SF_{BE\ design}$ = bearing safety factor limit with earthquake load given by SNI 8460:2017 [12] SF_{BE} = bearing safety factor limit with earthquake load = minimum soil reaction [kN/m]

7ivil Engineering Dimension

Vol. 26, No. 2, September 2024: pp. 151-159

```
= driving moment [kNm]
M_n
               = nominal moment capacity [kNm]
V_d
               = driving shear [kN]
               = nominal shear capacity [kN]
V_n
A_{s\,min}
               = maximum reinforcement area [mm<sup>2</sup>]
A_{s\,max}
               = maximum reinforcement area [mm<sup>2</sup>]
               = reinforcement area [mm<sup>2</sup>]
l_d
               = 4 quired development length [mm]
X_1
               = total base width [mm]
X_2
               = toe projection width [mm]
X_3
               = stem thickness at the bottom[mm]
               = base slab thickness [mm]
               = concrete cover [mm]
```

The boundaries used in this study refer to (sotechnical specification SNI 8460:2017 [12], Structural Concrete for Building specifications SNI 2847:2019 [13], and Rankine Theory for calculating the lateral earth pressure on the wall.

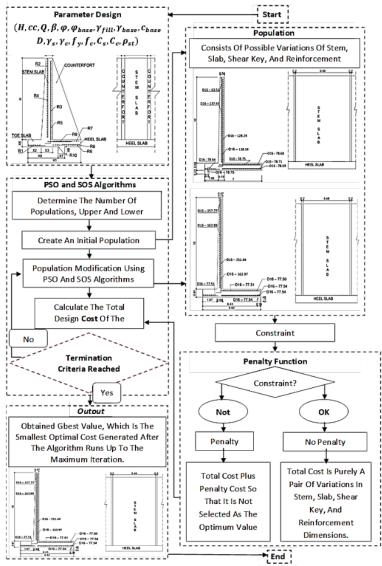


Figure 2. Flow Chart the Optimization of Counterfort Retaining Wall with Shear Key

Civil Engineering Dimension Vol. 26, No. 2, September 2024: pp. 151-159 Formulation that describes a value of the goal of the optimization process, which is called objective function, in this study is the cost optimization, as presented in Equation 1.

$$f_{obj} = V_c C_c + w_s C_s \tag{1}$$

Where: V_c = concrete volume per unit length of the wall length $[m^3]$ C_c = concrete material cost per unit volume $[Rp/m^3]$ w_s = mass of steel reinforcement used per unit length of the wall [kg] C_s = steel material cost per unit mass [Rp/kg]

The optimization process, namely PSO and SOS, in this research was developed using MATLAB R2019b. The algorithm performs iteration until the result meets all the specified constraints. If the results do not meet the constraints, the algorithm will provide a penalty function. Initially, the PSO and SOS algorithms execute the input data, then work using random variables to obtain a result that meets the constraints. The iteration process stops when the number of iterations set in the input parameter is reached. Details of the optimization process is presented in Figure 2.

Results and Discussion

PSO and SOS algorithms require initial settings in the form of inputting several parameter values. The setting parameters used include particle weight (w) that set at 0.5 and constant c_1 and c_2 are both set at 2. The soil parameters used for the base consist internal friction angle (ϕ base) of 0° , density (γ base) of 18.5 kN/m³, and cohesion (cB) of 125 kPa. For the retained soil, the input internal friction angle (f) is 36° , soil density (γ fill) was 17.5 kN/m³, and the cohesion (cF) is 0 kPa. Meanwhile, the groundwater level in this study is not taken into account. Other input parameters are presented in Table 3.

Table 3. Input Parameters for Counterfort Retaining Wall Case Study with Shear Key

Input Parameter	Symbol	Input Value
Stem height (m)	Н	10
6 oncrete Cover (cm)	cc	7
Surcharge Load (kPa)	Q	20
Backfill Slope (°)	В	10
Backfill Soil Friction Angle (°)	φ	36
Base Soil Friction Angle (°)	ϕ_{base}	0
Backfill Soil Unit Weight (kN/m³)	Yfill	17.5
Base Soil Unit Weight (kN/m³)	γ_{base}	18.5
Base Soil Cohesion (kPa)	cB	125
5 ackfill Soil Cohesion (kPa)	cF	0
Depth of Soil in From 6 of Wall	D	0.5
Steel Unit Weight (kN/m³)	γ_s	78. <mark>5</mark>
Concrete Unit Weight (kN/m³)	γ_c	23.5
Steel Yield Strength (MPa)	fy	400
Concrete Compressive Strength (MPa)	f_c	25

The optimization results, in the form of the final cost, for the both algorithms of SOS and PSO obtained after thirty (30) runs are summarized in Table 4.

Table 4. The Best Results of Optimization of Counterfort Retaining Wall Structure with Shear Key

Subject	PSO (Rp)	SOS (Rp)
Best (Rp/m ¹)	24,525,850.19	23,956,617.73
Worst (Rp/m1)	35,912,845.30	25,831,324.00
Median (Rp/m ¹)	26,974,742.70	24,405,457.67
Average (Rp/m ¹)	26,898,545.24	24,436,104.20
Std. Deviation (Rp/m1)	2,136,661.22	503,180.24
Coeff. Variation (%)	7.94%	2.06%

Table 5 shows the detail comparison of the optimization results of the counterfort retaining wall structure with shear keys design, obtained from the PSO and SOS algorithms process.

ivil Engineering Dimension

Vol. 26, No. 2, September 2024: pp. 151-159

Table 5. The Detail Comparison of Optimization Results Obtained from the PSO and SOS Algorithms.

\$7 d - b - 1	PSO	SOS
Variabel	(Best)	(Best)
X1	7.00	6.82
X2	1.66	1.67
X3	0.75	0.68
X4	0.54	0.47
X5	0.89	0.91
X6	0.00	6.43
X7	0.50	0.39
X8	0.43	0.44
X9	0.20	0.20
X10	6.69	5.48
D.I.	2556.86	2593.98
R1	(D16 - 78.64)	(D16 - 77.51)
D.2	3166.03	1274.41
R2	(D16 - 63.51)	(D16 - 157.77)
D.2	1567.90	1327.63
R3	(D16 - 128.24)	(D16 - 151.44)
R4	1462.98	1226.81
	(D16 - 137.43)	(D16 - 163.89)
D.S.	1453.42	1226.21
R5	(D16 - 138.34)	(D16 - 163.97)
D.C	2555.04	2593.09
R6	(D16 - 78.69)	(D16 - 77.54)
D.7	2555.35	2594.46
R7	(D16-78.68)	(D16 - 77.50)
D.O.	2554.35	2593.09
R8	(D16 - 78.71)	(D16 - 77.54)
D.O.	2553.08	2594.00
R9	(D16 - 78.75)	(D16 - 77.51)
B10	2553.01	2593.09
R10	(D16 - 78.75)	(D16 - 77.54)

The results show that SOS algorithm exhibits coefficient of variation of 2.06% compared to that of 7.49 resulted from PSO. In other words, the SOS algorithm exhibits better performance in the process of optimizing the counterfort retaining wall structure with shear keys, compared to that of PSO algorithm. The most optimal result of the design performed by PSO and SOS algorithms is presented in Figure 3 and Figure 4, respectively.

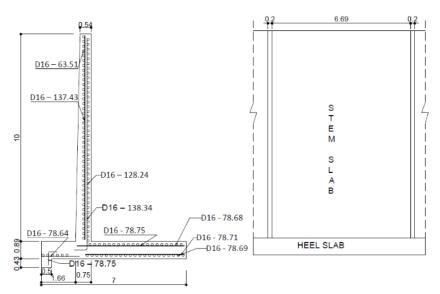


Figure 3. Retaining Wall Structure Design based on PSO Algorithm

Civil Engineering Dimension Vol. 26, No. 2, September 2024: pp. 151-159

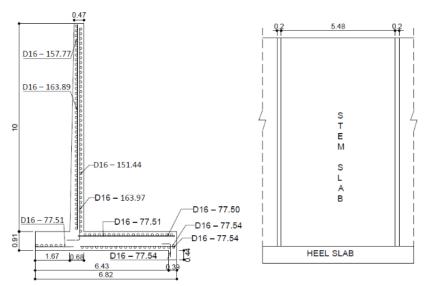


Figure 4. Retaining Wall Structure Design based on Cost SOS Algorithm

Figure 5 shows the rate of convergence of both algorithms on the optimization of the counterfort retaining wall structure with shear keys using input parameters presented in Table 3.

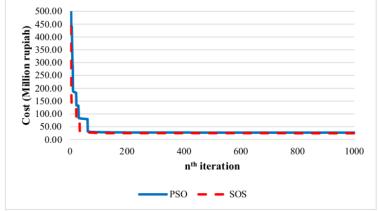


Figure 5. Convergence Graph of Median Run Results in the Case of Counterfort Retaining Wall with Shear Key

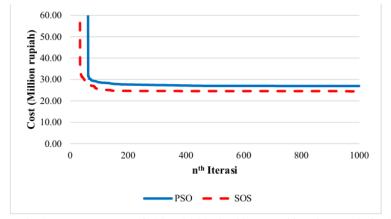


Figure 6. The Convergence Process of PSO and SOS Algorithms to Achieve the Most Optimal Costs Civil Engineering Dimension

Vol. 26, No. 2, September 2024: pp. 151-159

It can be seen in Figure 5 that the rate of convergence of the SOS algorithm is faster than that of PSO, where the lowest cost (or the best result) can be achieved in smaller number of iteration.

Figure 6 shows the rate of convergence process of the two algorithms. The curve generated from the SOS algorithm almost constant from about 300th iteration compared to that generated based on the PSO algorithm, which still decreasing up to 1000th iteration. Based on the results presented in Figure 5 and Figure 6, it can be stated that in this research, the SOS algorithm is faster than that of the PSO algorithm.

Conclusions

Based on the results of the analysis, it can be concluded that the metaheuristic method using the SOS algorithm produces the most optimum result in terms of the material cost of the counterfort retaining wall with shear key. In addition, the SOS algorithm is relatively faster in achieving the optimum result (as indicated by the rate of convergence) compared to the PSO algorithm.

References

- 1. Khuzaifah, E., Studi tentang Dinding Penahan (Retaining Wall), Swara Patra: Majalah Ilmiah PPSDM Migas, 9(1), 2019, pp. 7–18, Accessed: Jul. 25, 2023. [Online]. Available: http://ejurnal.ppsdmmigas.esdm.go.id/sp/ index.php/swarapatra/article/view/189
- 2. Kalemci, E.N., İkizler, S.B., Dede, T., and Angın, Z., Design of Reinforced Concrete Cantilever Retaining Wall using Grey Wolf Optimization Algorithm, Structures, 23, 2020, pp. 245–253, doi: 10.1016/j.istruc.2019.09.013.
- 3. Fardilla, H., Perencanaan Dinding Penahan Sebagai Alternatif Pencegah Bahaya Longsor pada Konstruksi Pangkal Jembatan, Journal Rekayasa Sipil dan Desain (JRSDD), 2018, [Online]. Available: http://digilib.unila. ac.id/30392/11/SKRIPSI%20TANPA%20BAB%20PEMBAHASAN.pdf
- 4. Öztürk, H.T., Dede, T., and Türker, E., Optimum Design of Reinforced Concrete Counterfort Retaining Walls using TLBO, Jaya Algorithm, Structures, 25, 2020, pp. 285-296, doi: 10.1016/j.istruc.2020.03.020.
- 5. Khajehzadeh, M., Taha, M.R., El-Shafie, A., and Eslami, M., Modified Particle Swarm Optimization for Optimum Design of Spread Footing and Retaining Wall, Journal of Zhejiang University: Science A, 12(6), 2011, pp. 415-427, doi: 10.1631/jzus.A1000252.
- 6. Cheng, M.Y., Prayogo, D., and Tran, D.H., Optimizing Multiple-resources Leveling in Multiple Projects using Discrete Symbiotic Organisms Search, Journal of Computing in Civil Engineering, 30(3), 2016, doi: 10.1061/ (asce)cp.1943-5487.0000512.
- 7. Parsa, P. and Naderpour, H., Shear Strength Estimation of Reinforced Concrete Walls using Support Vector Regression Improved by Teaching-learning-based Optimization, Particle Swarm Optimization, and Harris Hawks Optimization Algorithms, Journal of Building Engineering, 44, 2021, p. 102593, doi: 10.1016/j.jobe.2021.
- 8. Prayogo, D., Santoso, H., Budiman, F., and Jason, M., Layout, Topology, and Size Optimization of Steel Frame Design using Metaheuristic Algorithms: A Comparative Study, Civil Engineering Dimension, 24(1), 2022, pp. 31-37, doi: 10.9744/ced.24.1.31-37.
- 9. Nguyen-Van, S., Nguyen, K.T., Dang, K.D., Nguyen, N.T.T., Lee, S., and Lieu, Q.X., An Evolutionary Symbiotic Organisms Search for Multiconstraint Truss Optimization under Free Vibration and Transient Behavior, Advances in Engineering Software, 160, 2021, p. 103045, doi: 10.1016/j.advengsoft.2021.103045.
- 10. Husada, V.N. and Tanara, A.C., Optimasi Durasi Penjadwalan Proyek Perumahan X menggunakan Metode Line of Balance dan Metode Metaheuristik dengan Memperhatikan Resource Leveling, Undergraduate Thesis, Petra Christian University, 2022. Accessed: Sep. 17, 2023. [Online]. Available: https://dewey.petra.ac.id/digital/view/
- 11. Clayton, C.R.I., Woods, R.I., Bond, A.J., and Milititsky, J., Earth Pressure and Earth Retaining Structures, 3rd ed., CRC Press, 2013.
- 12. Badan Standardisasi Nasional, SNI, 8460:2017: Persyaratan Perancangan Geoteknik, 2017.
- 13. Badan Standardisasi Nasional, SNI, 2847:2019: Persyaratan Beton Struktural untuk Bangunan Gedung dan Penielasan, 2019.

Optimization of Counterfort Retaining Wall Structure with Shear Key using Metaheuristic Method

She	ar Key usi	ng Metaheuristi	c Method		
ORIGINA	ALITY REPORT				
SIMILA	4% ARITY INDEX	9% INTERNET SOURCES	14% PUBLICATIONS	5% STUDENT PAR	PERS
PRIMAR	Y SOURCES				
1	"Chapte Optimiz Reinford Structur	h, Kiarash Biaba r 2 Set-Theoreti ation Algorithm ced Concrete Ca es", Springer So LC, 2022	cal Shuffled S for Optimal I ntilever Retai	hepherd Design of ning Wall	2%
2	ced.petr				2%
3	www.ba	nqueducanada.	ca		2%
4	Sensitivi	arıbaş, Fuat Erba ity of Retaining nnical Engineerir	Structures", J		1 %
5	Dede, Z	Kalemci, Sabriyo ekai Angın. "Des e cantilever reta	sign of reinfor	rced	1%

wolf optimization algorithm", Structures, 2020

Publication

6	Charles V. Camp, Alper Akin. "Design of Retaining Walls Using Big Bang-Big Crunch Optimization", Journal of Structural Engineering, 2012 Publication	1 %
7	Sandra Casanova-Vizcaíno, Inés Ordiz. "Latin American Gothic in Literature and Culture", Routledge, 2017 Publication	1 %
8	repository.tudelft.nl Internet Source	1 %
9	d.docksci.com Internet Source	1 %
10	"Proceedings of the Second International Conference of Construction, Infrastructure, and Materials", Springer Science and Business Media LLC, 2022 Publication	1 %
11	Gert Heinrich. "Basiswissen Mathematik, Statistik und Operations Research für Wirtschaftswissenschaftler", Walter de Gruyter GmbH, 2018	1 %
12	Yusuf Cengiz Toklu, Gebrail Bekdaş, Sinan Melih Nigdeli. "Metaheuristics for Structural Design and Analysis", Wiley, 2021	1 %

Exclude quotes On Exclude matches < 1%

Exclude bibliography On

BUKTI KORESPONDENSI

Optimization of Counterfort Retaining Wall Structure with Shear Key using Metaheuristic Method

Budi, G.S., Chandra, J.G., Ongkowardhana, B.S., and Husada, W.*

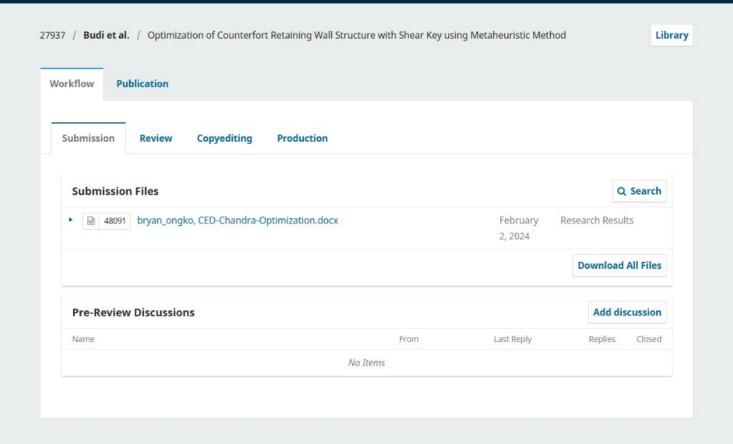
* Corresponding Author

Civil Engineering Dimension, Vol. 26, No. 2, September 2024

Daftar Isi:

1. Initial Submission/Submission Acknowledgement: 02 Februari 2024

Minor Revision: 19 Februari 2024
 Revision Submitted: 15 Juli 2024


- Revised Article

4. Article Accepted: 23 Juli 2024

← Back to Submissions

[ced] Editor Decision

Mon, Feb 19, 2024 at 2:10 PM

<willy.husada@petra.ac.id>

Bryan Ongko, Glenn, Gogot, Willy:

We have reached a decision regarding your submission to Civil Engineering Dimension, "The Optimization of Counterfort Retaining Wall Structure with Shear Key using Metaheuristic Method".

Our decision is to request minor revisions to your manuscript.

Please revise your manuscript according to the reviewer's comments. Additionally, we kindly request that you provide a one-on-one feedback reply addressing the reviewer's comments.

We look forward to receiving your revised manuscript.

Best regards,
Editor

-----Reviewer A:

Comments:

- 1. The main idea of the paper is clear that optimization processes were used to obtain best results of RC retaining wall design.
- 2. However, it should be improved by noticing these following comments/suggestions/questions:
- a. If variable description below Fig.1 is meant as note of the figure, there are still many variables which are not illustrated in the figure, starting from X9.
- b. Use of consistent definition is encouraged. For example, please compare definitions of variables R3 and R5.
- c. How were the range of the variables chosen? How do you know if optimum design result will be obtained by using the design variables in this range?
- d. Notations in Constraint, and Description of Table 2 should be defined somewhere in the text.
- e. How does the algorithm know if the cost from the current iteration is the lowest? That it will stop and will not go to the next iteration.
- f. Please improve Figure 2. Details are in the commented text.
- g. In Figures 3 and 4, there are horizontal layers of reinforcement without vertical reinforcement. Is that the case?

Recommendation: Revisions Required

Civil Engineering Dimension Journal of Civil Engineering Science and Application
Published by: Institute of Research and Community Outreach Petra Christian University
Jl. Siwalankerto 121-131 Surabaya 60236 Indonesia Phone: +62-31-2983139, 2983147 Fax: +62-31-8436418, 8492562

Optimization of Counterfort Retaining Wall Structure with Shear Key using

Metaheuristic Method

Budi, G. S¹., Chandra, J. G., Ongkowardhana, B. S., Husada, W.

Civil Engineering Department, Faculty of Civil Engineering and Planning, Petra Christian

University, Jl. Siwalankerto 121-131, Surabaya 60236, Indonesia

Abstract:

A retaining wall is a relatively rigid wall used to retain lateral load generated by a different

elevation of soil and to anticipate an embankment from sliding. Retaining walls can be

classified into several types, one of which is a retaining wall with counterfort and shear key

to increase its capacity against horizontal load. This paper presents the optimization work

to obtain the most economical of counterfort retaining wall structure with shear key attached

at its base, without sacrificing its stability, using metaheuristic method. The metaheuristic

algorithm is a global optimization method that can be used to find the optimum solution of

complex problems. In this research, optimization is carried out using the Particle Swarm

Optimization (PSO) and Symbiotic Organisms Search (SOS) methods. This research utilizes

a retaining wall sitting on stiff clay layer subjected to ten (10) m of granular soil of backfill.

The scope of the study is limited to the material cost, that consists of the cost of concrete

and reinforcement bars, of the counterfort retaining wall with shear key. The results show

that the SOS algorithm resulted a lower cost and relatively faster in obtaining optimum

retaining wall design compared to that of the PSO algorithm.

Keywords: retaining wall, counterfort, shear key, optimization, metaheuristic, PSO, SOS

1 email: gogot@petra.ac.id

Civil Engineering Department

Introduction

A retaining wall is a structure to withstand lateral active pressure of soil or water [1]. A retaining wall consists of vertical section, commonly known as a stem, and a base slab. There is a specific element beneath the base slab called a shear key, which enhances the stability of the retaining wall to anticipate lateral force by utilizing passive pressure below the base slab arising from the active lateral pressure of the soil [2].

In general, the dimension and reinforcement of the cantilever wall (stem) increases with the increase of its bending moment generated due to lateral pressure of soil. The generated bending moment in the stem can be reduced by employing counterforts (a vertical walls or slabs) that connect the stem and the base slab of the retaining wall. In other words, counterforts play an important role in restraining tensile/horizontal force developed in the stem of the retaining wall [3].

Studies regarding optimization of retaining wall can be found in several publications. Kalemci et al [4] developed a tool using Greywolf algorithm to determine the optimum design of cantilever wall with shear key to increase its horizontal capacity. The retaining walls with a 3m and 4.5m height of stem were designed to retain embankment, that consists of both cohesive and non-cohesive soils. The optimization process of the two metaheuristic algorithms proceeded for 30 runs, where each run iterated 1000 times. It is stated that the results of the optimization of cantilever wall with shear key, which is developed using Greywolf algorithm, agree with other published results using different algorithms. Öztürk et al. [5] developed application using Teaching Learning Based Optimization (TLBO) and Jaya algorithms to obtain the optimum cost of a 10-m height counterfort retaining wall with shear key, which is built in cohesive soil. It is stated that the TLBO algorithm exhibits better performance compared to that of Jaya algorithm.

This research employes metaheuristic approach to optimize a counterfort retaining wall with a shear key subjected to gravity and seismic loads, which meets all existing constraints while considering safety requirements, and producing cost-effective solutions. Two metaheuristic algorithms, namely Particle Swarm Optimization (PSO) and Symbiotic Organisms Search (SOS), are utilized in this study. Both algorithms operate using a penalty function method to control the existing constraints during the design process, thereby achieving optimal and economical results while still satisfying safety requirements.

The PSO algorithm is inspired by natural conditions about food chains, such as the social behavior of a group of birds or insects looking for food. The concept is to mimic the social interaction between individuals in the group to find the optimal solution to the optimization problem. PSO is computationally efficient because it requires only a few computing resources to work, so the number of iterations used to produce optimal results is relatively small and fast [6].

The SOS algorithm uses mutualism, commensalism, and parasitism strategies to simulate interactions in a relationship. SOS uses simple mathematical operations, and can achieve efficient and effective optimization without the need to determine parameter tuning like other algorithms so that its performance stability is higher [7]. SOS is also proven to be able to solve optimization for continuous and non-linear problems on simple to complex problems, so these are the advantages of SOS.

Previously, the PSO algorithm has successfully aided in the optimization processes within the field of civil engineering, such as the estimation of the shear strength of reinforced concrete walls using support vector regression that optimized with the PSO and Harris Hawks algorithms [8]. In addition, the optimization of special concentrically braced steel frame structures was conducted using metaheuristic methods based on the Indonesian National Standards SNI 1729:2020 and SNI 7860:2020 [9].

Meanwhile, the SOS algorithm has also successfully contributed to solving optimization cases in the field of civil engineering. For example, it was applied in the optimization of multi-constraint frames under free vibration and transient behavior [10]. Additionally, it was used in optimizing the scheduling duration of housing projects using the line of balance method and metaheuristic methods with consideration for resource leveling [11].

The objective of this research is to provide alternative designs for a robust and economical counterfort retaining wall with shear key, in a relatively short of time. In addition, the seismic load is considered in this research.

Research Method

Cantilever retaining walls are designed to withstand all the loads that include gravity load and lateral load generated by soil pressure. The design of retaining wall is determined by several variables such as geometry/dimension, load and reinforcement, and geotechnical condition that meet structural safety requirements. Counterfort retaining wall with shear key is a modification of a cantilever retaining wall to reduce the thickness of the stem and increase its horizontal stability. In other words, counterfort is beneficial for very high retaining walls (10-12 m) since it reduces the shear and bending moment at the stem [12]. The optimization process of counterfort retaining wall with shear key in this research is carried out using metaheuristic method. In general, the optimization includes several aspects such as optimal shape, maximizing structural stability, minimizing bending moment, and optimizing the slope angle. The optimization process requires information that include variables, constraints, and objective functions. The solution that obtained from the optimization is in the form of variables, which represent the most economical retaining wall design.

The design variables used in the optimization process is presented in Figure 1.

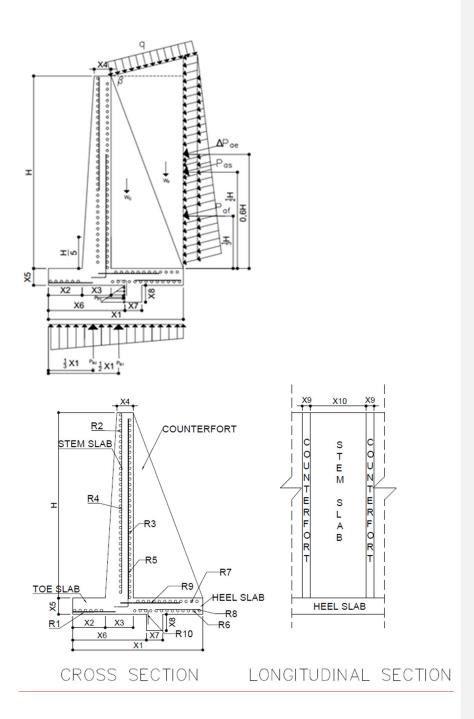


Fig. 1. Modeling of Counterfort Retaining Wall with Shear Key.

Descriptions:

 X_1 = total base width [m]

 X_2 = toe projection width [m]

 X_3 = stem thickness at bottom[m]

 X_4 = stem thickness at top [m]

 X_5 = base slab thickness [m]

 X_6 = distance of the front shear key from the front of toe slab [m]

 X_7 = width of the base shear key [m]

 X_8 = height of the base shear key[m]

 X_9 = counterfort thickness [m]

 X_{10} = Distance between counterforts [m]

 R_1 = area of the horizontal reinforcement of the toe, per unit length of the wall [mm²]

R₂ = area of the horizontal field reinforcement of the stem, per unit length of the wall

 $[mm^2]$

 R_3 = area of the horizontal support reinforcement of the stem, per unit length of the wall

 $[mm^2]$

 R_4 = area of the vertical field reinforcement of the stem, per unit length of the wall [mm²]

 R_5 = area of the vertical support reinforcement of the stem, per unit length of the wall

 $[mm^2]$

 R_6 = area of the horizontal field reinforcement of the heel, per unit length of the wall

 $[mm^2]$

R₇ = area of the horizontal support reinforcement of the heel, per unit length of the wall

 $[mm^2]$

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Commented [PP1]: Which one is horizontal? Is it the stem,

or the reinforcement?

I believe it is the reinforcement, and should it be more clear if

it is written like

Area of horizontal reinforcement of stem --> like definition of R5

R:

Commented [JG2R1]: OK

Formatted: Not Highlight

Formatted: Not Highlight

Commented [PP3]: Consistent sentence is preferable.

Please compare with definition of R5.

Commented [JG4R3]: OK

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight
Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

 R_8 = area of the vertical field reinforcement of the heel, per unit length of the wall [mm²]

 R_9 = area of the vertical support reinforcement of the heel, per unit length of the wall [mm²]

 R_{10} = area of reinforcement of the shear key, per unit length of the wall [mm²]

The range of design variables is limited by the upper and lower bounds, which are the maximum and minimum values of the design variables to be randomized. The ranges of the geometrical variables are based upon the recommendation given by SNI 8460:2017 [13]. A range of reinforcement area is applied to reduce the search field and improve the possibility of finding the optimal solution. By using both ranges of value recommended by SNI 8460:2017 [13] for the geometrical variables and a range of values for the reinforcement area, it will ensure that the optimal solution lies in these ranges.

Table 1 shows the upper and lower bounds used in the design process.

Table 1. Upper Bound and Lower Bound

Parameter	Lower Bounds	Upper Bounds
X ₁ (m)	0.4 <i>H</i>	0.7 <i>H</i>
X ₂ (m)	0.4H/3	0.7 <i>H</i> /3
X ₃ (m)	$\frac{H + 48X_4}{48}$	0.1 <i>H</i>
X ₄ (m)	0.3	0.1 <i>H</i>
X ₅ (m)	H/12	H/10
X ₆ (m)	0	$X_1 - X_7$
X ₇ (m)	0	0.5
X ₈ (m)	0	0.5
X ₉ (m)	0.2	0.2
X ₁₀ (m)	0.3 <i>H</i>	10 <i>H</i>
$R_1 \text{ (mm}^2\text{)}$	235.62 (3D10)	28,148.67 (35D32)

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight
Formatted: Not Highlight

Formatted: Not Highlight

Commented [PP5]: How do you choose this range?

How do you know if optimum design result will be obtained by using the design variables in this range.

Commented [JG6R5]: OK

Formatted: Not Highlight

Formatted: Font color: Black

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight
Formatted: Not Highlight

Formatted: Font color: Black

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: English (United States)

Formatted Table

$R_2 \text{ (mm}^2\text{)}$	235.62 (3D10)	28,148.67 (35D32)
$R_3 \text{ (mm}^2\text{)}$	235.62 (3D10)	28,148.67 (35D32)
$R_4 \text{ (mm}^2\text{)}$	235.62 (3D10)	28,148.67 (35D32)
$R_5 (\mathrm{mm}^2)$	235.62 (3D10)	28,148.67 (35D32)
$R_6 (\mathrm{mm}^2)$	235.62 (3D10)	28,148.67 (35D32)
$R_7 (\mathrm{mm}^2)$	235.62 (3D10)	28,148.67 (35D32)
$R_8 (\mathrm{mm}^2)$	235.62 (3D10)	28,148.67 (35D32)
$R_9 (\mathrm{mm}^2)$	235.62 (3D10)	28,148.67 (35D32)
$R_{10} (\text{mm}^2)$	235.62 (3D10)	28,148.67 (35D32)

Note: H is the height of the stem

Constraints are used to ensure that the design results of the optimization process fall into the specified specifications. The constraints used in the optimization process can be seen in Table 2.

Table 2. Constraints and Failure Mode

Constraint	Requirement	Description
$g_1(x)$	Safety against overturning	$\frac{SF_{O\ design}}{SF_{O}} \le 1$
$g_2(x)$	Safety against lateral shear	$\frac{SF_{S \ design}}{SF_{S}} \le 1$
$g_3(x)$	Safety against bearing capacity	$\frac{SF_{B\ design}}{SF_{B}} \le 1$
$g_4(x)$	Safety against earthquake-induced overturning	$\frac{SF_{OE\ design}}{SF_{OE}} \le 1$
$g_5(x)$	Safety against earthquake-induced lateral shear	$\frac{SF_{SE\ design}}{SF_{SE}} \le 1$
$g_6(x)$	Safety against earthquake-induced bearing capacity	$\frac{SF_{BE\ design}}{SF_{BE}} \le 1$
$g_7(x)$	Base slab uplifted	$q_{min} \ge 0$
$g_8(x)$	Toe moment	$\frac{M_d}{M_n} \le 1$

$g_{[9-12]}(x)$	Stem Moment	$\frac{M_d}{M_{m,k}} \le 1$
$g_{[13-16]}(x)$	Heel Slab Moment	$\frac{M_d}{M_n} \le 1$
$g_{[13-16]}(x)$	Heel Slab Moment	$\frac{M_d}{M_n} \le 1$
$g_{17}(x)$	Shear toe	$\frac{V_d}{V_n} \le 1$
$g_{[18,19]}(x)$	Stem shear	$\frac{V_d}{V_n} \le 1$
$g_{[19,20]}(x)$	Slab heel shear	$\frac{V_d}{V_n} \le 1$
$g_{[21]}(x)$	Slab heel shear	$\frac{V_d}{V_n} \le 1$
$g_{[21]}(x)$	Slab heel shear	$\frac{V_d}{V_n} \le 1$
$g_{[21-29]}(x)$	Minimum reinforcement	$\frac{A_{s min}}{A_s} \le 1$
$g_{[30-38]}(x)$	Maximum reinforcement	$\frac{A_{s \max}}{A_{s}} \ge 1$
$g_{39}(x)$	Development length of horizontal reinforcement of the toe	$\frac{l_d}{X_{1} - X_{2} - c_c} \le 1$
$g_{40}(x)$	Development length of the vertical support reinforcement of stem	$\frac{l_d}{X_5 - c_c} \le 1$
$g_{41}(x)$	Development length of the vertical support reinforcement of the heel	$\frac{l_d}{X_1 - X_2 - X_3 - c_c} \le 1$
$g_{42}(x)$	Development length of reinforcement of the shear key	$\frac{l_d}{X_5 - 2 \times c_c} \le 1$

Where	

$SF_{O\ design}$	= overturning safety factor limit given by SNI 8460:2017 [13]
SF_O	= overturning safety factor
$SF_{S \ design}$	= sliding safety factor limit given by SNI 8460:2017 [13]
SF_S	= overturning safety factor
$SF_{B\ design}$	= bearing safety factor limit given by SNI 8460:2017 [13]
SF_B	= bearing safety factor

1	Formatted: Not Highlight
1	Formatted: Not Highlight
1	Formatted: Not Highlight
ľ,	Formatted: Not Highlight
ľ	Formatted: Not Highlight
1	Formatted: Not Highlight
//	Formatted: Not Highlight
1	Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Font color: Black
Formatted: Not Highlight

Formatted: Not Highlight	
Formatted: Not Highlight	
Formatted: Font color: Black	
Formatted: Not Highlight	
Formatted: Not Highlight	
Formatted: Font color: Black	
Formatted: Not Highlight	
Formatted: Not Highlight	

$SF_{OE\ design}$	= overturning safety factor limit with earthquake load given by SNI		Formatted: Not Highlight
8460:2017 [1	3]		Formatted: Font color: Black
SF_{OE}	= overturning safety factor limit with earthquake load		Formatted: Not Highlight
$SF_{SE\ design}$	= sliding safety factor limit with earthquake load given by SNI 8460:2017		Formatted: Not Highlight
[13]			Formatted: Font color: Black
SF_{SE}	= sliding safety factor limit with earthquake load		Formatted: Not Highlight
$SF_{BE\ design}$	= bearing safety factor limit with earthquake load given by SNI 8460:2017		Formatted: Not Highlight
[13]			Formatted: Font color: Black
SF_{BE}	= bearing safety factor limit with earthquake load		Formatted: Not Highlight
q_{min}	= minimum soil reaction [kN/m]		
M_d	= driving moment [kNm]		
M_n	= nominal moment capacity [kNm]		
V_d	= driving shear [kN]		
V_n	= nominal shear capacity [kN]		
			(<u> </u>
$A_{s min}$	= maximum reinforcement area [mm ²]	<	Formatted: English (Indonesia) Formatted: English (Indonesia)
A_{smax}	= maximum reinforcement area [mm ²]		Formatted: English (Indonesia)
A_s	= reinforcement area [mm ²]		Formatted: English (Indonesia)
l_d	= required development length [mm]		
X_1	= total base width [mm]		
X_2	= toe projection width [mm]		
X_3	= stem thickness at the bottom[mm]		Formatted: Not Highlight
X_5	= base slab thickness [mm]		
c_c	= concrete cover [mm]		

The boundaries used in this study refer to Geotechnical specification SNI 8460:2017 [13]_a. Structural Concrete for Building specifications SNI 2847:2019 [14]_a and Rankine Theory for calculating the lateral earth pressure on the wall.

Formulation that describes a value of the goal of the optimization process, which is called objective function, in this study is the cost optimization, as presented in Equation 1.

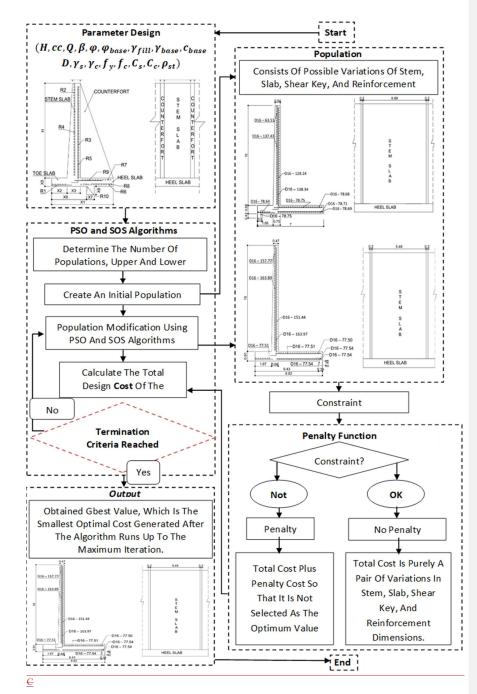
$$f_{obj} = V_c C_c + w_s C_s \tag{1}$$

Where:

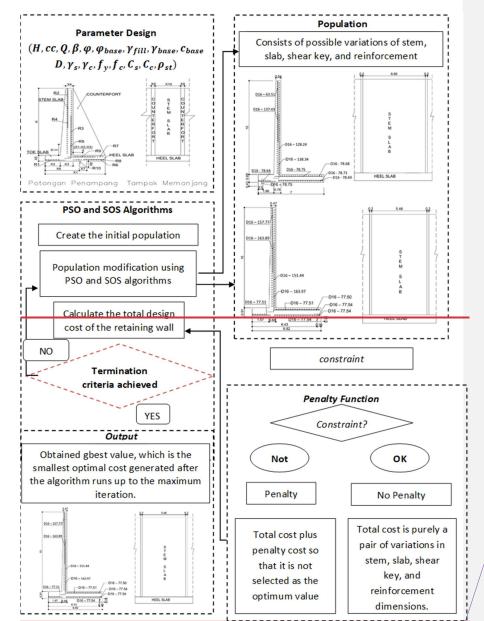
 V_c = concrete volume per unit length of the wall length $[m^3]$

 C_c = concrete material cost per unit volume $[Rp/m^3]$

 w_s = mass of steel reinforcement used per unit length of the wall [kg]


 C_s = steel material cost per unit mass [Rp/kg]

The optimization process, namely PSO and SOS, in this research was developed using MATLAB R2019b. The algorithm performs iteration until the result meets all the specified constraints. If the results do not meet the constraints, the algorithm will provide a penalty function. Initially, the PSO and SOS algorithms execute the input data, then work using random variables to obtain a result that meets the constraints. The iteration process stops when the number of iterations set in the input parameter is reached. Details of the optimization process is presented in Figure 2.


Commented [PP7]: Notations in Constraint, and Description of Table 2 should be defined somewhere in the text.

Commented [JG8R7]: OK

Formatted: Not Highlight

1 email: gogot@petra.ac.id

Fig, 2. Flow chart The Optimization of Counterfort Retaining Wall with Shear Key

Commented [PP9]: There are still some Indonesian words in the figure.

Please use more standard form of Flowchart. For example, No "Start" nor "Finish" in the figure.

Please improve the clarity of the figure. Images of the wall are too small. Some arrows connecting processes are missing, for example, there is no connecting arrows after decisive process "Constraint?".

Commented [JG10R9]: OK

Formatted: Tab stops: 3,07 cm, Left

Results and Discussion

PSO and SOS algorithms require initial settings in the form of inputting several parameter values. The setting parameters used include particle weight (w) that set at 0.5 and constant c₁ and c₂ are both set at 2. The soil parameters used for the base consist internal friction angle (φ base) of 0°, density (γbase) of 18.5 kN/m³, and cohesion (cB) of 125 kPa. For the retained soil, the input internal friction angle (φ) is 36°, soil density (γfill) was 17.5 kN/m³, and the cohesion (cF) is 0 kPa. Meanwhile, the groundwater level in this study is not taken into account. Other input parameters are presented in Table 3.

Table 3. Input Parameters for Counterfort Retaining Wall Case Study with Shear key

Input Parameter	Symbol	Input Value
Stem height (m)	Н	10
Concrete Cover (cm)	сс	7
Surcharge Load (kPa)	Q	20
Backfill Slope (°)	В	10
Backfill Soil Friction Angle (°)	ф	36
Base Soil Friction Angle (°)	ϕ_{base}	0
Backfill Soil Unit Weight (kN/m³)	γ_{fill}	17.5
Base Soil Unit Weight (kN/m³)	γ_{base}	18.5
Base Soil Cohesion (kPa)	cВ	125
Backfill Soil Cohesion (kPa)	cF	0
Depth of Soil In Front of Wall	D	0.5
Steel Unit Weight (kN/m³)	γ_s	78.5
Concrete Unit Weight (kN/m³)	γ_c	23.5
Steel Yield Strength (MPa)	f_y	400
Concrete Compressive Strength (MPa)	f_c	25

Commented [PP11]: How about the SOS?

If it does not require any, a sentence to inform just that is a good additional information.

Commented [JG12R11]: OK

The optimization results, in the form of the final cost, for the both algorithms of SOS and PSO obtained after thirty (30) runs are summarized in Table 4,

Formatted: English (United States)

Table 4. The Best Results of Optimization of Counterfort Retaining Wall Structure with Shear Key

Subject	PSO (Rp)	SOS (Rp)
Best (Rp/m ¹)	24,525,850.19	23,956,617.73
Worst (Rp/m ¹)	35,912,845.30	25,831,324.00
Median (Rp/m ¹)	26,974,742.70	24,405,457.67
Average (Rp/m ¹)	26,898,545.24	24,436,104.20
Std. Deviation (Rp/m ¹)	2,136,661.22	503,180.24
Coeff.Variation (%)	7.94%	2.06%

Table 5 shows the detail comparison of the optimization results of the counterfort retaining wall structure with shear keys design, obtained from the PSO and SOS algorithms process.

Table 5. The detail comparison of optimization results obtained from the PSO and SOS algorithms.

Variabal	PSO	SOS
Variabel	(Best)	(Best)
X1	7.00	6.82
X2	1.66	1.67
X3	0.75	0.68
X4	0.54	0.47
X5	0.89	0.91
X6	0.00	6.43
X7	0.50	0.39
X8	0.43	0.44
X9	0.20	0.20
X10	6.69	5.48
R1	2556.86	2593.98
KI	(D16 - 78.64)	(D16 – 77.51)
R2	3166.03	1274.41
NZ	(D16 - 63.51)	(D16 – 157.77)
R3	1567.90	1327.63
K3	(D16 - 128.24)	(D16 – 151.44)
R4	1462.98	1226.81
IX4	(D16 - 137.43)	(D16 – 163.89)
R5	1453.42	1226.21
K.)	(D16 - 138.34)	(D16 – 163.97)
R6	2555.04	2593.09
KU .	(D16 - 78.69)	(D16 - 77.54)
R7	2555.35	2594.46
K/	(D16-78.68)	(D16 - 77.50)

Civil Engineering Department

Budi. G. S. et al/Optimasi Struktur Counterfort Retaining Wall dengan Shear Key Menggunakan Metode Metaheuristik

R8	2554.35	2593.09
	(D16 – 78.71)	(D16 – 77.54)
R9	2553.08	2594.00
	(D16 - 78.75)	(D16 – 77.51)
R10	2553.01	2593.09
	(D16 - 78.75)	(D16 - 77.54)

The results show that SOS algorithm exhibits coefficient of variation of 2.06% compared to that of 7.49 resulted from PSO. In other words, the SOS algorithm exhibits better performance in the process of optimizing the counterfort retaining wall structure with shear keys, compared to that of PSO algorithm. The most optimal result of the design performed by PSO and SOS algorithms is presented in Figure 3 and Figure 4, respectively.

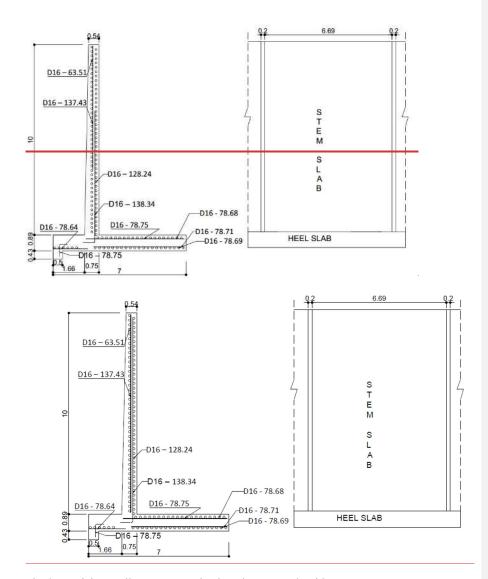


Fig. 3. Retaining Wall Structure Design based on PSO Algorithm

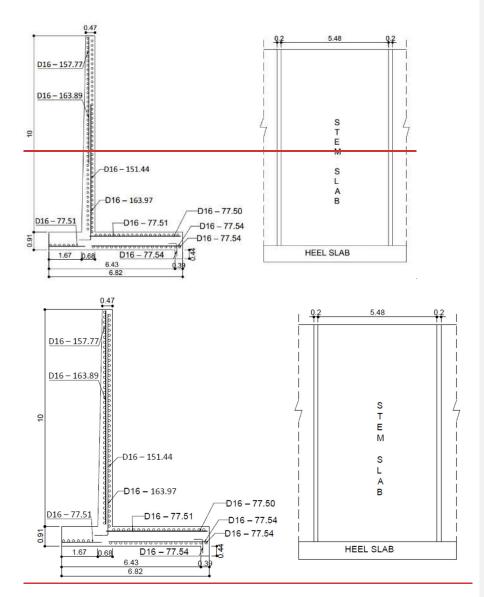


Fig. 4. Retaining Wall Structure Design based on Cost SOS Algorithm

Figure 5 shows the rate of convergence of both algorithms on the optimization of the counterfort retaining wall structure with shear keys using input parameters presented in Table 3.

Commented [PP13]: There are two layers of stem's horizontal reinforcement, but only one layer in vertical direction (at top and bottom part of the stem).

How is it possible in practice?

The same question applys to Fig.3.

Commented [JG14R13]: OK

Budi. G. S. et al/Optimasi Struktur Counterfort Retaining Wall dengan Shear Key Menggunakan Metode Metaheuristik

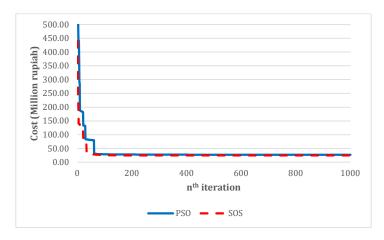


Fig. 5. Convergence Graph of Median Run Results in the Case of Counterfort Retaining Wall with Shear Key

It can be seen in Figure 5 that the rate of convergence of the SOS algorithm is faster than that of PSO, where the lowest cost (or the best result) can be achieved in smaller number of iteration.

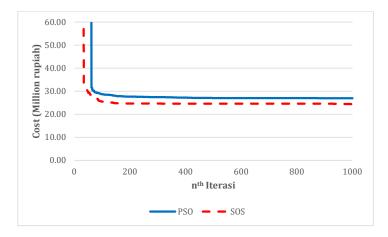


Fig. 6. The Convergence Process of PSO and SOS Algorithms to Achieve the Most Optimal Costs

Civil Engineering Department

Figure 6 shows the rate of convergence process of the two algorithms. The curve generated from the SOS algorithm almost constant from about 300th iteration compared to that generated based on the PSO algorithm, which still decreasing up to 1000th iteration. Based on the results presented in Figure 5 and Figure 6, it can be stated that in this research, the SOS algorithm is faster than that of the PSO algorithm.

Conclusions

Based on the results of the analysis, it can be concluded that the metaheuristic method using the SOS algorithm produces the most optimum result, in term of material cost of the counterfort retaining wall with shear key. In addition, the SOS algorithm is relatively faster to achieve the optimum result (indicated by the rate of convergence) compared to that of PSO algorithm.

Reference

- E. Khuzaifah, "Studi tentang dinding penahan (retaining wall)," Swara Patra: Majalah
 Ilmiah PPSDM Migas, vol. 9, no. 1, pp. 7–18, 2019, Accessed: Jul. 25, 2023. [Online].

 Available:
 - http://ejurnal.ppsdmmigas.esdm.go.id/sp/index.php/swarapatra/article/view/189
- E. N. Kalemci, S. B. İkizler, T. Dede, and Z. Angın, "Design of reinforced concrete cantilever retaining wall using Grey wolf optimization algorithm," *Structures*, vol. 23, pp. 245–253, Aug. 2020, doi: 10.1016/j.istruc.2019.09.013.
- H. Fardilla, "Perencanaan dinding penahan sebagai alternatif pencegah bahaya longsor pada konstruksi pangkal jembatan," *Journal Rekayasa Sipil dan Desain (JRSDD)*, 2018, [Online]. Available:
 - http://digilib.unila.ac.id/30392/11/SKRIPSI%20TANPA%20BAB%20PEMBAHASA N.pdf

- E. N. Kalemci, S. B. İkizler, T. Dede, and Z. Angın, "Design of reinforced concrete cantilever retaining wall using Grey wolf optimization algorithm," *Structures*, vol. 23, pp. 245–253, Feb. 2020, doi: 10.1016/j.istruc.2019.09.013.
- H. Tahsin Öztürk, T. Dede, and E. Türker, "Optimum design of reinforced concrete counterfort retaining walls using TLBO, Jaya algorithm," *Structures*, vol. 25, pp. 285– 296, Jun. 2020, doi: 10.1016/j.istruc.2020.03.020.
- M. Khajehzadeh, M. R. Taha, A. El-Shafie, and M. Eslami, "Modified particle swarm optimization for optimum design of spread footing and retaining wall," *Journal of Zhejiang University: Science A*, vol. 12, no. 6, pp. 415–427, Aug. 2011, doi: 10.1631/jzus.A1000252.
- M.-Y. Cheng, D. Prayogo, and D.-H. Tran, "Optimizing multiple-resources leveling in multiple projects using discrete symbiotic organisms search," *Journal of Computing in Civil Engineering*, vol. 30, no. 3, Aug. 2016, doi: 10.1061/(asce)cp.1943-5487.0000512.
- 8. P. Parsa and H. Naderpour, "Shear strength estimation of reinforced concrete walls using support vector regression improved by teaching-learning-based optimization, particle swarm optimization, and harris hawks optimization algorithms," *Journal of Building Engineering*, vol. 44, p. 102593, 2021, doi: 10.1016/j.jobe.2021.102593.
- D. Prayogo, H. Santoso, F. Budiman, and M. Jason, "Layout, topology, and size optimization of steel frame design using metaheuristic algorithms: A comparative study," *Civil Engineering Dimension*, vol. 24, no. 1, pp. 31–37, Apr. 2022, doi: 10.9744/ced.24.1.31-37.
- S. Nguyen-Van, K. T. Nguyen, K. D. Dang, N. T. T. Nguyen, S. Lee, and Q. X. Lieu,
 "An evolutionary symbiotic organisms search for multiconstraint truss optimization

Budi. G. S. et al/Optimasi Struktur *Counterfort Retaining Wall* dengan *Shear Key* Menggunakan Metode Metaheuristik under free vibration and transient behavior," *Advances in Engineering Software*, vol. 160, p. 103045, 2021, doi: 10.1016/j.advengsoft.2021.103045.

- 11. V. N. Husada and A. C. Tanara, "Optimasi durasi penjadwalan proyek perumahan X menggunakan metode line of balance dan metode metaheuristik dengan memperhatikan resource leveling," 2022. Accessed: Sep. 17, 2023. [Online]. Available: https://dewey.petra.ac.id/digital/view/55660
- 12. C. R. I. Clayton, R. I. Woods, A. J. Bond, and J. Milititsky, *Earth pressure and earth retaining structures*, 3rd ed. CRC Press, 2013.
- 13_k Badan Standardisasi Nasional, SNI, 8460:2017: Persyaratan perancangan geoteknik.2017.

14_x Badan Standardisasi Nasional, *SNI, 2847:2019: Persyaratan beton struktural untuk* bangunan gedung dan penjelasan. 2019.

Formatted: Indonesian

Formatted: Indonesian

Sincerely,

[ced] Editor Decision

Tue, Jul 23, 2024 at 10:09 AM

To: Bryan Ongko <bryanongko29@gmail.com>, Glenn <b11200070@john.petra.ac.id>, Gogot <gogot@petra.ac.id>, Willy <willy.husada@petra.ac.id>

Bryan Ongko, Glenn, Gogot, Willy:

We have reached a decision regarding your submission to Civil Engineering Dimension, "The Optimization of Counterfort Retaining Wall Structure with Shear Key using Metaheuristic Method".

We are pleased to inform you that your manuscript has been accepted for publication.

Thank you for your valuable contribution. We look forward to publishing your work in our journal.

Editor

Reviewer A:
All comments have been accommodated in the revised version.
Recommendation: Accept Submission

Civil Engineering Dimension Journal of Civil Engineering Science and Application
Published by: Institute of Research and Community Outreach Petra Christian University
Jl. Siwalankerto 121-131 Surabaya 60236 Indonesia Phone: +62-31-2983139, 2983147 Fax: +62-31-8436418, 8492562