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Abstract. In recent years, several alternative non-standard finite element meth-

ods (FEMs) have been developed to improve the accuracy and convergence of 

the standard FEM. One of the proposed alternative FEMs which is of our interest 

is a method that combines the FEM and meshfree method using the partition of 

unity concept, called the three-node triangular element with continuous nodal 

stress (T3-CNS). In the T3-CNS element formulation, the shape functions are 

constructed using a combination of finite element continuous nodal gradient 

shape functions and a set of mesh-free shape functions obtained using the or-

thonormalized and constrained least-squares method. The aim of this paper is to 

present a numerical study on the accuracy and convergence of the T3-CNS inter-

polation when approximating several mathematically defined surfaces and their 

gradients. In addition, the discontinuous nodal stress version of the element, 

called the T3-DNS, is examined. The results are compared to those obtained us-

ing the standard triangular element and the Kriging-based triangular element. The 

results show that both the T3-CNS and T3-DNS interpolations possess the con-

sistency property, providing highly accurate surface fittings, and exhibiting ex-

cellent convergence. Therefore, both the T3-CNS and T3-DNS interpolations are 

suitable to be employed as the trial function in numerical methods based on the 

Rayleigh-Ritz or Galerkin method.  

Keywords: Partition of Unity, T3-CNS, T3-DNS, Surface Fitting; Orthonor-

malized and Constrained Least-squares Method.  

1 Introduction 

The finite element method (FEM) is a widely used numerical method for solving vari-

ous engineering mathematical problems. In practice, FEM users prefer to use low-order 

elements such as three-node triangular elements and four-node quadrilateral elements. 

However, the accuracy of these low-order elements in predicting stresses (or other gra-

dient fields) is low due to the discontinuity of the stresses over the element boundaries. 

Moreover, the accuracy of the elements is sensitive to the quality of the mesh, meaning 

that a distorted mesh can lead to less accurate results.  
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A class of alternative numerical methods referred to as the meshfree method has 

been of much interest since the early 1990s (refer to e.g. Liu [1] for an overview of the 

meshfree method). Compared to the traditional FEM, the meshfree method generally 

can produce more accurate and smoother stress fields. However, it also has a few weak-

nesses. For example, the essential boundary conditions in some formulations of the 

mesh-free method cannot be directly imposed as they lack the Kronecker delta property. 

Furthermore, the computational cost of the meshfree method is much higher compared 

to the FEM.  

In recent years, researchers have proposed a class method that combines the benefits 

of the FEM and meshfree method, using the concept of partition of unity (PU). This 

method is referred to as the partition of unity-based FE-meshfree method (PU-based 

FE-meshfree) in this paper. In this method, the approximation function is a combination 

of a set of weight functions that sum to one over the problem domain, called the PU, 

and a local approximation function. Some examples of the PU-based FEM include the 

‘FE-Meshfree’ quadrilateral element [2], the quadrilateral element with continuous 

nodal stress [3], the ‘FE-Meshfree’ triangular element [4], the three-node triangular 

element with continuous and discontinuous nodal stress (T3-CNS and T3-DNS) [5].  

Among many proposed PU-based FE-meshfree methods, the T3-CNS and T3-DNS 

elements are of interest. The T3-CNS (T3-DNS) interpolation combines continuous 

nodal gradient (CNS) shape functions (conventional triangular shape functions (DNS)) 

as the PU and constrained orthonormalized least squares approximations as the local 

approximations. The T3-CNS and T3-DNS elements offer several advantages over the 

conventional triangular finite element. Firstly, they inherit the properties of high con-

vergence rate and accuracy from the meshfree method. Secondly, they are less sensitive 

to mesh distortion than the standard triangular finite element. Furthermore, the T3-CNS 

element provides gradient continuity at the element nodes, resulting in a smooth global 

gradient field. Thus, these PU-based triangular elements are good alternatives to the 

classical finite elements.  

The T3-CNS and T3-DNS elements were originally developed in linear static plane 

elasticity problems [5]. Subsequently, they have been applied to the free vibration of 

plane elasticity models [6] and geometric nonlinear solid mechanic problems [7]. How-

ever, previous works have not examined the accuracy and convergence of the T3-CNS 

and T3-DNS interpolations in approximating mathematically defined surfaces. There-

fore, this paper aims to present a numerical study on the consistency, accuracy, and 

convergence of the T3-CNS and T3-DNS interpolations and their derivatives in surface 

fittings. This study is based on the approach of Wong et al. [8]. It aims to provide val-

uable insights into the interpolation characteristics of the T3-CNS and T3-DNS ele-

ments, which could be used as the trial solution in a Galerkin or Rayleigh-Ritz method 

for solving a boundary value problem related to practical engineering applica-

tions.  
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2 T3-CNS and T3-DNS Interpolations 

Similar to the standard FEM, to construct the T3-CNS or T3-DNS interpolation, a two-

dimensional problem domain Ω is partitioned using a mesh of three-node triangular 

elements, Ωh. The approximation of a surface function z = z(x, y) (or other field varia-

bles) over a typical triangular element Ω̅𝑒 ⊂ Ωℎ is given as  

 𝑧 ≈  𝑧ℎ = ∑ 𝑤𝑖(𝐿1, 𝐿2, 𝐿3)𝑧𝑖(𝑥, 𝑦)3
𝑖=1  (1) 

where wi(L1,L2,L3) is the weight function associated with node i, expressed in terms of 

the triangular area coordinates L1, L2, and L3, and zi(x, y) is the local approximation 

centered at node i. The T3-CNS weight functions are given as [5]:  

 𝑤1 = 𝐿1 + 𝐿1
2𝐿2 + 𝐿1

2𝐿3 − 𝐿1𝐿2
2 − 𝐿1𝐿3

2  (2) 

 𝑤2 = 𝐿2 + 𝐿2
2 𝐿3 + 𝐿2

2 𝐿1 − 𝐿2𝐿3
2 − 𝐿2𝐿1

2 (3) 

 𝑤3 = 𝐿3 + 𝐿3
2 𝐿1 + 𝐿3

2 𝐿2 − 𝐿3𝐿1
2 − 𝐿3𝐿2

2  (4) 

Theses weight functions and their first derivatives are continuous at the element nodes. 

However, along the element boundaries, only the functions are continuous (i.e., C0 con-

tinuous). On the other hand, the T3-DNS weight functions are adopted from the shape 

functions of the standard three-node triangular element. The T3-DNS shape functions 

are continuous at every point along the element boundaries but their derivatives are not 

continuous.  

  

Fig. 1. (a) Support of node 1 of element no. e is the shaded area around node 1; (b) Support of 

element no. e is the shaded area around element e, including the element e itself.  

The nodal approximation zi(x, y) is established using a constrained and orthonormalized 

least squares (CO-LS) method, which was first introduced by Tang et al. [3]. To con-

struct the CO-LS approximation, the supports of node i, Ω̅𝑖 i = 1, 2, 3, are defined as 

the region around node i encompassing all the elements that share node i. Node i is 

called the central node whereas the other connected nodes are called satellite nodes. For 

example, Fig. 1(a) shows the support of node 1 of element no. e encompassing six tri-

angular elements that share node 1 (the central node), covering six satellite nodes, 

namely, 2, 3, 4, 5, 6, and 7.  
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Consider a nodal support Ω̅𝑖 with n supporting nodes. Let the numbering labels for 

the nodes in the support be j, j = 1, …, n. The CO-LS approximation around node i can 

be written as  

 𝑧𝑖(𝑥, 𝑦) = 𝚽𝑖(𝑥, 𝑦)𝐳𝑖 = ∑ 𝜙𝑗
[𝑖]

(𝑥, 𝑦)𝑧𝑗
𝑛
𝑗=1  (5a) 

 𝚽𝑖(𝑥, 𝑦) = [𝜙1
[𝑖]

(𝑥, 𝑦) 𝜙2
[𝑖]

(𝑥, 𝑦) ⋯ 𝜙𝑛
[𝑖]

(𝑥, 𝑦)] = 𝐫T(𝑥, 𝑦)𝐁[𝑖] (5b) 

where φj
[i](x, y) is the CO-LS shape function for nodal approximation of node i, asso-

ciated with node j, and the vector  

 𝒛𝑖 = {𝑧1 𝑧2 ⋯ 𝑧𝑛}𝑇 (6) 

is the n×1 vector of nodal values zj at the supporting nodes. The vector r(x, y) is the 

orthonormalized polynomial bases vector obtained by transforming a polynomial bases 

vector p(x, y) in such a way to make the moment matrix in the least squares procedure 

becomes an identity matrix [9]. In this study, the basis function used is a quadratic 

polynomial, viz.  

 𝐩(𝑥, 𝑦) = [1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2]T (7) 

The matrix B[i] is defined as follows: 

 𝐁[𝒊] = [𝐁1
[𝒊]

𝐁2
[𝒊]

⋯ 𝐁𝑛
[𝒊]] (8a) 

 𝐁𝑗
[𝑖]

= 𝐫(𝑥𝑗, 𝑦𝑗) − 𝑓𝑗
[𝑖]

𝐫(𝑥𝑖, 𝑦𝑖) (8b) 

 𝑓𝑗
[𝑖]

= {

𝐫T(𝑥𝑖,𝑦𝑖)𝐫(𝑥𝑗,𝑦𝑗)

𝐫T(𝑥𝑖,𝑦𝑖)𝐫(𝑥𝑖,𝑦𝑖)
      if  𝑗 ≠ 𝑖

𝐫T(𝑥𝑖,𝑦𝑖)𝐫(𝑥𝑗,𝑦𝑗)−1

𝒓𝑇(𝑥𝑖,𝑦𝑖)𝒓(𝑥𝑖,𝑦𝑖)
  if  𝑗 = 𝑖

 (8c) 

It is worth noting that the number of nodes in the nodal support, n, may be not the same 

for each i = 1, 2, 3.  

To combine the weighting functions wi(L1,L2,L3), i = 1, 2, 3, and the CO-LS shape 

functions φj
[i], j = 1, 2, ..., n, we define the support of element no. e, Ω̂𝑒, as the union of 

the four nodal supports: Ω̂𝑒 = Ω̅1 ∪ Ω̅2 ∪ Ω̅3. Let the nodal numbering labels in the el-

ement support Ω̂𝑒 be I = 1, 2, ..., N, where N is the total number of nodes in the element 

support. For example, Fig. 1(b) shows the support of element no. e, which covers 12 

nodes (N = 12). Referring to this element numbering system and substituting Eq. (5a) 

into Eq. (1), the approximate surface function can be expressed as  

  𝑧ℎ = ∑ 𝜓𝐼(𝑥, 𝑦)𝑧𝐼
𝑁
𝐼=1  (9a) 

  𝜓𝐼(𝑥, 𝑦) = ∑ 𝑤𝑖(𝐿1, 𝐿2, 𝐿3)3
𝑖=1 𝜙𝐼

[𝑖]
(𝑥, 𝑦) (9b) 

where ψI(x, y) is the T3-CNS or T3-DNS shape function associated with node I. In Eq. 

(9b), if node I is not in the nodal support of node i, then φI
[i] is defined to be zero. It is 
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apparent that the T3-CNS or T3-DNS shape function is a linear combination of the 

weighting functions and the CO-LS shape functions.  

3 Numerical Tests 

Several numerical tests are conducted to assess the accuracy and convergence of the 

T3-CNS and T3-DNS interpolations and their derivatives on surface fittings of z = f (x, 

y). The approximation error is measured using the relative L2 norm of error, that is,  

 𝑟𝑧 = √
∫ (𝑧ℎ−𝑧)2𝑑𝐴

𝛺ℎ

∫ 𝑧2𝑑𝐴
𝛺ℎ

 (10) 

where z is the surface function under consideration. This error norm is also used to 

measure the relative error of the partial derivatives of the function (by replacing z and 

zh with their derivatives). The integral in Eq. (10) is evaluated numerically using the 

Gaussian quadrature rule for triangular elements with the six-quadrature rule. The re-

sults are then compared to those obtained using the standard triangular element (T3) 

and the Kriging-based triangular element with a quadratic basis, two layers of elements, 

and the quartic spline correlation function (K-T3) [10][11].  

 

 
(a) Regular mesh 

 
(b) Irregular mesh 

Fig. 2. Square function domain with (a) a regular mesh of triangular elements and (b) an irregular 

mesh of triangular elements.  

3.1 Consistency Property 

An interpolation scheme that can represent exactly all polynomial terms of degree m is 

called m-consistent. As a quadratic polynomial basis is used in this study to construct 

the T3-CNS and T3-DNS interpolations, they are expected to reproduce quadratic func-

tions. To examine their consistency property, we employed a unit square domain, which 

was partitioned into a regular and an irregular mesh of triangular elements, as shown in 
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Fig. 2(a) and Fig. 2(b), respectively. The functions considered were the bases of a quad-

ratic polynomial, that is, z = 1, z = x, z = y, z = x2, z = xy and z = y2.  

The numerical results show that the relative errors for the T3-CNS and T3-DNS in-

terpolations and their derivatives with respect to the variables x and y are on the order 

of 10−15 to 10−16. These errors are merely due to computer round-off errors. Thus, the 

T3-CNS and T3-DNS interpolations are found to have the quadratic consistency prop-

erty. In comparison, the K-T3 interpolation is also observed to be quadratic consistent. 

The T3 interpolation, however, is only able to reproduce exact solutions up to the linear 

basis functions (linear consistent).  
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Fig. 3. A quarter-circular function domain divided into triangular elements. 

3.2 Accuracy and Convergence 

To examine the accuracy and convergence of the T3-CNS and T3-DNS interpolations 

in surface fittings, we use a bi-cosine function (adopted from Wong et al. [8])  

 𝑧 = cos (
𝜋

2
𝑥)cos (

𝜋

2
𝑦) (11) 

defined over two different domains, namely, 

 Ω̂S = {(𝑥, 𝑦)|0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1} (12) 
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 Ω̂C = {(𝑥, 𝑦)|𝑥2 + 𝑦2 ≤ 1, 𝑥 ≥ 0, 𝑦 ≥ 0} (13) 

Eq. (12) represents a unit square while Eq. (13) represents a quarter of a unit circle. The 

unit square is partitioned using regular triangular meshes of 2×2 (Fig (2.a)), 4×4, 8×8 

and 16×16. On the other hand, the quarter circle is partitioned using triangular meshes 

of 6, 12, 24, and 54 elements as shown in Fig. 3.  

The resulting relative errors of the T3-CNS and T3-DNS interpolations and other 

comparative interpolations are presented in Table 1 for the circular domain. The results 

for the square domain are not presented here due to space limitations. The results for 

both square and circular function domains show that the T3-CNS and T3-DNS interpo-

lations give reasonably accurate surface approximations and converge well as the mesh 

is refined. The accuracy and convergence of T3-CNS, T3-DNS, and K-T3 interpola-

tions are similar with no significant differences. The T3 interpolation results, however, 

are much less accurate than the other interpolations.  

Table 1. Relative errors (%) of the approximation of the bi-cosine function, rz, and its partial 

derivatives, rz, x and rz, y over the unit circular domain.  

Mesh rz 
# element T3-CNS T3-DNS K-T3 T3 

6 4.99 4.99 4.7 13.18 

12 2.84 2.82 2.66 6.48 

24 0.85 0.84 0.75 3.55 

54 0.22 0.22 0.15 1.55 

 

Mesh rz,x 
# element T3-CNS T3-DNS K-T3 T3 

6 12.2 12.14 12.35 43.31 

12 10.35 9.92 10.85 28.47 

24 4.83 4.53 4.25 20.91 

54 2.18 1.93 1.46 13.68 

 

Mesh rz,y 
# element T3-CNS T3-DNS K-T3 T3 

6 8.33 8.28 12.35 29.56 

12 9.89 9.51 10.79 27.99 

24 3.47 3.25 4.25 15.01 

54 1.6 1.44 1.49 10.01 

 

While the accuracy and convergence of the T3-CNS and T3-DNS interpolations are 

similar to those of the K-T3 interpolation in surface fitting problems, the former ones 

are continuous over interelement boundaries (constitute conforming elements) whereas 

the latter is discontinuous over interelement boundaries (constitute nonconforming 

elements) [10]. This discontinuity may affect negatively to the convergence rate of 

solutions in the context of C0 continuum models such as the plane elasticity [10].  
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4 Conclusions 

A series of numerical tests have been conducted to assess the consistency property, 

accuracy, and convergence of the T3-CNS and T3-DNS interpolations. The results 

show that they are quadratic consistent for both irregular and irregular meshes, which 

is also true for the K-T3 interpolation. However, the T3 interpolation can only achieve 

consistency up to a linear function. The accuracy and convergence of the T3-CNS and 

T3-DNS interpolations are similar to those of the K-T3 interpolation. The advantage of 

the T3-CNS and T3-DNS over the K-T3 is their continuity over interelement bounda-

ries. The T3-CNS and T3-DNS interpolation accuracy is significantly better than the 

standard triangular element interpolation. Hence, the T3-CNS and T3-DNS interpola-

tions are viable alternatives to be used in Rayleigh-Ritz or Galerkin-based numerical 

methods for solving C0 continuum problems related to practical engineering applica-

tions.  
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