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paper text:

3Vehicle routing problem simultaneous deliveries and pickups with split
loads and time windows

with genetic algorithm (case study in shipping company) ABSTRACT Background: This research addresses
the VRPSDPSLTW problem, which involves

13vehicle routing for simultaneous deliveries and pickups with split loads
and time windows. The

main goal is to enhance the optimal utilization of vessel capacity in the field of shipping transportation and
logistics. Methods: In this research, the VRPSDPSLTW problem is adapted for Company X, a shipping
company based in Surabaya. The optimization approach employed is the Genetic Algorithm, serving as a
metaheuristic to effectively optimize vessel capacity utilization. The algorithm uses One Point Crossover and
Swap Mutation operators and analyzes various mutation parameters to determine the best configuration.
Results: The research generates several outputs, including route plans, loaded and unloaded Twenty-Foot
Equivalent Units (TEUs), travel times, and trip utility from the point of loading (POL) to the point of delivery
(POD). Based on experimentation, it is found that employing

111000 generations along with a mutation probability of 0

.2 produces improved solutions. As a result, the Genetic Algorithm solution enhances average vessel
capacity utilization to 80.93%. This marks a substantial 21.23% increase compared to the global average of
59.7% observed for similar vessel usage scenarios. Conclusions: Furthermore, through the introduction of
novel route opportunities, it effectively enhances the contributions of each vessel. This achievement results
in reaching an optimal average vessel capacity utilization that meets the demand. The findings strongly
advocate for the utilization of the Genetic Algorithm, highlighting its potential to substantially improve vessel
capacity utilization. As a consequence, this approach

28plays a pivotal role in elevating the efficiency of transportation and logistics
operations for

Company X. Keywords:

3vehicle routing problem, simultaneous deliveries and pickups, split loads,
time windows

, optimization, genetic algorithm INTRODUCTION

15The Vehicle Routing Problem (VRP) originated by Dantzig and Ramser
[1959] as a

solution for fuel delivery. It's now crucial for efficient cargo and travel services, covering various vehicles and
customer demands, including sea and air transport. Optimizing delivery routes minimizes costs, travel time,
and maximizes vessel capacity use in shipping. This involves sequencing visits using multiple vehicles from
a central depot [D.M. Utama et al. 2020]. Depot and vehicle capacities, along with customer requests,
influence route design [F. Arnold and K. Sörensen 2019]. VRP has evolved into variations like VRPPDTW,
explored by researchers like Sitek et al. [2021] and Dewi and Utama [2021]. This research examines
Shipping Company X, operating in Surabaya (Indonesia) since 1984, aiming to enhance its shipping
services and economic impact. While offering various services, including port-to-port and international
shipping, the company seeks to optimize cargo routes for greater vessel capacity utilization. Current manual
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processes hinder route efficiency, as evidenced by some vessels operating below 60% capacity. With a fleet
of over 40 vessels of varying capacities, simultaneous pickup and delivery, travel time considerations, and
load distribution complexities challenge the route optimization for Company X. Genetic Algorithm (GA), by
John Holland [1975], optimizes via genetic selection and natural processes, using crossover and mutation.
GAs streamline function modeling, reduce errors, and are effective in engineering [J. Protopopova and S.
Kulik 2020]. Applied to routing problems [S. Karakatič 2021], GAs address VRP variants, like enhanced
solutions by M. A.

20Mohammed et al. [2017], W. Ho et al. [2008], and P. R. de Oliveira da Costa

[2018], for delivery efficiency and cost reduction. GA handles capacitated vehicle routing [H. Nazif and L. S.
Lee 2012, R. Saxena et al. 2020], fleet size [S. Liu et al. 2009], and improves VRPTW solutions with
decomposition [C.-B. Cheng and K.-P. Wang 2009], relevant to VRPSDPSLTW. This research introduces a
customized Genetic Algorithm (GA) to tackle VRPSDPSLTW challenges for Shipping Company X, optimizing
vessel capacity use while respecting split-load, vessel capacity, and travel time restrictions. Using historical
data (January 2018 to February 2023), this research classifies VRP, focusing on VRPSDPSLTW, utilizing
route-specific details like demand, distances, travel times, and vessel attributes. The analysis pertains to
Surabaya- based vessels of Company X, considering uniform speed, exclusive vessel use, and a one-week
testing period. R is utilized for GA, Power BI for visualization, and Minitab for statistical analysis. The
research assumes equal port accessibility and excludes size-based limitations at specific ports.
METHODOLOGY

9The NP-Hard Vehicle Routing Problem (VRP) has

drawn significant research interest for improving efficiency. Traditionally, it assumes a single depot, single-
visit customers, and capacity limits. However, real-world scenarios require adjustments.

22Dror and Trudeau [1989] and Dror et al. [1994] introduced the

Split Delivery VRP (SDVRP), dividing customer demands among vehicles to reduce distance and vehicle
count. Overcoming

1traditional VRP constraints, the Vehicle Routing Problem with Simultaneous
Delivery and Pickup, Split Loads, and Time Windows (VRPSDPSLTW

) model emerges. It involves vehicles from a depot, serving customers while considering

12simultaneous delivery and pickup within time windows

. This applies even when demand surpasses vehicle capacity, enabling multiple visits or multiple-vehicle
service. In a research by Wang et al. [2013], the VRPSDPLTW method was utilized, with ordered elements
denoted as J = 1,2,3,...,n,N0 (where N0 includes the depot marked as 0 and 1,2,3,...,n represent
customers). Routes involved sequential visits by individual vehicles, connecting successive customers. All
routes shared the same depot for departure and return, leading to consistent origins and destinations. Table
1. Notations and mathematical models used in VRPSDPLTW model Source : Wang et al. 2013 Notations:

1𝑄 capacity of each vehicle 𝑉 set of vehicles, where 𝑖 ∈ 𝑉 𝑉𝑖 1 if vehicle 𝑖 is
selected to serve a customer, 0 otherwise 𝐽  set of customers {1, 2, 3, . . . , 𝑛} ∀𝑖 ,
𝑖 ∈ 𝐽 , and 𝑖  ≠ 𝑖 𝑑𝑖𝑖 travel cost (travel distance) between customer 𝑖 and
customer 𝑖 𝑡𝑖𝑖 travel time between customer 𝑖 and customer 𝑖 𝑡𝑖𝑖 travel speed
between customer 𝑖and customer 𝑖

𝐷𝑖

1delivery demand at customer 𝑖 𝑄𝑖 pickup demand at customer 𝑖 𝑥𝑖𝑖𝑖 1 if
vehicle 𝑖 travels directly from customer 𝑖 to customer 𝑖, 0 otherwise 𝑥𝑖𝑖𝑖 amount

of goods delivered

by vehicle 𝑖 using the route

24from customer 𝑖 to customer 𝑖 𝑥𝑖𝑖𝑖 amount of goods taken from customer 𝑖

by vehicle 𝑖 using
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1the route from customer 𝑖 to customer 𝑖 𝑥′𝑖𝑖𝑖 remaining amount of goods

to be delivered form

2customer 𝑖 to customer 𝑖 for vehicle 𝑖 [𝑍𝑖, 𝑍𝑖] time window for each customer
∀𝑖 ∈ 𝑁0 𝑟𝑖𝑖 time when vehicle 𝑖 starts serving customer 𝑖

. Objective functions: min 𝐹1(𝑥) = ∑𝑖 ∈ 𝑉|𝑉𝑖| ∑𝑖 ∈ 𝑁0 𝑥0𝑗𝑗 (1) min 𝐹2(𝑥) = ∑ ∑ ∑ 𝑑𝑖𝑖 𝑥𝑖𝑖𝑖 (2)

31𝑖 ∈ 𝑉 𝑖  ∈ 𝑁0 𝑖 ∈ 𝑁0 Constraints: 𝑖

∈ 𝑁0 ∑ 𝑥0𝑗𝑗 =

181 ∀𝑖 ∈ 𝑉 (3) ∑ 𝑥𝑖𝑢𝑖 − ∑ 𝑥𝑢𝑖𝑖 = 0 ∀𝑡 ∈ 𝐽 , ∀𝑖  ∈ 𝑉 𝑖  ∈ 𝑁0 𝑖  ∈ 𝑁0 (4) 𝑖

∈ 𝑁0 ∑ 𝑥𝑖𝑖𝑖 ≥ 1 ∀

27𝑖 ∈ 𝐽 , ∀𝑖 ∈ 𝑉 (5) 𝑛  ∑ ∑ 𝑥𝑖𝑖 = 𝐷𝑖 ∀𝑖 ∈ 𝐽  𝑖  ∈ 𝑉 𝑖

=0,𝑖≠𝑖 (6) 𝑛 ∑ ∑ 𝑍𝑖𝑖 = 𝑄𝑖 ∀𝑖 ∈ 𝐽

26𝑖 ∈ 𝑉 𝑖=0,𝑖≠𝑖  (7) ∑ ∑ 𝑥𝑖𝑖𝑖 ≥ 1 ∀𝑖  ∈ 𝐽, ∀𝑖 ∈ 𝑉 (8) 𝑖

∈𝑉𝑖∈𝑁 𝑛 𝑥′𝑖𝑖𝑖 + ∑ 𝑍𝑖𝑖𝑖 ≤

7𝑄 ∀𝑖 ∈ 𝐽 , ∀𝑖 ∈ 𝑉 𝑖=0,𝑖

≠𝑖 (9) 𝑑𝑖𝑖 𝑡𝑖𝑖 = 𝑡𝑖𝑖 ∀𝑖, 𝑖 ∈ 𝐽 (10) 𝑟𝑖𝑖 + 𝑡𝑖𝑖 − (𝑍𝑖 + 𝑡𝑖𝑖 − 𝑍𝑖 )(1 − 𝑥𝑖𝑖𝑖 ) ≤ 𝑟𝑖𝑖 ∀𝑖 ∈

1𝐽 , ∀𝑖 ∈ 𝑁0, ∀𝑖 ∈ 𝑉 (11) 𝑍𝑖 ≤ 𝑟𝑖𝑖 ≤ 𝑍𝑖 ∀𝑖 ∈ 𝑁0, ∀𝑖 ∈ 𝑉 (12

) 𝑟𝑖𝑖 + 𝑡𝑖0 − (𝑍𝑖 + 𝑡𝑖0 − 𝑍0 )(1 − 𝑥𝑖0𝑖 ) ≤ 𝑍0 ∀𝑖 ∈ 𝐽, ∀𝑖 ∈ 𝑉 (13) 𝑟0𝑖 = 𝑍0 ∀𝑖 ∈ 𝑉 (14) 𝑥𝑖𝑖𝑖 = 0 ∀

7𝑖 ∈ 𝑁0, ∀𝑖 ∈ 𝑉 (15) 𝑥𝑖𝑖𝑖 ∈ {0,1} ∀𝑖  , 𝑖 ∈ 𝑁0, ∀𝑖 ∈ 𝑉

(16) Objective (1) is to minimize vehicles in delivery routes, and objective (2) is to minimize travel costs.
Constraint (3) ensures each of the k vehicles goes from the depot to customer 𝑖 in set 𝐽. Constraint (4)
mandates vehicles to serve customers in sequence before returning to the depot. Constraint (5) permits

1a single vehicle to serve a customer multiple

times. Constraints (6) and (7) define

1total delivery and pickup demands at customer

𝑖. Constraint (8) allows multiple vehicles to serve a customer in varying quantities. Constraint (9) ensures
vehicle 𝑖 's remaining delivery and pickup fit its capacity. Constraint (10) calculates travel time using distance
and speed. Constraint (11) regulates

17the arrival time of vehicle 𝑖 at customer 𝑖  after the time 𝑟𝑖𝑖 + 𝑡𝑖𝑖 if vehicle 𝑖

chooses the

route

2from customer 𝑖 to customer 𝑖 or earlier than the difference between 𝑍𝑖 − 𝑍𝑖 if
vehicle 𝑖 does not choose that route

5 days 1000 , if OverTime ≥ 5 days } (25) Penalty Demand = Total Failed Demand (26) Fitness Value =
%Utility - Penalty Demand - Penalty Time (27) Company X does not enforce a specific time limit for
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completing a trip, but it does provide standard estimates for sailing hours and port time at each port. For the
purpose of this research, an ideal total travel time per trip is defined as not exceeding 31 days. Any days that
surpass this limit will be deemed as overtime, resulting in a penalty. The implementation of penalty time
through a Genetic Algorithm (GA) aims to attain the shortest travel time per trip (penalties are applied to
steer the solution towards the 31-day mark), thereby optimizing utility while minimizing unfulfilled demand.
Integrating these elements into the fitness value enables GA to assess route performance. The selection
favors higher %Utility and lower Penalty Demand and Time, progressively refining solutions for optimal
routes and enhanced vessel capacity utilization. Generated solutions are verified, validated, and adjusted for
Company X's needs. Result analysis aims for high-performance solutions aligned with goals. Comparing to
historical data and constraints evaluates the effectiveness of improving cargo delivery vessel capacity use.
RESULTS AND DISCUSSION Data Collection and Analysis Scenario testing utilizes Company X's demand
data over a one-week period, which is used as input for the GA. Table

301 shows the first 5 rows of the booking data

that will be used as forecast demand and further processed. One TEUS is equal to one 20 feet container.
The total data collected for forecast demand consists of 1518 rows of data. Table 3. Forecast demand for
scenario testing Source : Own work Row POL POD TOTALTEUS 1 IDSUB IDSSS 57 2 IDGGG IDSUB 9 3
IDSSS IDSUB 5 4 IDSSS IDSUB 1 5 IDSSS IDSUB 10 The subsequent action involves adding up the
TOTAL TEUS values for matching POL and POD pairs. This sums the TEUs for each corresponding POL-
POD combination, leading to a data transformation as depicted in Table 4. Table 4. Aggregated forecast
demand based on POL and POD pairs Source : Own work POL POD TEUs POL POD TEUs POL POD
TEUs POL POD TEUs IDZZZ IDSUB 7 IDSUB IDFFF 199 IDNNN IDSUB 328 IDFFF IDSUB 352 IDYYY
IDSUB 323 IDSUB IDGGG 367 IDNNN IDXXX 1 IDEEE IDSUB 268 IDXXX IDSUB 702 IDSUB IDHHH 70
IDMMM IDSUB 117 IDDDD IDSUB 156 IDVVV IDABC 201 IDSUB IDJJJ 40 IDLLL IDSUB 383 IDCCC
IDSUB 33 IDVVV IDALM 161 IDSUB IDKKK 375 IDKKK IDABC 7 IDBBB IDSUB 892 IDVVV IDSUB 116
IDSUB IDLLL 372 IDKKK IDAEF 18 IDAVW IDSUB 22 IDVVV IDXXX 10 IDSUB IDMMM 207 IDKKK IDALM
43 IDANO IDSUB 5 IDSUB IDAAA 89 IDSUB IDNNN 123 IDKKK IDCCC 8 IDAMN IDSUB 63 IDSUB IDABC
86 IDSUB IDPPP 26 IDKKK IDDDD 53 IDAKL IDSUB 595 IDSUB IDAEF 217 IDSUB IDQQQ 193 IDKKK
IDGGG 35 IDAJK IDQQQ 3 IDSUB IDAEG 14 IDSUB IDSSS 693 IDKKK IDMMM 48 IDAJK IDSUB 545
IDSUB IDAGH 236 IDSUB IDUUU 54 IDKKK IDNNN 21 IDAHI IDSUB 236 IDSUB IDAHI 238 IDSUB IDVVV
217 IDKKK IDQQQ 30 IDAGH IDSUB 2 IDSUB IDAJK 117 IDSUB IDWWW 2 IDKKK IDSSS 63 IDAEF
IDSUB 125 IDSUB IDALM 90 IDSUB IDXXX 158 IDKKK IDSUB 140 IDAEF IDYYY 261 IDSUB IDAMN 94
IDSUB IDYYY 302 IDKKK IDUUU 6 IDAEF IDZZZ 40 IDSUB IDAUV 9 IDSUB IDZZZ 35 IDKKK IDVVV 42
IDABC IDSUB 18 IDSUB IDBBB 639 IDSSS IDSUB 774 IDKKK IDYYY 26 IDABC IDXXX 9 IDSUB IDCCC
203 IDQQQ IDSUB 217 IDJJJ IDSUB 94 IDAAA IDBBB 1 IDSUB IDDDD 150 IDPPP IDSUB 36 IDGGG
IDKKK 1 IDAAA IDSUB 562 IDSUB IDEEE 114 IDOOO IDSUB 90 IDGGG IDSUB 336 To determine port
visit counts, identify the maximum TEUs achieved from past booking and vessel journey data (2018-2022).
This calculates the highlighted maximum TEUs (Table 4) by finding the most transported TEUs from POL to
POD in a single vessel journey. Next, assign unique identifiers to ports and determine their visit count
(VISIT). VISIT represents required visits per port. Calculate VISITNR by dividing TOTALTEUS (demand) by
MAXTEUSPERVISIT (highlighted), giving estimated visits. VISIT column contains rounded VISITNR values.
For example, In Table 5, the highest VISIT of 3 for port IDYYY (POD) means 3 visits. Table 6 shows resulting
visits for forecasted ports. This leads to 85 port visits, exceeding the initial 35, as some ports are visited
multiple times (except Surabaya, dividing or serving as home base). Table 5. Example of calculating the
number of visits for IDYYY Source : Own work POL POD TOTALTEUS MAXTEUSPERVISIT VISITNR VISIT
IDYYY IDSUB 323 668 0.484 1 IDAEF IDYYY 261 523 0.499 1 IDKKK IDYYY 26 47 0.553 1 IDSUB IDYYY
302 111 2.721 3 Table 6. The required number of visits (count) to each port (35 ports in demand data, except
for idsub as the home base) for each chromosome Source : Own work

16Port Count Port Count Port Count Port Count Port Count Port Count

IDAAA 2 IDXXX 2 IDFFF 3 IDKKK 5 IDPPP 1 IDAJK 2 IDBBB 7 IDYYY 3 IDGGG 4 IDLLL 4 IDAEG 1 IDAKL
3 IDCCC 2 IDAUV 1 IDAVW 1 IDMMM 3 IDAGH 3 IDALM 3 IDDDD 3 IDZZZ 1 IDHHH 2 IDNNN 2 IDQQQ 2
IDAMN 2 IDVVV 3 IDANO 1 IDABC 2 IDOOO 1 IDAHI 2 IDUUU 2 IDWWW 1 IDEEE 1 IDJJJ 2 IDAEF 3
IDSSS 5 Total Count = 85 Genetic Algorithm Here, the decision is to establish an initial population with 16
chromosomes, each representing port collections. Genes in a chromosome follow Table 6's visit count.
Notably, IDSUB is different; it acts as both starting and ending points, dividing chromosomes into trips. Initial
Population generates 16 random gene combinations. This ensures diverse starting points. Each
chromosome includes 35 ports, totaling 85 visits. Genes in a chromosome initially count 87 (85 visits + 2
IDSUBs at the beginning and end of the chromosome). However, gene count grows with each generation.
Chromosomes are split into trips via trimming, randomly picking 3 to 7 genes (excluding IDSUB) per trip.
"SubKel" column labels trips, with IDSUBs marking partitions. This breaks 1 chromosome into 15 trips (115
genes), adding 28 new IDSUB genes. Data reshapes for journey analysis, streamlining structure for fitness
calculation from POL to POD. Table 8 demonstrates this transformation, simplifying the original format. Table
7. Original data set format Source : Own work Table 8. Data set format after transformation Source : Own
work Port Chromosome SubKel IDSUB 1 A IDAGH 1 A IDAUV 1 A IDBBB 1 A IDSUB 1 A Table 9. Demand
from IDSUB to IDAEF and number of visits to IDAEF Source : Own work POL POD TOTALTEUS POD VISIT
IDSUB IDAEF 217 3 POL POD Chromosome SubKel IDSUB IDAGH 1 A IDAGH IDAUV 1 A IDAUV IDBBB 1
A IDBBB IDSUB 1 A Fig. 2. Concept of split loads for demand from IDSUB to IDAED Source : Own work
Load-unload quantities are determined based on total TEUs in demand data and visits from relevant ports.
For instance, if there's a demand of 217 TEUs from POL IDSUB to POD IDAEF this week, with IDAEF
visited three times within a chromosome, successful transport requires IDSUB (POL) preceding IDAEF
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(POD). Proportional cargo allocation is crucial, achieved by dividing total TEUs by required visits. With 217
TEUs from IDSUB to IDAEF over three visits, allocation is 72 TEUs, 72 TEUs, and 73 TEUs. Unsuccessful
visits result in untransported demand (145 TEUs if 2nd and 3rd fail, or 73 TEUs if only 3rd fails). Loading
involves direct loading of subsequent ports' demands at each POL. At POD, a specific portion unloads. This
continues until trip cargo is 0. Shipping load calculation considers TEUs from POL to POD. Next, vessel
placement maximizes each trip's cargo. Each chromosome is assigned a vessel sequentially, matching
cargo to closest vessel capacity. If between ideal and historical capacity, utility calculations use maximum
cargo. Vessel assignment proceeds until each trip has a vessel. Table 10 demonstrates this process for a
trip in one chromosome, outlining load, unload, shipping load, and vessel placement. Table 10. Example
calculation results: load, unload, shipping cargo, and vessel placement in a trip for a single chromosome
Source : Own work POL POD Chromosome SubKel LOAD UNLOAD Shipping Load Max Shipping Load
VESSEL ID VESSEL NAME PAY LOAD IDSUB IDAGH 1 A 188 80 188 188 BBB BBBBBB 208 IDAGH
IDAUV 1 A 2 9 110 188 BBB BBBBBB 208 IDAUV IDBBB 1 A 0 99 101 188 BBB BBBBBB 208 IDBBB
IDSUB 1 A 136 138 138 188 BBB BBBBBB 208 In Table 11, the evaluation results of fitness value for all
chromosomes in the initial population are presented, along with a detailed breakdown of the components
contributing to the fitness value. Table 11. Fitness value calculation results for all chromosomes in the initial
population Source : Own work Chromosome %Utility FAILED PENALTYDEMAND OVERTIME
PENALTYTIME fitness value 1 80.23 880 880 166 1000 -1799.77 2 77.2 943 943 130 1000 -1865.8 3 77.22
589 589 147 1000 -1511.78 4 73.91 960 960 145 1000 -1886.09 5 76.67 862 862 131 1000 -1785.33 6
75.76 1024 1024 127 1000 -1948.24 7 75.64 811 811 116 1000 -1735.36 8 79.88 909 909 90 1000 -1829.12
9 78.6 927 927 108 1000 -1848.4 10 76.07 928 928 143 1000 -1851.93 11 80.01 867 867 141 1000
-1786.99 12 76.52 799 799 105 1000 -1722.48 13 73.09 759 759 115 1000 -1685.91 14 77.09 898 898 129
1000 -1820.91 15 75.74 729 729 111 1000 -1653.26 16 74.62 777 777 109 1000 -1702.38 Subsequently,

10selection probability is calculated by dividing an individual's fitness value by
the total fitness value of the population, establishing chances for

the mating pool. Employing the roulette wheel method, individuals are chosen for the pool using a random
number in the "rand" column. The first chromosome with a "cumulative_prob" exceeding the random number
enters the pool. After pool selection, individuals are paired as parent pairs for crossover or genetic
recombination if criteria are fulfilled, as shown in Table 12. Table 12. Roulette wheel results and parent pairs
for crossover Source : Own work rand Chromosome cumulative_prob Pair rand Chromosome
cumulative_prob Pair 0.722 12 0.738 1 0.966 16 1 5 0.08 2 0.1277 1 0.378 7 0.4059 5 0.041 1 0.0657 2
0.316 6 0.3477 6 0.814 14 0.8675 2 0.489 9 0.5381 6 0.597 10 0.6041 3 0.468 8 0.4716 7 0.497 9 0.5381 3
0.239 4 0.2439 7 0.663 11 0.6693 4 0.969 16 1 8 0.131 3 0.1915 4 0.408 8 0.4716 8 After obtaining
chromosome pairs, the subsequent step is selecting pairs for crossover using a crossover probability (Pc)
set at 0.9. Crossover occurs if the randomly generated number for each pair is below 0.9. Employing one-
point crossover, a random cutting point is assigned to each pair. Chromosomes serve as "parents," yielding
two offspring or "children" with equal chromosomes. Initial mutation probability (pm) ranges from 0.01 to 0.2
for real-world optimization. Following crossover, each chromosome's randomly generated number between 0
and 1 determines mutation. If the number is below pm, the chromosome mutates, exchanging two random
gene points (swapping mutation) and forming a new offspring chromosome. New offspring resulting from
crossover and mutation are merged with the initial population, then evaluated for fitness. Retaining the two
best chromosomes, merged chromosome averages are calculated. If the target generation isn't reached,
chromosomes ranked 3rd to 100th become the next generation's initial population, ensuring genetic diversity
and optimal outcomes. Optimization Results of Scenario Testing In this research, the optimization of GA
solutions for the VRPSDPSLTW problem consists of three key variables: population size, mutation
probability, and crossover probability.

21The crossover probability is set at 0.9, and the initial population size is 16

individuals. The

mutation probability is tested at 0.01 and 0.2, each repeated five times with the same initial population size
and 500 generations per trial. Analysis of the best fitness value graphs in Fig. 5 and Fig. 6 reveals
convergence at the 500th generation for both mutation probabilities. Consequently, it can be inferred that,
under these conditions, mutation probabilities of 0.01 and 0.2 yield similar qualities, facilitating a meaningful
comparison. Table 13. Analysis of mutation probability parameters Source : Own work Pengujian Ke- First
Best Fitness Value %Utility Failed Demand (TEUs) OverTime (Days)

6pm = 0.01 pm = 0.2 pm = 0.01 pm = 0.2 pm = 0.01 pm = 0.2 pm = 0.01 pm = 0.2

1 -978.6 -920.85 76.4 81.15 55 2 141 101 2 -980.8 -929.72 72.2 79.28 53 9 103 125 3 -931.05 -921.18
79.95 79.82 11 1 115 127 4 -938.98 -919.11 79.02 80.89 18 0 153 116 5 -939.78 -928.74 80.22 80.26 20 9
124 79 Mean -953.84 -923.92 77.56 80.28 31.4 4.2 127.2 109.6 Worst -980.8 -929.72 72.2 79.28 55 9 153
127 Best -931.05 -919.11 80.22 81.15 11 0 103 79 Based on the findings in Table 13, a mutation probability
of 0.2 demonstrates the highest potential for achieving optimal fitness values. In this research, higher fitness
values indicate improved performance and closer alignment with objectives. Remarkably, the peak fitness
value of -919.11 was achieved with a 0.2 mutation probability, surpassing the 0.01 probability results. The
subsequent sections will delve deeper into these optimal fitness value variables and compare them with the
current conditions. The consistency of testing with a mutation probability of 0.2 is evident as the best
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solution (-919.11) closely matches the average of all tests (-923.92). Fig. 3 and Fig. 4 provide supporting
visuals, showcasing the best fitness values for mutation probabilities of 0.01 and 0.2, respectively. Fig. 4.

4The best fitness values for each generation

with 500 Fig. 3.

4The best fitness values for each generation

with

5500 generations and a mutation probability of 0.01 for each

test

5generations and a mutation probability of 0.2 for each

test Source : Own work Source : Own work The optimal fitness value achieved after 500 generations of
testing was -919.11, representing a substantial improvement of 21.13%. This signifies that the average %
capacity utilization of the tested vessels reached 80.89%, exceeding the historical average % capacity
utilization of all vessels in Company X's history, which was 59.76% based on the data from previous
operations. A mutation probability of 0.2 exhibits a higher likelihood of producing better results compared to
0.01. Although convergence solutions have been achieved using 500 generation, the solution still show
sloping increasing trend, therefore number of generations are increased to be 1000. Generations are also
increased to further reduce the number of overtime days. Fig. 5 presents

4the best fitness values for each generation with 1000 generations for

each test, while Table 14 provides detailed results for each test with 1000 generations. Fig. 5. Best fitness
values across

111000 generations with a mutation probability of 0

.2 for each test Source : Own work Table 14. The results of 5 tests with a mutation probability of 0.2 and
1000 generations Source : Own work Testing - First Best Fitness Value %Utility Failed Demand OverTime

14pm = 0.2 pm = 0.2 pm = 0.2 pm = 0.2 1

-919.07 80.93 0 94 2 -923.6 78.4 2 138 3 -918.61 82.39 1 123 4 -917.54 83.46 1 115 5 -922.23 79.76 2 76
Mean (1000 generations) -920.21 80.99 1.2 109.2 Current Best Solution: First Best Fitness Value %Utility
Failed Demand OverTime -919.11 80.89 0 116 Mean of mutation probability 0.2 with 500 Generations (all
tests) First Best Fitness Value %Utility Failed Demand OverTime -923.92 80.28 4.2 109.6 Test 4 with 1000
generations outperformed the current best solution with higher %Utility (+2.57%), lower OverTime (-1 day),
and improved fitness value (+1.57). However, it experienced unmet demands, impacting %Utility. As a result,
Test 1 was chosen as the best solution, showing increased %Utility (+0.04) and reduced OverTime (-22
days) compared to the previous best solution, with no failed demands, providing more consistent results
than Test 4. Although Test 500 met individual requirements, Test 1000 showed potential for better overall
solutions with higher %Utility, lower demand failure rate, and shorter delivery times. The increase in fitness
value per generation from the optimal solution will be visualized in Fig. 6. The visualization will include the
second

19best fitness value and the average fitness value of the entire population for

each generation. Fig. 6. Trend of fitness value per generation for the optimal solution Source : Own work
Table 15 provides a detailed breakdown of the output from the GA process that led to the optimal fitness
value from a total of 15 trips (the table displays 1 sample trip). Fig 7. represents the practical results
obtained from these 1 sample trip out of the total of 15 trips. It presents the planned routes to fulfill the
designated demand, including the load and unload quantities, utility, and time required for each journey
between POL and POD. Furthermore, the output also provides information regarding the average %
capacity utilization of the vessel for the entire voyage (80.93%), no failed demand (0 TEUs), and the total
sum of overtime for the entire journey (94 days). The following section will present a comprehensive analysis
of these variables. Table 15. Output of GA process for optimal fitness value (1 out of 15 trips) Source : Own
work POL POD Chro moso me Sub Kel LOAD UNLOAD Shipping Load VESSEL ID VESSEL NAME PAY
LOAD % UTILITY TRIP TOTAL TIME DAYS IDSUB IDAMN 66 A 193 46 193 TTT TTTTTTT 453 42.6 6.14
IDAMN IDFFF 66 A 31 67 178 TTT TTTTTTT 453 39.29 5.7 IDFFF IDAKL 66 A 118 0 229 TTT TTTTTTT 453
50.55 5.51 IDAKL IDAGH 66 A 199 80 428 TTT TTTTTTT 453 94.48 4.48 ADAGH IDSUB 66 A 2 350 350
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TTT TTTTTTT 453 77.26 2.07 Fig. 7. Practical illustration of GA solution (1 out of 15 trips) Source : Own
work The case study results displayed successful TEUs demand, but various scenario tests uncovered
potential forecast demand failures. In such cases, unmet demands and their POL and POD origins can be
identified. Solutions include adapting forecast targets or allocating unmet demands to future trips. Table 16
shows the required time for each trip to return to the home base in the proposed solution can be observed.
This total time includes travel time from all POL to POD on the trip, added with port time (idle time of the
vessel), and measured in days. Currently, the company does not have an ideal figure to determine how long
1 trip should take to fulfill the demand. Therefore, in the implemented GA program, the authors apply high
penalties to solutions with significant total overtime (days > 31) across all trips. This

23is to minimize the total time of each journey as close as possible

to the ideal figure. The results show that to meet the demand in the real-case scenario test, 15 trips are
required with an average delivery time of 35.57 days. The case study results revealed no failed TEUs
demand in the utilized scenario, yet various tests demonstrated potential forecast demand inaccuracies. In
such instances, unfulfilled demands and their POL and POD origins can be displayed. Addressing this
entails options like refining forecast targets or allocating unfulfilled demands to future trips, requiring careful
consideration of utility maximization, demand fulfillment, and travel time trade-offs during the GA
optimization process. Optimization focus adjustments can be realized by reevaluating parameters and
penalty functions. Table 16. The time taken by each trip from homebase to return to homebase Source :
Own work Trip VESSELID VESSELNAME TOTALTIME (Days) %UTILITY TRIP 1 A TTT TTTTTT 23.90
60.8389 2 B GGG GGGGGG 25.01 71.8056 3 C ABO ABOABO 30.38 81.7243 4 D WWW WWWWWW
40.53 93.6330 5 E ABY ABYABY 54.22 68.3165 6 F PPP PPPPPP 46.16 79.2683 7 G ABU ABUABU 36.18
74.1385 8 H OOO OOOOOO 36.72 87.8021 9 I BBB BBBBBB 31.02 91.4530 10 J ABS ABSABS 48.54
79.9195 11 K ABR ABRABR 32.32 80.1060 12 L QQQ QQQQQQ 37.86 91.1635 13 M RRR RRRRRR 36.61
77.6126 14 N ABI ABIABI 24.51 86.2894 15 O YYY YYYYYY 29.51 89.8960 Mean 35.57 80.93 The GA
program penalizes solutions exceeding 31 days of overtime across trips to align with benchmarks, due to the
absence of a standard trip duration. Real-case testing demands 15 trips for demand fulfillment and
successfully achieves an average trip time close to 31 days, specifically averaging 35.57 days, representing
optimal results. In the same table, the average vessel capacity utilization percentage for all trips is
presented. This data offers a clear overview of trip-level utilization. Notably, each trip's average utilization
surpasses 60%, with an overall average of 80.93%. These findings indicate a fairly optimal ship capacity
utilization level from the GA algorithm. In the detailed analysis, the GA solution's utilization will be compared
with historical data to assess improvements in ship capacity utilization. Table 17. Results of utilization
evaluation for the involved vessels in solving scenario tests with GA Source : Own work % % VESSELID
VESSELNAME Result History Utility Utility ABS ABSABS 79.92% 68.12% TTT TTTTTT 60.84% 55.54%
ABR ABRABR 80.11% 54.64% ABY ABYABY 68.32% 57.36% YYY YYYYYY 89.90% 61.49% BBB BBBBBB
91.45% 66.23% GGG GGGGGG 71.81% 54.65% RRR RRRRRR 77.61% 52.20% ABI ABIABI 86.29%
76.32% ABO ABOABO 81.72% 53.46% PPP PPPPPP 79.27% 59.19% OOO OOOOOO 87.20% 63.22%
Fig. 8. Clustered Column Chart: Historical % Utility vs. % QQQ QQQQQQ 91.16% 60.36% WWW
WWWWWW 93.63% 46.76% Utility Results Using GA ABU ABUABU 74.14% 65.67% Mean 80.93% 59.70%
Table 17 shows the utility evaluation results for the selected vessel in GA scenario testing. "Result Utility"
indicates post-GA optimization, while "History Utility" portrays historical usage (2019-2022) without GA,
reflecting actual fulfillment rates. Notably, a 21.23% increase is observed. Fig. 8 further illustrates the
positive impact of GA, with improved vessel performance in capacity utilization. All vessels experience
enhanced utility after GA optimization, showcasing its positive contribution to effective vessel capacity
utilization for cargo delivery. When a t-test is conducted statistically, the null hypothesis (H0) assumes no
difference between the population means of Result %Utility and History %Utility. On the other hand, the
alternative hypothesis (H1) suggests a higher mean for Result %Utility. The t-

8test results (P- Value (0.000) < alpha (0.05

)) lead to the rejection of H0 and the acceptance of H1. This indicates a substantial increase in the mean of
Result %Utility in comparison to History %Utility. Conclusion The Genetic Algorithm (GA) effectively tackled
the complex

29VRP with simultaneous pickup and delivery, split-loads, vessel capacity, and
time

window constraints (VRPSDPSLTW) optimization problem. Employing GA with parameters 1000

25generations, 0.9 crossover probability, and 0.2 mutation probability

, vessel capacity utilization significantly rose to 80.93%, a remarkable 21.23% enhancement from the prior
59.7%. GA innovatively devised routes, yielding superior capacity utilization while considering empty
container loads. Notably, the GA solution adeptly managed port visits, split-loads, time, and vessel capacity
for POL to POD trips. Average trip duration was approximately 35 days, aligning closely with the 31-day
target. Achieving a 100% sales target validated GA's efficacy. Future research can explore multi-objective
GA for conflicting goals and address real-world factors like stochastic voyage time and time-dependent
demand. Recommendations To enhance the GA's performance in the
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12future research, the following suggestions can be considered: ? Modify the
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T., Chiang, T., 2019. An evolutionary algorithm with heuristic longest cycle crossover for solving the
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