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ARTICLE INFO ABSTRACT

Keywords: This paper proposes an alternative heuristic algorithm for a multi-product Economic
EPQ Production Quantity (EPQ) vendor-buyer integrated model with Just in Time (JIT)
Jit philosophy and a budget constraint. This type of problem is usually solved by a Mixed

Lagrange approach
Branch and bound
Heuristic algorithms

Integer Non Linear Problem (MINLP), which is complex and computationally expensive.
The proposed heuristic algorithm involves less computation and therefore it is less
expensive than the previously published algorithms. Furthermore, the heuristic algorithm
is simpler as it derives the integer values for all discrete variables in a straightforward
manner. Through empirical experimentation, it is demonstrated that the heuristic
algorithm provides solutions closer to the lower bound in a very short time.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Inventory management is one of the most important drivers for an effective enterprise. The first inventory model (i.e.,
EOQ) was proposed in February 1913 [1]. The two main decisions made via the EOQ model (i.e., how many products to order
and when to place the order) are still widely studied. This is due to the fact that in any company there are different types of
products and several constraints at the same time. For example, a company could manage orders for thousands of different
products and have constraints such as space, budget, transportation capacity, number of orders, and production capacity.

In most instances, buyers or vendors optimize their ordering decisions independently. Several recent research studies
have shown that the integrated vendor-buyer inventory model has better performance than the non-integrated inventory
models.

This paper revisits the integrated single vendor single buyer inventory model with multi products and budget constraint
proposed by Widyadana and Wee [2]. This problem is relevant for modern companies that manage thousands of products
with different constraints.

Widyadana and Wee [2] extended the models of Pasandideh and Niaki [3] and Pasandideh et al. [4]. Cirdenas-Barrén et al.
[5] improve and solve the inventory problem in Pasandideh et al. [4]. In inventory model proposed by Widyadana and Wee
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[2], the vendor delivers products in small lots with discrete delivery orders. This inventory model is managed in a JIT envi-
ronment where the buyer decides on the number products to order and deliver in a shipment.

The problem is a constrained mixed integer nonlinear problem (MINLP) and it has nonlinearities in the objective function
and constraints. This type of MINLP is hard to solve using an exact method. Moreover, this MINLP is also challenging due to
its high computational complexity. Therefore, Widyadana and Wee [2] developed a Lagrange method with a branch and
bound procedure to solve the problem.

The MINLP has been used extensively to solve problems in engineering, finance, management science, and operations re-
search. Many research studies have been conducted to solve MINLPs, particularly for handling highly nonlinear, combinato-
rial and large scale problems. Some researchers used a geometric algorithm to solve MINLPs (for instance see Islam and Roy
[6,7]) and some used meta-heuristics methods such as genetic algorithm (for instance, see Pourakbar et al. [8] and Pasan-
dideh et al. [9]). It was found that the solution procedure of Widyadana and Wee [2] was computationally expensive due
to the fact that it was comprised of two parts: the Lagrange method as well as the branch and bound method. The Lagrange
method contains seven steps. The branch and bound method contains five steps. Their algorithm evaluates the total cost
function n(n + 1)+2 times. Therefore, the complexity order of their solution procedure is O(n?). Also, it is worth mentioning
that this MINLP is complex and computationally intensive even when a mathematical solver (such as LINGO) is used.

Widyadana and Wee [2] state that the computational time of their algorithm can be very high for large instances and that
a more efficient and faster heuristic algorithm should be developed. In this direction, a simple heuristic algorithm to deter-
mine the integer value for each discrete variable is developed in this paper. Furthermore, the proposed algorithm discrim-
inates among situations when there are one or two solutions for each discrete variable. It is important to note that the
proposed algorithm derives the integer values for each discrete variable in a straightforward manner. Furthermore, the pro-
posed heuristic algorithm evaluates the total cost immediately.

The rest of the paper is organized as follows. Section 2 presents two formulations of the MINLP problem for the integrated
single vendor single buyer inventory model with multi-products and a budget constraint. Two heuristic algorithms are
developed in order to solve each MINLP problem. Section 3 tests the effectiveness of the algorithm through numerical exper-
imentation. Finally, Section 4 provides the conclusions and opportunities for future research.

2. Heuristic algorithms

For simplicity, we use the same assumptions and notation used in Widyadana and Wee [2]. The assumptions are (1) single
vendor and single buyer are considered, (2) set-up and transportation times are insignificant and can be ignored, (3) demand
rate is known and constant, (4) shortages are not allowed, (5) time horizon is infinite, (6) all costs are known and constant
and (7) buyer pays transportation cost.

The notation is as follows:

l number of products

m; shipment quantity of product i (decision variable)
K; number of shipments placed during period T of product i (decision variable)
P; vendor production rate of product i, units/year

D; the buyer’s demand rate of product i, units/year
A; buyer ordering cost of product i

Av; vendor setup production cost of product i

b; transportation cost of product i

h; buyer holding cost per unit of product i

hv; vendor holding cost per unit of product i

G product unit cost of product i

Bg buyer budget

Based on the assumptions and notations described above, Widyadana and Wee [2] propose the following mixed integer
nonlinear problem (MINLP) for the single vendor single buyer inventory model with multi products and budget constraint.
Detail model development is shown in the Appendix.

MinZ - Z{D,(A, +Av) , b, mi, {h, +hy hv,»(l - 9)} } )
i=1

m,K,- m; 2 K, P,‘

S.t.
1
> cimiK; < Bg 2)
i=1

m>0;, i=1,2,3,..,1 3)
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K; > 0; Integer,i=1,2,3,...,1 (4)

In the formulation, objective function (1) is to minimize the integrated total inventory cost. Constraint (2) is the budget
restriction. Constraint (3) states that all m;’s are continuous variables, and constraint (4) defines that all K’s are discrete
variables. We call this problem MINLP1. This problem contains 2! variables (I variables are discrete and the rest are
continuous).

The problem where all m; and all K; are discrete variables is called MINLP2. In this case, constraint (3) must be
m; > 1; Integer,i=1,2,3,...,L In this problem, there are 2I discrete variables. It is worth mentioning that this problem
was not considered in Widyadana and Wee [2].

The preceding optimization problems are hard to solve. We note that the difficulty in both problems lies in (1) the num-
ber of discrete variables, and (2) the nonlinearity of the objective function in the MINLP formulation.

In Sections 2.1 and 2.2, we discuss how to solve MINLP1 and MINLP2 in the general form. As it will be shown in Section 3,
it is possible to get solutions closer to the lower bound within a very short time for large scale problems.

2.1. Solving the MINLP1 where all m; are continuous variables and all K; are discrete variables

The function Z (Eq. (1)) can be written as

1
Z=3 (X + V)
i=1
where
Xj _ mi(hi2+ h?/,‘) i b;nD,
1
D;
v miKihv; (1 - pi) Di(A + Avy)
! 2 m;K;

Note that both X; and Y; have the same mathematical form, which is s;w + s,/w. Cardenas-Barrén [ 10] showed via the alge-
braic method of complete squares that a function of type s;w + s,/w is always minimized for w = /s, /s1, which results in the
minimum of f(w) = 2,/5:53. Thus,

| 2biD;
i = hi + hy; (5)

Garcia-Laguna et al. [11] showed that the discrete solution to the following minimization problem:

Min s;yw +s/w; where both s; and s, are positive
w > 1 and integer

is as follows:

w— [—0.5+,/0.25+z—2 or w= {0.5+,/o.25 +§—2J (6)
1 1

where [r] is the smallest integer greater than or equal to r, and |r| is the largest integer less than or equal to r. In addition, it
is clear that [r] = |r + 1] if and only if r is not an integer value. For this case, the problem has a unique solution for w which is
w* =w (given by any of the two mathematical expressions in (6)). Otherwise, the problem has two solutions for w, i.e.,
w*=w, and w*=w + 1. This easy to apply procedure is similar to Garcia-Laguna et al. [11], Cardenas-Barrén et al. [12,13],
and Teng et al. [14].

Based on Eq. (6), the solution for each discrete variable (K;) is as follows:

2D,(Ai + Avy)
m?hv,-(l - %*)

2D; (A, + AU,‘)

e (1) 7

Ki=|-05+ JO.ZS + or Ki= |05+ $0.25 +

Given the discrete value of each K;, the continuous values for each m; optimizing the following function can be determined

Min7 Z{D,(A, +Av) | bD;  mik, [h, ;hy, . hv,»(l - %ﬂ }
i=1 i i

m;K; m; 2

Now, Z can be expressed as
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Z=> X;

I
i=1

where

Xi =m;

{Kihvi(l ’,3j)+hf+hvi} 1 {D,-(A,-+Az/i+l<ib,-)}
+_ - 7
2 m; K;

Applying the previous results from Cardenas-Barrén [10], m; are given by the following equation:

o 2Di(A; + Avi + Kiby)
- J Ki[Kihoi(1-%) + i+ ho]

Based on the previous analysis, we describe the heuristic algorithm for solving the MINLP1 in detail as follows:
2.1.1. Heuristic algorithm for MINLP1

Step 0. Iterative procedure «— false
Step 1. Determine the initial continuous value for each m; variable with Eq. (5) and the discrete value for each K; variable
with Eq. (7) ignoring the budget constraint. Given the discrete value of each K; then calculate the final continuous
value for each m; variable with Eq. (8). If the solution satisfies the budget constraint, then go to Step 6; otherwise
g0 to Step 2.
Step 2. Solve the optimization problem subject to the budget constraint. Determine the discrete value for each K; variable
with Eq. (9) where 4 is calculated from Eq. (10).
Step 3. Given the discrete value of each K;, then determine the continuous value for m; from Eq. (11) where / is obtained
by solving Eq. (12).
Step 4. If Iterative procedure is false and if the solution satisfies the budget constraint, then go to Step 6; otherwise, Iter-
ative procedure — true and go to Step 5.
Step 5. If the solution does not satisfy the budget constraint then set budget constraint to Bge, < %.
Else
if |Bgnew—Bg| <&
go to Step 6.
Else
Set Bgnew = (Bg + Bgnew)/2
Set Bg = Bgpw and go to Step 1.
Step 6. Determine the total cost with Eq. (1) and report the solution.

In Step 2, we optimize the following function adding a Lagrange multiplier 1i:

I l
. _ D; (A, + AUi) biDi m;K; hi + h?/,‘ D;
MinZ = i:E]{WJ’_WiJ’_T{ K +hyl(1_ﬁ)]}+; i:]C,lel—Bg

Now, Z can be expressed as

!

Z=> {Xi+Y}+E
i=1

X,’ _ m,-(h,-2+ hUi) +@

m;

m;K; {h v; <l —%f) +2/‘.c,}
Where Y; = — e

E=—-)Bg

Applying the previous results, where m; is also given by Eq. (5) and K; can be determined by

2D;i(Ai + Av;)
m2 [hvi (1 - %:) + 2),c,-]

2D;(Ai + Avy)
m2 [hv,- (1 - %’) + ZAC,}

Ki= |-05+ J 0.25 + or Ki= |05+ J 0.25+

where m; is given by Eq. (5) and the 4 value can be determined by solving the following equation:
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S| 2bD; )| 2Di(A; + Avs) o
ZC\/J 0'5+JO'ZSJF(Z””D‘)[M,-(I—f.f;)+2)vc,-] Bg=0 (10)

hi+hv;

In Step 3, given the discrete values of each K; from Step 2, we optimize the following function using a Lagrange
multiplier A:

1 1
. _ D; (A, + AT},‘) b,‘D,‘ m;K; h,‘ + hT}i : D; _—
MinZ = ;:1 {777111@' + m + 5 K +hy(1- i + 2 ;:1 cim;K; — Bg

1

Now, Z can be expressed as

1
Z= in +E
i=1

where

D;
Kihvi | 1=5t | +hi+hv+2/cK;
X — mi{ i x< pi> i+hvit2/c; ;} +l{Di(A,-+/?<v,v+K,vb,v)}

2 m; )
E=—/Bg
From Cardenas-Barrén [10], m; is given by the following equation:

o 2D1(A1 +AV1 + K,bl)
K; |:K,'h1/i (1 — %’) + h,’ + hl),' + 2).C1‘K1:|

where K; is given by Eq. (9) and the 4 value can be determined by solving the following equation:

L (A ) m
5 2D,(Ai + Avi+ Kiby K—Bg 0 12
i1 K; [th Z),‘(] — P_:) + h,’ + hUi + 2)C,KJ

2.2. Solving the MINLP2 where m; and K; are discrete variables

MINLP2 can be solved as in MINLP1. Without loss of generality, we provide only the final results.
The discrete values for m; are given by

m; = {—0.5 +1/0.25 + hizfg"yi or [0.5 +4/025+ hizi"lz;’_ (13)
The discrete values for K; are given by
Ki=|-05+ |0.25 4 2DiA + Avi) Ki= 105+ |0.25+ 2D + Av) (14)
o B e e
Given the discrete value of each K; then the discrete value for each m; can be determined by
2D;i(A; + Av; + Kiby) 2D;i(A; + Av; + Kiby) (15)

mi= [-0.5+ J 0.25 + ] or |05+ \j 0.25 +

K; [K,hui (1 - ’;—) +hi+ho K; [K,»hui (1 - 'g_) T hit hv,»]

When the budget constraint is active, then the discrete values for m; are given by Eq. (13) and the discrete values for K; are
given by

2D;(Ai + Av;)
m2 [hvi (1 - %:) + 2},ci]

2D;(Ai + Av;)
m2 [hv,-(l - ?—1') + 2)vc,-]

K = _0.5+\jo,25+ or Ki= 0.5+¢0A25+ (16)

where the 4 value can be determined by solving the following equation:
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Lol D A+ A
S q[-05+ ,/0.25+% 05+ 025+ 2DiAi + Av) —Bg=0 (17)
i1 i i (—0‘5 +./0.25 + hzitj,?;l_ hv,—(l - %’) + 2
Given the discrete value of each K;, then the discrete value for each m; can be determined by the following equation:
m = |-05+ 025+ 2Di(A; + Avi + Kibi) or |05+ |0.25+ 2Di(Ai +Avi + Kiby) (18)
K; [I(ihlji (] — %’) + h,' + h?}i + Z}LC)'K]} K; {Kihv,- (1 — %’) + h,‘ + hT/i + 2/1CiK,']
where K; is given by Eq. (16) and 4 value can be determined by solving the following equation:
! (A, .
S cim;|-05+ [0.25 + 2Di(A J;A”’) _Bg=0 (19)
i=1 TT'II2 [h 7/,'(] — P—:) —+ 2)»(:1']

Based on the previous analysis, we describe the heuristic algorithm for solving MINLP2 in detail as follows:

2.2.1. Heuristic algorithm for MINLP2

Step 0. Iterative procedure — false

Step 1. Determine the initial discrete value for each m; with Eq. (13) and the discrete value for each K; with Eq. (14) and
ignoring the budget constraint. Given the discrete value of each K;, then calculate the final discrete value for each
m; with Eq. (15). If the solution satisfies the budget constraint then go to Step 6. Otherwise go to Step 2.

Step 2. S

olve the optimization problem subject to the budget constraint. Determine the discrete value for each K; variable

with Eq. (16) where 4 is calculated with Eq. (17).
Step 3. Given the discrete value of each K; then determine the discrete values for m; with Eq. (18) where / is obtained by

S

olving Eq. (19).

Step 4. If Iterative procedure is false and the solution satisfies the budget constraint, then go to Step 6. Otherwise, Iter-
ative procedure «— true and go to Step 5.
Step 5. If solution does not satisfy the budget constraint then

set budget constraint to Bgpey «— 5.

Else

Bg

if |Bgnew—Bgl <&

go

Else
Se

Set Bg

to Step 6.

t Bgnew=(Bg + Bgnew)/2
= Bgpew and go to Step 1.

Step 6. Determine the total cost with Eq. (1) and report the solution.

The two
among othe

heuristic algorithms can be implemented in a spreadsheet or any programming language such as C++, FORTRAN,
rs. Both heuristic algorithms can be solved easily and only require evaluating the total cost function one time. In

the next section, we present the results of the numerical experimentation.

3. Numerical experimentation

Both heuristics algorithms are illustrated from the data in Table 1 and Widyadana and Wee [2].

Example
Example

1 considers the MINLP1 problem with a budget of $30,000. The solution is given in Table 2.
2 also considers MINLP1 problem but with a budget of $20,000. The solution to this problem is given in Table 3.

Using the solution procedure from Widyadana and Wee [2], we derive the same solution (see Table 4).

Example
that our sol

3 also considers MINLP1 problem with a budget of $20,000. The solution to this example is given in Table 5. Note
ution is the same as Widyadana and Wee [2].

Table 1

Data for the numerical experimentation.
Product Ai D; h; G Av; hv; P; b;
1 47 1361 5 17 68 3 2444 14
2 49 1039 9 13 71 5 2355 15
3 58 1434 8 16 75 6 2392 13
4 49 1113 6 14 55 5 2440 18




L.E. Cardenas-Barrén et al. / Applied Mathematics and Computation 230 (2014) 359-370 365

Table 2
Solution to Example 1.
Product m; K;
1 69.1817 7
2 48.6220 6
3 50.5699 8
4 59.2575 5
Total cost (Z) 5830.7128
Table 3
Solution to Example 2.
Product Proposed Algorithm
m; Ki
1 68.39359073 6
2 46.72992628 6
3 51.59875406 7
4 64.28319461 4
Total cost (Z) 5852.808723
Table 4
Data for the numerical experimentation from Widyadana and Wee [2].
Product A; D; h; G Av; hv; P; b;
1 48 1255 8 17 74 3 2183 13
2 42 1342 5 13 57 3 2375 15
3 54 1395 9 16 52 6 2292 12
4 47 1169 6 14 78 4 2206 12
Table 5
Solution to Example 3.
Product Proposed Algorithm
m; K,
1 52.5848 7
2 70.6239155 5
3 48.42575748 6
4 53.60692303 6

Total cost (Z) 5269.656386

Table 6

Data for the instances.
Parameter Values
D; U(1000,15000)
P; D +U(10,100)
A U(100,5000)
Av; U(100,5000)
b; U(20,80)
h; U(5,100)
hv; U(5,100)
¢ U(10,200)

To make both heuristic algorithms more practical and relevant, we randomly generate 100 instances. We test both heu-

ristic algorithms considering five levels of I (i.e., number of products): 50, 100, 250, 500, and 1000. At each level of | we gen-
erate 20 instances. The parameter values were generated from uniform distributions with ranges as shown in Table 6.
With regards to each instance, the budget values are determined as follows:

Bg = U(0.75,1.1)c;miK;
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Table 7
Results of the numerical experimentation for I = 50 products.
Instance Total cost Lower bound K; discrete m; % CPU time Total cost K; discrete m; % CPU time
MINLP1 continuous percentage in MINLP2 discrete percentage in
Difference of penalty seconds Difference of penalty seconds
1 718930.112  718929.7974 0.3146 0.000044 0.0048 718933.4335 3.3215 0.000462 0.0107
2 647381.1844 647380.7459 0.4385 0.000068 0.0948 647386.2986 5.1142 0.00079 1.5209
3 667865.9868 667865.6893 0.2975 0.000045 0.0408 667872.8611 6.8743 0.001029 1.0183
4 694904.9807 694904.6311 0.3496 0.000050 0.0033 694908.9602 3.9795 0.000573 0.0035
5 643326.5934 643326.3194 0.274 0.000043 0.0498 643333.9443  7.3509 0.001143 1.1853
6 590461.4065 590461.2143 0.1922 0.000033 0.0034 590465.9221 4.5156 0.000765 0.0033
7 618129.6185 618129.118  0.5005 0.000081 0.0602 618136.8581 7.2396 0.001171 1.3636
8 685792.4025 685792.038  0.3645 0.000053 0.052 685796.7866  4.3841 0.000639 1.0554
9 696866.2593 696866.0645 0.1948 0.000028 0.0546 696870.204  3.9447 0.000566 0.0623
10 688356.5247 688356.2137 0.311 0.000045 0.0587 688360.8918 4.3671 0.000634 1.1676
11 665085.5275 665085.1979 0.3296 0.000050 0.0722 665091.0088 5.4813 0.000824 1.678
12 632040.6511 632040.2787 0.3724 0.000059 0.0509 632044.8463  4.1952 0.000664 0.0592
13 681535.0228 681534.7239 0.2989 0.000044 0.0584 681539.5239 4.5011 0.00066 1.2769
14 687949.7783  687949.2194 0.5589 0.000081 0.0623 687952.9886 3.2103 0.000467 0.0788
15 663776.7791 663776313  0.4661 0.000070 0.0464 663781.4775 4.6984 0.000708 1.0845
16 683487.6103 683487.1194 0.4909 0.000072 0.051 683493.2646 5.6543 0.000827 1.1473
17 632935.7941 632935405  0.3891 0.000061 0.0036 632939.5638 3.7697 0.000596 0.0034
18 644641.0084 644640.6528 0.3556 0.000055 0.03 644644.5604 3.552 0.000551 0.8983
19 627087.9843 627087.6743 0.31 0.000049 0.0034 627090.6814 2.6971 0.00043 0.0068
20 624905.9608 624905.536  0.4248 0.000068 0.0033 624910.2346 4.2738 0.000684 0.0054
Table 8
Results of the numerical experimentation for I = 100 products.
Instance Total cost Lower bound K; discrete m; % CPU time Total cost K; discrete m; % CPU time
MINLP1 continuous percentage in MINLP2 discrete percentage in
Difference of penalty seconds Difference of penalty seconds
1 1297891.156  1297890.54  0.616 0.000047 0.0068 1297898.276  7.12 0.000549 0.0117
2 1282080.143 1282079.327 0.816 0.000064 0.0719 1282088.767  8.6239 0.000673 0.0891
3 1304284.227 1304283.268 0.9593 0.000074 0.0879 1304295.075 10.8475 0.000832 23573
4 1278617.641 1278616.56  1.0808 0.000085 0.0064 1278624.149  6.5087 0.000509 0.0073
5 1372179.116  1372178.329 0.7873 0.000057 0.0655 1372186.862  7.7464 0.000565 0.0804
6 1269249374 1269248.624 0.7492 0.000059 0.083 1269257.575  8.2013 0.000646 0.1039
7 1346158.633  1346157.725 0.908 0.000067 0.0441 1346167.517  8.8838 0.00066 1.0953
8 1401339.2 1401338.035 1.165 0.000083 0.0743 1401350.043 10.8426 0.000774 1.9468
9 1335201.429 1335200.804 0.6247 0.000047 0.0749 1335208.827  7.3983 0.000554 2.2521
10 1339757.863 1339757.157 0.7058 0.000053 0.0819 1339765.632  7.7692 0.00058 0.107
11 1245298.846  1245298.214 0.6319 0.000051 0.05 1245305.514  6.6685 0.000535 1.3136
12 1308043.638 1308042.655 0.9836 0.000075 0.0656 1308051.401 7.763 0.000593 0.08
13 1343661.025 1343660.367 0.658 0.000049 0.0065 1343666.511 5.4859 0.000408 0.0072
14 1343226.17  1343225.534 0.6362 0.000047 0.0724 1343232.758  6.5882 0.00049 1.7446
15 1318052.239 1318051.496 0.7426 0.000056 0.0832 1318058.797  6.5575 0.000498 0.095
16 1323780.037 1323779.156 0.8817 0.000067 0.0713 1323786.306  6.2682 0.000474 0.0922
17 1327740.706 1327739.949 0.7571 0.000057 0.0761 1327750.362  9.656 0.000727 1.758
18 1309550.887 1309550.36  0.5275 0.000040 0.0101 1309556.549  5.6624 0.000432 0.0077
19 1415022.169 1415021.627 0.5419 0.000038 0.0065 1415029.615  7.4457 0.000526 0.0072
20 1286072.727 1286071.637 1.0901 0.000085 0.0065 1286079.197  6.4707 0.000503 0.007

The actual data sets may be obtained from any of the first two authors upon request. We test the computation time per-
formance of both heuristic algorithms on a laptop with the following technical specifications: Intel® Core™ 2 Duo CPU,
P8700 @ 2.53 GHz, 3.45 GB of RAM.

The results of the numerical experimentation for both heuristic algorithms are shown in Tables 7-11.

For the MINLP1 the percentage of penalty is determined as follows:

(TotalCost(Z) of MINLP1 — LowerBound)

Lower Bound * 100%

Percentage of penalty =

The Lower Bound is determined by solving the relaxed problem considering all variables as continuous and satisfying the
budget constraint.
In the MINLP2, the percentage of penalty is calculated as
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Table 9
Results of the numerical experimentation for I = 250 products.
Instance Total cost Lower bound K; discrete m; % CPU time Total cost K; discrete m; % CPU time
MINLP1 continuous percentage in MINLP2 discrete percentage in
Difference of penalty seconds Difference of penalty seconds
1 3310704.336  3310702.707 1.6292 0.000049 0.0969 3310721.665 17.3287 0.000523 0.1191
2 3302428.175 3302426.577 1.5974 0.000048 0.016 3302444974 16.7992 0.000509 0.0171
3 3230262.109 3230260357 1.752 0.000054 0.1543 3230281.685 19.5755 0.000606 3.6394
4 3207502.691 3207501.561 1.1299 0.000035 0.0159 3207518.733 16.0419 0.0005 0.018
5 3312765.559 3312763.876 1.6831 0.000051 0.0198 3312784.388 18.8297 0.000568 0.017
6 3258972.3 3258970.75 1.55 0.000048 0.1028 3258990.695 18.395 0.000564 0.1284
7 3292525.675 3292523.875 1.8004 0.000055 0.1064 3292542.998 17.3228 0.000526 0.1385
8 3235762.82  3235760.855 1.965 0.000061 0.0198 3235780.997 18.1772 0.000562 0.0162
9 3296467.073 3296464.923 2.1494 0.000065 0.1606 3296485404 18.3312 0.000556 0.1654
10 3185027.138 3185025322 1.8157 0.000057 0.0166 3185044.032 16.8935 0.00053 0.0161
11 3326129.604 3326127.868 1.736 0.000052 0.1065 3326147.251 17.6469 0.000531 0.1339
12 3249829.207 3249827.408 1.7992 0.000055 0.0188 3249849.381 20.1743 0.000621 0.0175
13 3278570.651 3278568.655 1.9958 0.000061 0.1623 3278588.532 17.8814 0.000545 0.1806
14 3280804.876 3280803.013 1.8627 0.000057 0.1031 3280825.381 20.5051 0.000625 0.131
15 3340613.94  3340612.297 1.6432 0.000049 0.0967 3340630.216 16.2757 0.000487 0.1177
16 3215728995 3215727.079 1.9163 0.000060 0.0992 3215744.611 15.6158 0.000486 0.1173
17 3271687.61 3271685911 1.6985 0.000052 0.1442 3271701.841 14.2309 0.000435 3.4284
18 3176454.819 3176452.871 1.9485 0.000061 0.0156 3176469.767 14.9475 0.000471 0.0163
19 3287899.559 3287897.565 1.9944 0.000061 0.0187 3287917.691 18.1322 0.000551 0.0186
20 3412322.681 3412320.783 1.8982 0.000056 0.0155 341234329  20.6092 0.000604 0.0172
Table 10
Results of the numerical experimentation for [ = 500 products.
Instance Total cost Lower bound K; discrete m; % CPU time Total cost K; discrete m; % CPU time
MINLP1 continuous percentage  in MINLP2 discrete percentage  in
Difference of penalty seconds Difference of penalty seconds
1 6729944.296 6729940.703 3.593 0.000053 0.0367 6729981.075 36.7792 0.000547 0.0319
2 6494360.52  6494356.846 3.6744 0.000057 02714 6494394.937 34.4163 0.00053 0.3263
3 6640896.035 6640892.142 3.89330 0.000059 0.0324 6640930.169 34.1336 0.000514 0.0425
4 6568061.842 6568058.273 3.5696 0.000054 0.2407 6568097.341 35.4983 0.00054 6.2726
5 6751048.136  6751044.05  4.0858 0.000061 0.269 6751084.796 36.6603 0.000543 0.3
6 6583611.29  6583607.267 4.02279 0.000061 0.0307 6583647.156  35.8658 0.000545 0.0326
7 6506531.923  6506526.988 4.9345 0.000076 0.18 6506568.346  36.4231 0.00056 47937
8 6409793.668 6409790.333 3.3355 0.000052 0.0309 6409827.175 33.5063 0.000523 0.0319
9 6823969.11 6823964.759 4.3511 0.000064 0.0336 6824005.694 36.5839 0.000536 0.0333
10 6463125.573 6463121.245 4.3279 0.000067 0.2559 6463161.515 35.9421 0.000556 0.3003
11 6516981.845 6516978.793 3.0513 0.000047 0.2566 6517017.258 35.4129 0.000543 0.2855
12 6660463.008 6660459.126 3.8817 0.000058 0.2512 6660502.325 39.3169 0.00059 5.7179
13 6578479.257 657847459  4.6666 0.000071 0.2654 6578511.902 32.6453 0.000496 0.3042
14 6593560.004 6593555.916 4.08740 0.000062 0.0402 6593595.909 35.9053 0.000545 0.0305
15 6687670.091 6687666.693 3.3974 0.000051 0.0417 6687705.675 35.5844 0.000532 0.0336
16 6600664.882 6600660.743 4.1397 0.000063 0.2788 6600700.822 35.9396 0.000544 6.2237
17 6685410.901 6685407.058 3.8433 0.000057 0.2795 6685448.882 37.9803 0.000568 6.6248
18 6408940.924 6408937.533 3.3914 0.000053 0.2086 6408976.761 35.8361 0.000559 5.4053
19 6610198.049 6610193.764 4.285 0.000065 0.0335 6610230.79  32.7411 0.000495 0.0324
20 6440814.677 6440810.762 3.9151 0.000061 0.3425 6440848.939 34.2626 0.000532 0.3879
Percentage of penalty — (Total Cost (Z) of MINLP2 — Total Cost (Z) of MINLP1) +100%.

Total Cost (Z) of MINLP1

The results of the empirical experimentation show that the proposed heuristic algorithms perform very well. From the
results in Tables 12 and 14, the minimum, the maximum and the average percentage penalties are very small; the heuristic
algorithms obtain a near optimal solution.

The results in Table 13 show that the CPU times are very short (less than 0.6 s) in the heuristic algorithm for MINLP1. On
the other hand, in Table 15 the CPU times for the heuristic algorithm for MINLP2 are also small (less than 15 s for very large

problems).

Finally, both heuristic algorithms produce good results in the following three performance measures: the percentage of
penalty, the number of evaluations of the total cost, and the computational time.
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Table 11
Results of the numerical experimentation for I = 1000 products.
Instance Total cost Lower bound K; discrete m; % CPU time Total cost K; discrete m; % CPU time
MINLP1 continuous percentage in MINLP2 discrete percentage in
Difference of penalty seconds Difference of penalty seconds
1 13449860.3  13449853.06 7.2378 0.000054 0.4735 13449932.74 72.4404 0.000539 13.3319
2 13158126.47 13158118.38 8.0854 0.000061 0.5428 13158195.18 68.7164 0.000522 0.6023
3 13407801.47 13407792.79 8.67710 0.000065 0.5131 13407864.87 63.3986 0.000473 14.3552
4 13089769.31 13089760.52 8.7917 0.000067 0.4969 13089841.12 71.8062 0.000549 119
5 13384993.07 13384985.14 7.92940 0.000059 0.3674 13385061.19 68.1258 0.000509 0.4507
6 13012535.32  13012527.68 7.6424 0.000059 0.0628 13012604.88 69.5612 0.000535 0.0633
7 13286454.62 13286446.5  8.1208 0.000061 05118 13286527.96 73.3422 0.000552 14.4067
8 13412643.31 13412635.53 7.78429 0.000058 0.0754 13412712.78 69.4674 0.000518 0.0674
9 13259354.02 13259345.47 8.55629 0.000065 0.5105 13259426.92 72.8946 0.00055 12.9997
10 13300364.21 13300357.48 6.7310 0.000051 0.0652 13300435.76  71.5504 0.000538 0.0663
11 13495885.64 13495877.35 8.2926 0.000061 0.3707 13495955.81 70.1707 0.00052 0.4515
12 13442394.13  13442386.52 7.61260 0.000057 0.0735 13442463.62 69.4951 0.000517 0.0681
13 13205903.67 13205895.8  7.8621 0.000060 0.0636 13205974.32  70.6481 0.000535 0.066
14 13168241.11 13168233.35 7.76269 0.000059 0.0765 13168308.61 67.5004 0.000513 0.0667
15 13275288.8  13275281.35 7.4451 0.000056 0.4423 13275360.58 71.7883 0.000541 0.5379
16 13352337.23  13352330.23 7.00359 0.000052 03753 13352402.56 65.3282 0.000489 9.8421
17 13350739.88 13350732.44 7.4405 0.000056 0.4038 13350814.21 74.3271 0.000557 0.4229
18 13340260.8 13340253.14 7.66049 0.000057 0.5158 13340335.61 74.8126 0.000561 13.1459
19 13485537.87 13485529.82 8.057 0.000060 0.5125 13485611.41 73.5385 0.000545 13.0633
20 13406542.76  13406534.4  8.36219 0.000062 0.5012 13406614.27 71.505 0.000533 0.5975
Table 12
Minimum, average, and maximum percentage of penalty for MINLP1.
I number of products Minimum Average Maximum
50 0.000028 0.000055 0.000081
100 0.000038 0.000060 0.000085
250 0.000035 0.000054 0.000065
500 0.000047 0.000060 0.000076
1000 0.000051 0.000059 0.000067
Table 13
Minimum, average, and maximum CPU time in seconds for MINLP1.
I number of products Minimum Average Maximum
50 0.0033 0.040195 0.0948
100 0.0064 0.052245 0.0879
250 0.0155 0.074485 0.1623
500 0.0307 0.168965 0.3425
1000 0.0628 0.34773 0.5428
Table 14
Minimum, average, and maximum percentage of penalty for MINLP2.
I number of products Minimum Average Maximum
50 0.00043 0.000709 0.001171
100 0.000408 0.000576 0.000832
250 0.000435 0.00054 0.000625
500 0.000495 0.00054 0.00059
1000 0.000473 0.00053 0.000561

4. Conclusions

The main contribution of this paper is to present two heuristic algorithms and determine the integer values of the discrete
variables for a multi-products EPQ vendor-buyer integrated model with JIT philosophy and a budget constraint. The pro-
posed heuristic algorithms are simple and practically relevant and require calculating the total cost just once. We compare
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Table 15
Minimum, average, and maximum CPU time in seconds for MINLP2.
I number of products Minimum Average Maximum
50 0.0033 0.681475 1.678
100 0.007 0.65817 23573
250 0.0161 0.422685 3.6394
500 0.0305 1.860545 6.6248
1000 0.0633 5.32527 14.4067

our algorithm with Widyadana and Wee [2] and derive the same result. However, our algorithms run faster than Widyadana
and Wee [2] who used the branch and bound algorithm. Moreover, the running time for the algorithm developed by Wid-
yadana and Wee [2] increases exponentially as the problem size increases, while the running time for our algorithm in-
creases linearly. Future research can be done to simultaneously consider constraints on space, budget, and the number of
orders. Also, an n-stage-multi-customer integrated inventory system with planned backorders for all members with both
fixed and linear backordering costs should be of interest to develop.
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Appendix A

In the vendor-buyer inventory problem with discrete delivery order and lot size, the vendor delivers in a discrete fre-
quency (K times) in one replenishment period. Buyer inventory level of product i can be represented in Fig. A1. Vendor deliv-
ers m units when buyer’s inventory level reach zero. There is no lead time between vendor and buyer.

The buyer's total inventory cost consists of setup cost, transportation cost, and holding cost. The total inventory cost per
unit of product i can be shown as:

A,'Di biK,‘D,' him,»

TBUC; = Al
Qs Q; 2 (AD
Substitute Q; with m;K; to (A1), one has:
_ A,‘D,‘ b,‘D,’ h,m,-
TBUC; 7m+ﬁ -5 (A2)

Fig. A2 shows the vendor inventory model. The vendor produces product i until w;T/K; period and delivers m unit of prod-
uct i every Ty/K; period in K; delivery times. The vendor‘s average inventory can be represented as:
mi(K,- - W; + 1)

= TR (A3)

The vendor total cost consists of setup cost and inventory holding cost. It can be modeled as:

Av;D; n hvim,-(Kl- - W; + 1)

TVUG; = Q; 5
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Figure Al. Buyer inventory level.
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Figure A2. Vendor inventory model.
Substitute Q; with m;K; to (A4), one has:
_ D; hl/,'mi(K,‘—W,"F])
VUG = Avy e =5 ——— (A5)
Total vendor-buyer inventory cost is equal to total buyer cost and total vendor cost.
!
. AD; bD; hm; D; h1/,-m1-(K,- - W; + 1)
TUC = 3 Km P m T2 +Av; mKk T 2 (A6)

When the buyer setup the quantity order, she or he has to spend cQ dollar to pay for the order. Since Q order quantity can
be represented as mK and the buyer has a budget of Bg, one has:

v
> cimiK; < Bg (A7)
P
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