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ARTICLE INFO ABSTRACT

Keywords: “is paper proposes an alternative heuristic algorithm for a multi-product Economic
EPQ Production Quantity (EPQ) vendor-buyer integrated model with Just in Time (JIT)
T philosophy and a budget constraint. This type of problem is usually solved by a Mixed
Lagrange approach

Integer Non Linear Problem (MIMLP), which is complex and computationally expensive.
The proposed heuristic algorithm invelves less computation and therefore it is less
expensive than the previously published algorithms. Furthermore, the heuristic algorithm
is simpler as it derives the integer values for all discrete variables in a straightforward
manner. Through empirical experimentation, it is demonstrated that the heuristic
algorithm provides solutions closer to the lower bound in a very short time.

© 2013 Elsevier Inc. All rights reserved.

Branch and bound
Heuristic algorthms

1. Introduction

Inventory management is one of the most important drivers for an effective enterprise.g\e first inventory model (i.e.,
EOQ) was proposed in February 1913 [1]. The two main decisions made via the EOQ model (i.e., how many products to order
and when to place the order) are still widely studied. This is due to the fact that in any company there are different types of
products and several constraints at the same time. For example, a company could manage orders for thousands of different
products and have constraints such as space, budget, transportation capacity, number of orders, and production capacity.

In most instances, buyers or vendors optimize their ordering decisions independently. Several recent research studies
have shown that the integrated vendor-buyer inventory model has better performance than the non-integrated inventory
mdeAls.

Nis paper revisits the integrated single vendor single buyer inventory model with multi products and budget constraint
proposed by Widyadana and Wee [2]. This problem is relevant for modern companies that manage thousands of products
with different constraints.

Widyadana aWee | 2] extended the models of Pasandideh and Niaki [ 3] and Pasandideh et al. [4]. Cirdenas-Barrén et al.
|5] improve and solve the inventory problem in Pasandideh et al. [4]. In inventory model proposed by Widyadana and Wee
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| 2], the vendor delivers products in small lots with discrete delivery orders. This inventory model is managed in a JIT envi-
ronment where the buyer decides on the number products to order and deliver in a shipment.

The problem is a constrained mixed integer nonlinear problem (MINLP) and it has nonlinearities in the objective function
and constraints. This type of MINLP is hard to solve using an exact method. Moreover, this MINLP is also challenging due to
its high computational complexity. Therefore, Widyadana and Wee [2] developed a Lagrange method with a branch and
bound procedure to solve the problem.

The MINLP has been used extensively to solve problems in engineering, finance, management science, and operations re-
search. Many research studies have been conducted to solve MINLPs, particularly for handling highly nonlinear, combinato-
rial and large scale problems. Some researchers used a geometric algorithm to solve MINLPs (for instance see [slam and Roy
|6,7]) and some used meta-heuristics methods such as genetic algorithm (for instance, see Pourakbar et al. [8] and Pasan-
dideh et al. [9]). It was found that the solution procedure of Widyadana and Wee [2] was computationally expensive due
to the fact that it was comprised of two parts: the Lagrange method as well as the branch and bound method. The Lagrange
method contains seven steps. The branch and bound method contains five steps. Their algorithm evaluates the total cost
function n(n + 18 times. Therefore, the complexity order of their solution procedure is O(n?). Also, it is worth mentioning
that this MINLP is complex and computationally intensive even when a mathematical solver (such as LINGO) is used.

Widyadana and Wee 2] state that the computational time of their algorithm can be very high for large instances and that
a more efficient and faster heuristic algorithm should be developed. In this direction, a simple heuristic algorithm to deter-
mine the integer value for each discrete variable is developed in this paper. Furthermore, the proposed algorithm discrim-
inates among situa?]s when there are one or two solutions for each discrete variable. It is important to note that the
proposed algorithm derives the integer values for each discrete variable in a straightforward manner. Furthermore, the pro-
posed heuristic algorithm evaluates the total cost immediately. 7

The rest of the paper is organized as follows. Section 2 presents two formulations of the MINLP problem for the integrated
single vena' single buyer inventory model with multi-products and a budget constraint. Two heuristic algorithms are
developed in order to solve each MINLP problem. Section 3 tests the effectiveness of the algorithm through numerical exper-
imentation. Finally, Section 4 provides the conclusions and opportunities for future research.

2. Heuwristic algorithms
10
For simplicity, we use the same assumptions and notation used in Widyadana and Wee | 2]. The assumptions are (1) single
vendor and single buyer are considered, (2) set-up and transpo on times are insignificant and can be ignored, (3) demand
rate is known and constant, (4) shortages are not allowed, (5) time horizon is infinite, (6) all costs are known and constant
and (7) buyer pays transportation cost.
The notation is as follows:

[ number of products

m; ipment quantity of product i (decision variable)
K; number of shipments placed during period T of product i {decision variable)
P; venf@l production rate of product i, units/year

D F uyer's demand rate of product i, units/year
A; uyer ordering cost of product i

Aw; vendor setup production cost of product i

by transportation cost of product i

h; buyer holding cost per unit of product i

hv; vendor holding cost per unit of product i

G product unit cost of product i

Bg buyer budget

Based on the assumptions and lﬂations described above, Widyadana and Wee | 2| propose the following mixed integer
nonlinear problem (MINLP) for the single vendor single buyer inventory model with multi products and budget constraint.
Detail model development is shown in the Appendix.

. L (DA +Aw)  bD;, mK;[h + hy, D, !
MIHZ:;{T+H+T{ K, +hﬂ'(]_ﬁ):|} (1)

5.t

1
> cimi; < Bg (2)

m=0 i=1273, .. (3)




LE Cdrdenas-Barrdn et (rf.;!ppléed Mathematics and Computation 230 (2014) 359-370 361

Ki=0; Integer,i=1,23,...1 (4)

In the formulation, objective function (1) is to minimize the integrated total inventory cost. Constraint (2) is the budget
restriction. Constraint (3) states that all m's are continuous variables, and constraint (4) defines that all K's are discrete
variables. We call this problem MINLP1. This problem contains 2l variables ([ variables are discrete and the rest are
continuous).

The problem where all m; and all K; are discrete variables is called MINLP2. In this case, constraint (3) must be
m; = 1; Integer,i=1,2 3, .. [ In this problem, there are 2I discrete variables. It is worth mentioning that this problem
was not considered in Widyadana and Wee [2].

The preceding optimization problems are hard to solve. We note that the difficulty in both problems liesin (1) the num-
ber of discrete variables, and (2) the nonlinearity of the objective function in the MINLP formulation.

In Sections 2.1 afi@2.2, we discuss how to solve MINLP1 and MINLP2 in the general form. As it will be shown in Section 3,
it is possible to get solutions closer to the lower bound within a very short time for large scale problems.

2.1. Solving the MINLP1 where all m; are continuous variables and all K; are discrete variables

The function Z (Eq. (1)) can be written as

I
2= {X;i+Y}}
=1
where
x, = Mithi + hv) | bD,
2 m
y _mlklhyl(] _%) DI{Al-l-AIf,]

2 T mK,

Note that both X; and Y; have the same mathematical form, which is s;w + safw. Cardenas-Barrén [10] gwed via the alge-
braic method of complete squares that a function of type s, w + s,/w is always minimized for w = ‘,.-*’sz,’s, , which results in the
minimum of f(w) = 2,/553. Thus,

[2bD, \

M= b+ b ()
gr{'ia-[aguna et al. [11] showed that the discrete solution to the following minimization problem:

Min s;w + s2/w; where both s; and s» are positive

w =1 and integer
is as follows:

w=|-05+,/025 +ﬂ or w= lU_S +./025+ siJ (6)

y 51 y 51

where [r] 1s the smallest?eger greater than or equal to r, and |r| is the largest integer less than or equal to r. In addition, it
is clearthat [r] = [r+ 1| 1fand only if r is not an integer value. For this case, the problem has a unique solution for w which is
w* =w (given by any of the two mathematical expressions in (G)). Otherwise, the problem has two solutions for w, ie,
w* =w, and w*=w+ 1. This easy to apply procedure is similar to Garcia-Laguna et al. [11], Cirdenas-Barrén et al. [12,13],
and Teng et al. [14].

Based on Eq. (6), the solution for each discrete variable (Kj) is as follows:

2D,(A, + Av,)
m? hy, (1 - 5)

B

2D;(A; + Awy)
mZhy, (] . 5)

P

Ki = —U.5+J0.25+ o Ki= U.5+JU.25+ (7)

g\fen the discrete value of each K;, the continuous values for each m; optimizing the following function can be determined

I |
. DA+ Ay bDy mK; [h; + hy, D;
M'“Z‘.z.{ w13

Now, Z can be expressed as
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where
Kihwi1 =3 + hi + her) 1 (Dy(A, + A, + Kiby)
Xi=m; = +—
2 m, Ki

Applying the previous results from Cardenas-Barrén [10], m; are given by the following equation:

(8)

_ 2Di(A; + Av; + Kiby)
L JK. [K.hy.(] ~2) +h +hv.]

Esed on the previous analysis, we describe the heuristic algorithm for solving the MINLP1 in detail as follows:
2.1.1. Heuristic algorithm for MINLP1

Step 0. Iterative procedure — false
Step 1. Determine the initial continuous value for each m; variable with Eq. (5) and the discrete value for each K; variable
with Eq. (7) ignoring the budget constraint. Given the discrete value of each K; then calculate the final continuous
wilue for each m; variable with Eq. (8). If the solution satisfies the budget constraint, then go to Step 6; otherwise
go to Step 2.
Step 2. Solve the optimization problem subject to the budget constraint. Determine the discrete value for each K; variable
with Eq. (9) where 7 is calculated from Eq. (10).
Step 3. Given the discrete value of each K, then determine the continuous value for m; from Eq. (11) where 2 is obtained
by solving Eq. (12).
Step 4. [f Iterative procedure is false and if the solution satisfies the budget constraint, then go to Step 6; otherwise, Iter-
ative procedure — true and go to Step 5.
Step 5. If the solution does not satisfy the budget constraint then set budget constraint to Bge, «— BZ—”'.
Else
lf IBgrrew_BgI <
g0 to Step 6.
Else
Set Bgew q + BEnon)[2
Set Bg = Bg,,., and go to Step 1.
Step 6. Determine the total cost with Eq. (1) and report the solution.
2
In Step 2,9& optimize the following function adding a Lagrange multiplier ::

. L (DiA +Awy)  bD;  mK; [h + hw, D; S
MIHZ_;{T_FF,_FT{ X +hy.(]—F)]}+x. > “cimiK; — Bg

1 1 =1
Now, Z can be expressed as

Z=JZ{X.+Y.}+E

my(h; + hey)  biD;
:—+_

X 5 -
Where Y; = e [h i ('2_;) 'M"] X D_.uﬁ;;;un
E=—iBg

Applying the previous results, where m; is also given by Eq. (5) and K; can be determined by

| N
2Di(Ai + Av) or K, = 0_5+¢0_25+

T 2DiA; + Awy)
K = 0'5+\J0'25+m$[hﬂ|(1 _8) + 2ic]
2

m? [hy. (] - f%) + 22_5.]

(9)

where m; is given by Eq. (5) and the / value can be determined by solving the following equation:




LE Cdrdenas-Barrdn et (rf.,'!pp |6ed Mathematics and Computation 230 (2014) 359-370 363

T ' 2D,(A + Avy)
i1 |-05 0.25 + — . ' -Bg=0 10)
YR | 0%\ % (@ fa(1-8) 2] | o

In Step 3, given the discrete values of each K; from Step 2, we optimize the following function using a Lagrange
multiplier /i:

, L (DiA +Aw)  bD;  mK; [hi+ h, D -
MIHZ—;{T+F‘+T|: K +hy,(]—F)]}+x. IZ]:c,m,f'(,—ﬂg

Now, Z can be expressed as

|
Z=3 X +E
=1

where

o
K;hv;(l—f_) +h+-he+ 206K ) e
Xi= m:{ i +1 {Dilﬂq+.':(ﬂa+f(£bal}

2 my; i
E=—iBg
From Cardenas-Barrdn [10], m; is given by the following equation:
2Di(Ai + Avi + Kily) .
= (11)
K [K.h y (‘I . %‘) +hi+hey + 2}.5,K,]
where K; is given by Eq. (9) and the 7 value can be determined by solving the following equation:
I f -
II 2DI AI A 1 Klbl 5
ey A AT KD) e g (12)
- \_ KilKihw(1 =5 + hy + hog + 22K
2.2. Solving the MINLP2 where m; and K; are discrete variables
MINLP2 can be solved as in MINLP1 .eithout loss of generality, we provide only the final results.
The discrete values for m; are given by
| . 2bD, | . 2bD
m; = "_D'5+\..f0'25+h,+hy, or {U_5+\'I;U_25+hl+hyl| (13)
The discrete values for K; are given by
K= |-05+ 9_25+M or K= |05+ 0_25+M (14)
mfhy,(‘l —?—,:) mfhy,(] —%)
Given the discrete value of each K; then the discrete value for each m; can be determined by
| 2D,(A; + Av; + Kib) | 2D,(A, + Av, + Kiby) (15)

my = _0_5+¢0_25+ ] or u_5+du_25+

K,[K,hy,( —%")+h,+hy, K,[K,hy,( —ff—:)+h,+hy,]

When the budget constraint is active, then the discrete values for m; are given by Eq. (13) and the discrete values for K; are
given by

2Di(A; + Awy)
m? [hv. (1 - ?—,:) - 2?.5.]

2D(A; + Av,)
m} [h v (] - ?—,j) - 2}.5.]

Ki = —U.5+J0.25+ o K= U.5+JU.25+ (16)
where the / value can be determined by solving the following equation:
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S¢ —n]_5+","025Jr',lzi"z'br 05+ 025+ _2%' +’.j‘”'1 _Bg=0 (17
= : o+, [-0.5+ /025 + 20| ho (1 - ) + 226,

gven the discrete value of each K, then the discrete value for each m; can be determined by the following equation:

m = [-05+ [025+ 2Di(A; +Avi + Kiby) or |05+ |025+ 2D + Avi 1 Kib) (18)
Ki[Kihoi(1 - B1) + hy + hos + 270K Ki[Kihoi(1 - §) + hi + hoy + 27ck|
where K; is given by Eq. (16) and # value can be determined by solving the following equation:
I ;
2Di(A; + Aw,
S am, {_0_5+ 025, DA A ~Bg=0 (19)
=1 | mf [hﬂ,(] —%) +2;.C,] |

Esed on the previous analysis, we describe the heuristic algorithm for solving MINLP2 in detail as follows:

2.2.1. Heuristic algorithm for MINLP2

Step 0. Iterative procedure — false
Step 1. Determine the initial discrete vgle for each m; with Eq. (13) and the discrete value for each K; with Eq. (14) and
ignoring the budget constraint. Given the discrete value of each Kj, then calculate the final di te value for each
m; with Eq. (15). If the solution satisfies the budget constraint then go to Step 6. Otherwise go to Step 2.
Step 2. Solve the optimization problem subject to the budget constraint. Determine the discrete value for each K; variable
with Eq. (16) where 7 is calculated with Eq. (17).
Step 3. Given the discrete value of each K; then determine the discrete values for m; with Eq. (18) where . is obtained by
solving Eq. (19).
Step 4. [f Iterative procedure is false and the solution satisfies the budget constraint, then go to Step 6. Otherwise, Iter-
ative procedure — true and go to Step 5.
Step 5. If solution does not satisfy the budget constraint then
set budget constraint to Bgnew — i—-‘_
Else
if |[Bgnew—Bgl <&
g0 to Step 6.
Else

Set Bgm,wq+ Bgew)i2
Set Bg = Bg,,.,, and go to Step 1.
Step 6. Determine the total cost with Eq. (1) and report the solution.

The two heuristic algorithms can be implemented in a spreadsheet or any programming language such as C++, FORTRAN,

among others. Both heuristic algorithms can be solved easily and only require evaluating the total cost function one time. In
the next section, we present the results of the numerical experimentation.

3.

Numerical experimentation

Both heuristics algorithms are illustrated from the data in Table 1 and Widyadana and Wee [2].

Example 1 considers the MINLP1 problem with a budget of $30,000. The solution is given in Table 2.

Example 2 also considers MINLP1 problem but with a budget of $20,000. The solution to this problem is given in Table 3.
Using the solution procedure from Widyadana and Wee | 2|, we derive the same solution (see Table 4).

Example 3 also considers MINLP1 problem with a budget of $20,000. The solution to this example is given in Table 5. Note

that our solution is the same as Widyadana and Wee [2].

Table 1

Data for the numerical ex perimentation.
Product A; D; h; o Av; Ty P by
1 47 1361 5 17 G8 3 2444 14
2 49 1039 9 13 71 5 2355 15
3 58 1434 8 16 75 6 2392 13
4 49 1113 6 14 55 5 2440 18
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Table 2
Solution to Example 1.
Product m; Ki
1 691817 7
2 486220 [
3 50,5699
4 502575 5
Total cost (2) 58307128
Table 3
Solution to Example 2.
Product Proposed Algorithm
m; Ki
1 6839350073 G
2 4672992628 G
3 5159875406 7
4 6428319461 4
Total cost (2) 5852.808723
Table 4
Data for the numerical experimentation from Widyadana and Wee [2].
Product A D; h; I Av; h; B; b
1 48 1255 8 17 74 3 2183 13
2 42 1342 5 13 57 3 2375 15
3 54 1395 9 16 52 [ 2202 12
4 47 1169 [ 14 78 4 2206 12
Table 5
Solution to Example 3.
Product Proposed Algorithm
m; K
1 525848 7
2 706239155 5
3 4842575748 6
4 5360692303 G
Total cost (2) 5269.656386
Table &
Data for the instances.
Parameter Values
D; L 1000,15000)
P D+ {10,100)
A L 100,5000)
Avi L 100,5000)
b L{20,80)
h; W{5,100)
hv; W{5,100)
L 10,200)

To make both heuristic algorithms more practical and relevant, we randomly generate 100 instances. We test both heu-

ng five levels of [ (i.e., number of products): 50, 100, 250, 500, and 1000. At each level of [ we gen-

erate 20 instances. The parameter values were generated from uniform distributions with ranges as shown in Table 6.
With regards to each instance, the budget values are determined as follows:

Bg = U(0.75,1.1)cimK;

ristic algorithms consid
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Table 7
Results of the numerical experimentation for [= 50 products.
Instance  Total cost Lower bound K discrete m; x CPU time  Total cost Ki discrete m; 4 CPU time
MINLP1 continuous percentage  in MINLP2 discrete percentage  in
Difference of penalty seconds Difference of penalty seconds
1 718930112 718929.7974 03146 0.000044 0.0048 7189334335 33215 0.000462 00107
2 647381.1844 647380.7459 04385 0.000068 0.0948 64738620986 5.1142 0.00079 15209
3 6678659868 G67865.6893 02975 0.000045 0.0408 6678728611 6.8743 0.001029 10183
4 6940049807 694904.6311 03496 0.000050 0.0033 6940089602  3.9795 0.000573 00035
5 643326.5934 6433263194 0274 0.000043 0.0498 6433339443 7.3509 0.001143 1.1853
[ 590461.4065 590461.2143 01922 0.000033 0.0034 5004659221 45156 0.000765 00033
7 6181296185 618129118 05005 0.000081 0.0602 6181368581  7.2396 0.001171 13636
6G85792.4025 685792.03 0.3645 0.000053 0.052 6857967866 4.3841 0.000639 10554
9 GO6866.2593  GOGBG6.0645 01948 0.000028 0.0546 GOG6870.204  3.0447 0.000566 00623
10 G88356.5247 688356.2137 0311 0.000045 0.0587 6883608918 43671 0.000634 11676
11 665085.5275 6650851979 03296 0.000050 0.0722 6650910088 5.4813 0.000824 1678
12 6320406511 6320402787 03724 0.000059 0.0509 6320448463  4.1952 0.000664 00592
13 6815350228 681534.7239 02989 0.000044 0.0584 6815305239  4.501 0.00066 12769
14 6870407783 6870402194 05589 0.000081 0.0623 6870520886  3.2103 0.000467 00788
15 6637767791 663776313 04661 0.000070 0.0464 6637814775 4.6984 0.000708 10845
16 6834876103 683487.1194 04909 0.000072 0.051 6834932646 5.6543 0.000827 11473
17 6329357941 632035405 03891 0.000061 0.0036 6320395638 3.7697 0.000596 00034
18 644641.0084 6446406528 03556 0.000055 0.03 6446445604  3.552 0.000551 08983
19 627087.9843 627087.6743 031 0.000049 0.0034 6270906814 2.6971 0.00043 00068
20 6240059608 624905536 04248 0.000068 0.0033 6249102346 4.2738 0.000684 00054
Table 8
Results of the numerical experimentation for = 100 products.
Instance  Total cost Lower bound K discrete mi; % CPU time  Total cost K; discrete my; % CPU time
MINLP1 continuous percentage  in MINLP2 discrete percentage  in
Difference of penalty seconds Difference of penalty seconds
1 1207891.156 1297890.54  0.616 0.000047 0.0068 1207898276  7.12 0.000549 00117
2 1282080.143 1282079.327 0.816 0.000064 0.0719 1282088767  8.6239 0.000673 00891
3 1304284227 1304283268 09593 0.000074 0.0879 1304295075  10.8475 0.000832 23573
4 1278617.641 1278616.56 1.0808 0.000085 0.0064 1278624.149  6.5087 0.000509 00073
5 1372179.116  1372178.329 0.7873 0.000057 0.0655 1372186.862  7.7464 0.000565 00804
[ 1269240.374  1260248.624 0.7492 0.000059 0.083 1269257.575  8.2013 0.000646 01039
7 1346158.633  1346157.725 0.908 0.000067 0.0441 1346167.517  8.8838 0.00066 10953
8 14013392 1401338.035 1.165 0.000083 0.0743 1401350043 10.8426 0.000774 19468
9 1335201.429 1335200.804 0.6247 0.000047 0.0749 1335208827  7.3083 0.000554 22521
10 1339757.863  1339757.157 0.7058 0.000053 0.0819 1339765.632  7.7692 0.00058 0107
11 1245298.846  1245298.214 0.6319 0.000051 0.05 1245305514  6.6685 0.000535 13136
12 1308043.638 1308042.655 0.9836 0.000075 0.0656 1308051.401 7.763 0.000593 008
13 1343661.025 1343660.367 0.658 0.000049 0.0065 1343666.511 5.4850 0.000408 00072
14 1343226.17 1343225534  0.6362 0.000047 0.0724 1343232758  6.5882 0.00049 1.7446
15 1318052.239  1318051.496 0.7426 0.000056 0.0832 1318058797  6.5575 0.000498 0095
16 1323780.037 1323779.156 0.8817 0.000067 0.0713 1323786.306  6.2682 0.000474 00922
17 1327740706 1327739949 07571 0.000057 0.0761 1327750362 9.656 0.000727 1.758
18 1309550.887  1309550.36  0.5275 0.000040 aom 1309556549  5.6624 0.000432 00077
19 1415022.169 1415021.627 0.5419 0.000038 0.0065 1415029615  7.4457 0.000526 00072
20 1286072.727 1286071.637 1.0901 0.000085 0.0065 1286079197  6.4707 0.000503 0007

The actual data sets may be obtained from any of the first two authors upon request. We test the computation time per-
formance of both heuristic algorithms on a laptop with the following technical specifications: Intel® Core™ 2 Duo CPU,
P8700 @ 2.53 GHz, 3.45 GB of RAM.

The results of the numerical experimentation for both heuristic algorithms are shown in Tables 7-11.

For the MINLP1 the percentage of penalty is determined as follows:

(TotalCost(Z) of MINLP1 — LowerBound)

100%,
Lower Bound * ‘

Percentage of penalty =

The Lower Bound is determined by solving the relaxed problem considering all variables as continuous and satisfying the
budget constraint.
In the MINLP2, the percentage of penalty is calculated as
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Table 9
Results of the numerical experimentation for [ =250 products.
Instance  Total cost Lower bound  K; discrete m; 4 CPU time  Total cost Ki discrete m; 4 CPU time
MINLP1 continuous percentage  in MINLP2 discrete percentage  in
Difference of penalty seconds Diffe rence of penalty seconds
1 3310704.336 3310702707 1.6292 0.000049 0.0969 3310721665 17.3287 0000523 0.1191
2 3302428.175 3302426.577 1.5974 0.000048 0016 3302444974 167992 0.000509 0.0171
3 3230262.109 3230260357 1.752 0.000054 01543 3230281685 19.5755 0.000606 3.6394
4 3207502,691 3207501.561 1.1299 0.000035 00159 3207518733 16.0419 0.0005 0.8
5 3312765.550 3312763.876 1.6831 0.000051 0.0198 3312784388 18.8297 0.000568 0.m7
[ 32589723 3258970.75 1.55 0.000048 0.1028 3258990695 18.395 0.000564 0.1284
7 3292525675 3292523.875 1.8004 0.000055 0.1064 3292542998 17.3228 0.000526 0.1385
8 3235762.82  3235760.855 1.965 0.000061 0.0198 3235780997 181772 0.000562 0.0162
9 3296467.073 3296464923 21494 0.000065 0.1606 3296485404 183312 0.000556 0.1654
10 3185027.138 3185025.322 1.8157 0.000057 0.0166 3185044032 16.8935 0.00053 0.0161
11 3326129.604 3326127.868 1.736 0.000052 0.1065 3326147251 17.6469 0.000531 0.1339
12 3249829.207 3249827408 1.7992 0.000055 00188 3249849381 201743 0.000621 0.0175
13 3278570.651 3278568.655 1.9958 0.000061 0.1623 3278588532 17.8814 0.000545 0.1806
14 3280804876 3280803.013 1.8627 0.000057 01031 3280825381 205051 0.000625 0.131
15 334061394  3340612.297 1.6432 0.000049 0.0967 3340630216 16.2757 0.000487 01177
16 3215728995 3215727.079 1.9163 0.000060 0.0992 3215744611 15.6158 0.000486 0.1173
17 3271687.61 3271685911 1.6985 0.000052 0.1442 3271701841  14.2309 0.000435 3.4284
18 3176454.819 3176452.871 1.9485 0.000061 0.0156 3176469.767  14.9475 0.000471 0.0163
19 3287899.559 3287BO7V.565 1.9944 0.000061 0.0187 3287917691 181322 0.000551 0.0186
20 3412322681 3412320783 1.8982 0.000056 00155 341234329 20,6092 0.000604 0.0172
Table 10
Results of the numerical experimentation for [ =500 products.
Instance Total cost Lower bound K discrete m; -4 CPU time  Total cost K; discrete m; % CPU time
MINLP1 continuous percentage  in MINLP2 discrete percentage  in
Difference of penalty seconds Diffe rence of penalty seconds
1 6729944296 6729940.703 3.593 0.000053 0.0367 6729981075 36.7792 0.000547 0.0319
2 649436052  6494356.846 3.6744 0.000057 02714 6494394937 34.4163 0.00053 0.3263
3 6640896.035 6G640892.142  3.89330 0.000059 00324 6640930169 34.1336 0.000514 0.0425
4 G568061.842 6568058273  3.5696 0.000054 0.2407 B568097.341 35,4983 0.00054 6.2726
5 6751048136 6751044.05  4.0858 0.000061 0269 6751084796  36.6603 0.000543 0.3
6 6583611.29  G583607.267 402279 0.000061 0.0307 G583647.156  35.8G58 0.000545 0.0326
7 6506531.923 6506526.988 4.9345 0.000076 0.18 6506568346  36.4231 0.00056 4.7937
8 6409793.668 6409790333  3.3355 0.000052 0.0309 6400827175 33.5063 0.000523 0.0319
9 G823969.11 6823964759 43511 0.000064 0.0336 6824005694  36.5839 0.000536 0.0333
10 6463125573 6463121.245 43279 0.000067 02559 6463161515 35,9421 0.000556 0.3003
11 G516081.845 6516978.793  3.0513 0.000047 02566 6517017258 35.4129 0.000543 0.2855
12 G660463.008 6660450126 3.8817 0.000058 02512 6660502325  30.3169 0.00059 5.7179
13 6578479.257 657847459  4.6666 0.000071 02654 6578511902  32.6453 0.000496 0.3042
14 6593560.004 6593555916 4.08740 0.000062 0.0402 6593595909 35,9053 0.000545 0.0305
15 G687670.091 GG87666.693  3.3974 0.000051 00417 BERTT05675  35.5844 0.000532 0.0336
16 G600G64.882 6600660743 4.1397 0.000063 02788 6600700822 35.9396 0.000544 6.2237
17 6685410901 6685407.058 3.8433 0.000057 02795 6685448882  37.9803 0.000568 6.6248
18 6408940924 6408937.533 33914 0.000053 02086 B408976.761  35.8361 0.000559 5.4053
19 G610198.049 6610193.764 4.285 0.000065 0.0335 661023079 32.7411 0.000495 0.0324
20 6440814677 6440810762 39151 0.000061 03425 6440848939 34.2626 0.000532 0.3879
Percentage of penaity = (Total Cost (Z) of MINLP2 — Total Cost (£) of MINLP1) +100%.

Total Cost (Z) of MINLP1

The results of the empirical experimentation show that the proposed heuristic algorithms perform very well. m the
results in Tables 12 and 14, the minimum, the maximum and the average percentage penalties are very small; the heuristic
algorithms obtain a near optimal solution.

The results in Table 13 show that the CPU times are very short (less than 0.6 s) in the heuristic algorithm for MINLP1. On
the other hand, in Table 15 the CPU times for the heuristic algorithm for MINLP2 are also small (less than 15 s for very large
problems).

Finally, both heuristic algorithms produce good results in the following three performance measures: the percentage of
penalty, the number of evaluations of the total cost, and the computational time.
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Table 11
Results of the numerical experimentation for [= 1000 products.
Instance  Total cost Lower bound K discrete m; x CPU time  Total cost Ki discrete m; 4 CPU time
MINLP1 continuous percentage  in MINLP2 discrete percentage  in
Difference of penalty seconds Difference of penalty seconds
1 13449860.3 13449853.06 7.2378 0.000054 04735 13449932.74 724404 0.000539 133319
2 1315812647 1315811838 B8.0854 0.000061 0.5428 1315819518 68.7164 0.000522 0.6023
3 13407801.47 1340779279 867710 0.000065 05131 13407864.87 63,3986 0.000473 143552
4 13089769.31 1308976052 87917 0.000067 0.4969 13089841.12  71.8062 0.000549 11.9
5 13384993.07 1338498514 7.92940 0.000059 03674 13385061.19 68.1258 0.000509 04507
6 1301253532 13012527.68 7.6424 0.000059 0.0628 13012604.88 69.5612 0.000535 0.0633
7 13286454.62 132864465  8.1208 0.000061 05118 13286527.96 73.3422 0.000552 144067
13412643.31 1341263553 7.78429 0.000058 0.0754 13412712.78  69.4674 0.000518 0.0674
9 1325035402 1325034547 8.55629 0.000065 05105 1325942692 72,8946 0.00055 12,9997
10 1330036421  13300357.48 6.7310 0.000051 0.0652 1330043576  71.5504 0.000538 0.0663
11 1340588564 13495877.35 82926 0.000061 03707 13495955.81  70.1707 0.00052 04515
12 1344230413 1344238652 7.61260 0.000057 0.0735 13442463.62 69.4951 0.000517 0.0681
13 13205903.67 132058958  7.8621 0.000060 0.0636 1320597432 70.6481 0.000535 0.066
14 1316824111 13168233.35 7.76269 0.000059 0.0765 13168308.61 67.5004 0.000513 0.0667
15 13275288.8 13275281.35 7.4451 0.000056 04423 1327536058 71.7883 0.000541 05379
16 13352337.23 1335233023  7.00359 0.000052 03753 13352402.56 65.3282 0.000489 08421
17 13350739.88 1335073244 7.4405 0.000056 04038 13350814.21 743271 0.000557 04229
18 13340260.8 1334025314  7.66049 0.000057 0.5158 1334033561 74.8126 0.000561 13.1459
19 13485537.87 1348552982 B8.057 0.000060 05125 13485611.41 73.5385 0.000545 13.0633
20 13406542.76 134065344 836219 0.000062 05012 1340661427  71.505 0.000533 0.5975
Table 12
Minimum, average, and maximum percentage of penalty for MINLP1.
I number of products Minimum Average Maximum
50 0000028 0.000055 0.000081
100 0000038 0.000060 0.000085
250 0000035 0.000054 0.000065
500 0.000047 0.000060 0.000076
1000 0000051 0.000059 0.000067
Table 13
Minimum, average, and maximum CPU time in seconds for MINLP1.
I number of products Minimum Average Maximum
50 00033 0040195 0.0048
100 00064 0052245 0.0879
250 00155 0074485 0.1623
500 00307 0168965 0.3425
1000 00628 034773 0.5428
Table 14
Minimum, average, and maximum percentage of penalty for MINLP2.
I number of products Minimum Average Maximum
50 000043 0.000709 0.001171
100 0.000408 0.000576 0.000832
250 0000435 0.00054 0.000625
500 0000495 0.00054 0.00059
1000 0000473 0.00053 0.000561

4. Conclusions

The main contribution of this paper is to present two heuristic algorithms and determine the integer values of the discrete
variables for a multi-products EPQ vendor-buyer integrated model with JIT philosophy and a budget constraint. The pro-
posed heuristic algorithms are simple and practically relevant and require calculating the total cost just once. We compare
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Tahble 15
Minimum, average, and maximum CPU time in seconds for MINLF2.
I number of products Minimum Average Maximum
50 00033 0.681475 1678
100 o007 0.65817 23573
250 00161 0.422685 3.6394
500 00305 1.860545 66248
1000 00633 5.32527 14,4067

our algorithm with Widyadana and Wee [2] and derive the same result. However, our algorithms run faster than Widyadana
and Wee [2| who used the branch and bound algorithm. Moreover, the running time for the algorithm developed by Wid-
yadana and Wee [2] increases exponentially as the problem size increases, while the running time for our algorithm in-
creases linearly f¥liure research can be done to simultaneously consider constraints on space, budget, and the number of
orders. Also, an n-stage-multi-customer integrated inventory system with planned backorders for all members with both
fixed and linear backordering costs should be of interest to develop.
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Appendix A

3

In the vendor-buyer inventory problem with discrete delivery order and lot size, the vendor delivers in a discrete fre-
quency (K times) in one replenishment period. Buyer inventory level of product i can be represented in Fig. Al. Vendor deliv-

ers m units when buyer's inventory level reach zero. There is no lead time between vendor and buyer.
The buyer's total inventory cost consists of setup cost, transportation cost, and holding cost. The total inventory cost per
unit of product i can be shown as:
AD;  biKiD;  hym;
+ [

TBUC, = == 222
Q Qi 2

Substitute Q; with m;K; to (A1), one has:

AIDI bIDI h|m| 5

TRBUC = —+ —+ —— A2

LKimy * m; ) (A2)

Fig. A2 shows the vendor inventory model. The vendor produces product i until w;T/K; period and delivers m unit of prod-
uct i every Ty/K; period in K; delivery times. The vendor's average inventory can be represented as:

(A1)

_ (K —wi +1)

1P, A3)
2 (A3)
The vendor total cost consists of setup cost and inventory holding cost. [t can be modeled as:
TVUCI=Ay.D.+hy.m.{K.—w.+]J (Ad)
Q 2
Quantity

LK

Figure Al. Buyer inventory level.




370

g Cirdenas-Barrdn et al /Applied Mathematics and Computation 230 (2014) 359-370

By

i
77

L/
77

THG WrTf‘K; !?:r ':’)T/K;

wl'?: 4

T

Figure A2. Vendor inventory model.

Substitute Q; with m;K; to (A4), one has:

Dy hyim(Ki —wi+ 1)

VUG =A A5
i =Av et 3 (A5)
Total vendor-buyer inventory cost is equal to total buyer cost and total vendor cost.
1
AD;  bD;  him, Dy hoim(IG —wi + 1)
TUC = LA 0 AB
2 kmtm T2 At 2 (A6)

When the buyer setup the quantity order, she or he has to spend cQ dollar to pay for the order. Since Q order quantity can
be represented as mK and the buyer has a budget of Bg, one has:

v
S emkK; < Bg (A7)
i=1
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