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Abstract 

This study develops deteriorating items production inventory models with random 

machine breakdown and stochastic repair time. The models assume that machine repair 

time is independent of machine breakdown rate. The classical optimization technique is 

used to derive an optimal solution. A numerical example and sensitivity analysis are 

shown to illustrate the models. The stochastic repair models with uniformly distributed 

repair time tends to have a larger optimal total cost than the fixed repair time model, 

however the production up time is less than the fixed repair time model. Production and 

demand rate are the most sensitive parameters for the optimal production up time, and 

demand rate is the most sensitive parameter for the optimal total cost of the stochastic 

model with exponential distribution repair time.    
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1. Introduction 

 

The production inventory problem has been investigated in recent years, and increasing 

number of researchers analyzes machine breakdown effect in production inventory 

problem. The effects of machine breakdown and corrective maintenance on the economic 

lot sizing were studied by Groenevelt et al. [1]. Groenevelt et al. [2] did similar research 

and included safety stocks to meet the service level.    Moinzadeh and Aggarwal [3] 

proposed an (s, S) model assuming the time between breakdowns is exponentially 

distributed, the restoration times are constant and excess demand is backordered.  The 

research was extended by Arreola-Risa and DeCroix [4] who assumed shortages are 

partially backordered.  Aboud [5] later extended the research by Groenevelt et al.[1]. In 

his model, he assumed machine failure may occur during production. When a machine 

fails, it will be repaired immediately. He assumed that repair times are independent and 

identically distributed. Giri et al. [6] developed EMQ model with machine failure and 

general repair time. They proposed a model to determine the production rate and 

production lot size to minimize the annual expected total cost. 

 Recently, many researchers extended the production inventory with machine 

breakdown model by considering other problems in production such as deterioration, 

preventive maintenance and rework. In the deteriorating production process, the process 

may move from an in-control state to an out-of-control state, and produces some 

proportion of defective items. Kim and Hong [7] developed Economic Manufacturing 

Quantity (EMQ) model with three deteriorating processes. Wang [8] developed an EPQ 

mathematical model where production shifts from an in-control state to an out-of-control 

state with a general shift distribution.  Chakraborty et al. [9] developed an EPQ model 

considering production system that may shift from an in-control state to an out-of-control 

state or may breakdown at any random time during a production period. 

 Preventive maintenance is usually used to reduce machine breakdown. Incorporated 

preventive maintenance to production inventory model was done by Cheung and 

Hausman [10]. They developed a mathematical model with random machine breakdowns 

and considered preventive maintenance and safety stock. Later Dohi et al. [11] extended 

the research by extending the model by Cheung and Hausman [10] to consider the 



  

stochastic nature of the model. Giri and Dohi [12] developed EMQ model with random 

variables corrective and preventive repair. They proposed solution procedure and 

computational algorithms to find the optimal production rate and lot size. El-Ferik [13] 

developed an EPQ model for unreliable manufacturing facility. Similar research for EPQ 

model with imperfect process has been done by Liao et al. [14]. Chiu et al. [15] 

developed an EPQ model with scrap, rework and stochastic machine breakdowns.  

 Deterioration is defined as decay, evaporation, obsolescence, and loss of quality 

marginal value of commodity that result in decreasing usefulness from its original 

condition. Some items like vegetables, milks, and fruits have deteriorating characteristics. 

Many researchers focus their study on deteriorating item, such as Balkhi [16], Chang et 

al. [17] and Roy et al. [18]. Misra [19] developed an EPQ for deteriorating items model 

and Wee [20] extended the model by considering partial backorder. Liao [21] developed 

a production inventory model for deteriorating item taking into consideration the effect of 

permissible delay in payment. An EPQ model for deteriorating production equipment and 

items was developed by Alfares et al. [22]. In their model, they also considered quality, 

inspection and maintenance, varying demand and production rates. Lo et al. [23] 

developed integrated production and inventory model. The model assumed varying 

deterioration rate, partial backordering, inflation, imperfect production process and 

multiple deliveries. 

 From the authors’ literature search, very few researchers have considered production 

inventory model with deteriorating item and stochastic machine breakdown. Lin and 

Gong [24] developed EPQ deteriorating inventory model with machine breakdown and 

fix repair time. In real life, most repair times are stochastic. This paper extends the 

excellent research initiated by Lin and Gong [24]. Here, two models are developed: one 

model assumes repair time is uniformly distributed and the other model assumes repair 

time is exponentially distributed. The paper has four sections. The first section discusses 

the research motivation and literature review. The second section is model development. 

Section three shows an example and sensitivity analysis, and the final section is the 

concluding remarks. 

 

 



  

2. Model development 

  

The assumptions: 

1. Production rate is greater than demand rate. 

2. Production and demand rate are constant. 

3. Deteriorating rate is constant. 

4. There is no repair or replacement for a deteriorated item.  

5. Machine repair time is independent of machine breakdown. 

 

Notations: 

I = inventory level 

I1 = inventory level in production period 

I2  = inventory level in non-production period 

T1 = production period 

T2 = non production period 

T3  = shortage period 

Tp  = machine breakdown period 

p = production rate 

d = demand rate  

θ  = deteriorating rate 

K = setup cost 

h = holding cost 

S = lost sales cost 

π  = deteriorating cost 

M = repair machine cost 

 

The inventory policy for lost sales case is illustrated in Figure 1. When the machine does 

not breakdown during the production period, the production is performed during T1 time 

period. When inventory reaches maximum level Im, the production stops and inventory 

decreases due to demand and deterioration. The inventory level reaches zero units at time 

(T1+T2), and machine starts to produce the item again. Since the machine has a possibility 



  

of breakdown, the machine may run the whole T1 period. When breakdown occurs, the 

production period time is Tp time. When a machine breaks down, it will require some 

repair time. Since repair time is stochastic in (T2+T3) period, production may not always 

be possible and lost sales may occur during T3 time period.  

 
Figure 1. Inventory level of lost sales case 

 

The number of inventory in production period from the problem above can be formulated 

as: 
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While the number of inventory level in non production period is represented by the 

following equation: 
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Since I1(0) = 0, and I2(T2) = 0, the inventory level in production period and non 

production period are: 
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Using the Taylor series approximation (Yang and Wee [25]), one has: 
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This approximation is commonly used in deteriorating production inventory problem (see 

Misra [19]). The expected inventory level can be expressed by the following: 
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Using Taylor series approximation, (8) can be written as: 
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Substitute (7) to (9), one has: 
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Since 12
1

Tθ  is very small, (10) can be simplified as: 
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Since there is breakdown machine possibilities, then (11) can be formulated as: 










>−

≤−
≅

1
2

1

2

1
2

2

)1(
2

)1(
2)(

TTforT
p
d

d
p

TTforT
p
d

d
p

IE

p

pp

 

 

 

(12) 



  

Here, similar breakdown machine probability density function as Lin and Gong [24] is 

used. The function of Tp is equal to 0,)( >= −
p

T
p TforeTf pµµ . The expected inventory 

can be written as: 
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The expected deteriorated item can be formulated as: 
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Substitute T2 from (7) to (14), then it can be simplified as: 
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Using the similar function of Tp, the expected deteriorating item can be written as: 
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The corrective cost can be formulated as: 
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The total inventory cost of lost sales case consists of setup cost, corrective cost, 

holding cost, deteriorating cost and lost sales cost. Lost sales occur when machine repair 

time period is longer than non production time period. The total inventory cost can be 

expressed as: 
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(18) 

The total replenishment time is equal to the production up time period, non 

production period and repair time probability. The expected total replenishment time can 

be formulated as:   
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The expected T1 and T2 time period can be written as: 
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Substitute (20) to (19), one has: 
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Using the renewal reward theorem, the expected total cost per unit time can be 

formulated as follows: 
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Combine (18) and (21), we have the expected total cost per unit time as follows: 
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2.1. Uniform distribution case  

Assume that the machine repair time t, is a random variable that is uniformly 

distributed over the interval [0, b]. The probability density function, f(t), is given as: 
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Substitute uniform probability density function in (24) to (23), one has:  
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The expected shortage can be written as: 
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Simplify equation above, one has: 
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Substitute (27) to (25), the total cost per unit time of uniform distribution repair time is: 
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Differentiate (28) with respect to T1, one has: 
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Property 1 

For a function f: S →R1 defined by f(x) = g(x)/h(x) where g: S →R1 and h: S →R1, and S 

is a nonempty convex set in En.  

The followings discuss convexity and concavity functions: 

(a) g is convex on S, and g(x) ≥ 0 for each x  S.  

(b) h is concave on S, and h(x) ≥ 0 for each x  S, and  

(c) Both g and h are differentiable. 

Using property 1, the total cost per unit time is convex where 0 ≤ T2 ≤ b, and 
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Detailed calculation is shown in Appendix A. 

 

2.2. Exponential distribution case 

In the second case, the machine repair time is a random variable that is exponentially 

distributed. Exponential probability density function with mean
λ
1

, is given as: 
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The expected shortage period is: 
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From (30), the value of the exponential distribution expected total time can be expressed 

as: 
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The total cost for exponential distribution case can be formulated by substituting (31) into 

(23), and one has: 
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(32) 

The derivative of (32) with respect to T1 is: 



  

( )

( )
ee

d
p

TT

ee
d
p

TTT

BAe
d
ep

B
d

Tdp
d

pd
A

d
p

T
d
pT

SdeeTdph
d
p

heM

T
TTCT

+−















 −
















 −
+

−
+++−+−

















−







 ++

=
∂

∂
+−

+−−

)()(

1
1

1
)(

1

1

1

1
1

1
11

1

)()(
)1()(

)(
µ

λµ

µ
λ

µµ

µ

λθλ
λ
µθ

θ
λπθµ  

( ) 2
)()(

)(

)(

2
1

1
1

1

1
11

1

1

)1)((
)1(














+−
















 −

















−

























 −−−







 ++−+

+−

−−

+−−
−

ee
d
p

TT

d
Tdp

d
p

TTT
T

BAe
d
ep

Ce
Sde

e
eTedp

d
p

heMK

µ
λµ

λ

µ
λµµ

µ

µ

λµ
µπθµ

 

 

 

 

 

 

(33) 

where: 
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The optimal T1 can be derived by equating (33) to zero. The optimal T1 can be solved 

using a simple line search method since the total cost function is convex for small value 

of λ, µ, and T1 under these conditions:  
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The detailed calculation is shown in appendix B. 

 

3. Example and sensitivity analysis 

 

Similar data as Lin and Gong [24] is used to illustrate the uniform distribution repair time 

model and to compare the model with the fixed repair time model.  In the comparison, the 

uniform distribution repair time mean rate is equal to the fixed repair time. Considering 



  

K= $ 50 per production cycle, M = $ 200 per repair, p = 10,000 units per unit time, d = 

7,500 units per unit time, h = $ 1 per unit per unit time, S = $ 5 per unit, θ = 0.2, 

unavailability time is uniformly distributed over the interval [0, 0.1],  µ = 0.2 and the 

fixed repair time equals to 0.05. Here, Maple 8 is used to solve (29) resulting in T1 = 

0.202. The optimal total cost per unit time can be found by substituting T1 in (28) 

resulting in TCT = $ 640.8. In the study, the performance of the stochastic repair time 

with the fixed repair time for different lost sales and repair times is compared. Figure 2 

shows the optimal production period. The figure shows that the production time of the 

stochastic model is shorter than the fix model for small lost sales cost and longer for high 

lost sales cost. The optimal production time of the stochastic model is more sensitive to 

the lost sales costs. Figure 3 shows the total cost of the stochastic model and the fix 

model for different lost sales costs.  

 
Figure 2. The comparison of T1 in different lost sales cost 

 



  

 
Figure 3. The comparison of the total cost in different lost sales 

 

 Figure 4 shows the production period of the stochastic model and the fix model 

for different repair times. The figure shows that the optimal production time of the 

stochastic model is less sensitive in varying repair time than the fix model. Also, the 

figure shows that the optimal production time difference between the stochastic model 

and the fix model is wider when the repair time is increased.  Figure 5 shows the total 

cost of the stochastic model and the fix model for varying repair time.  



  

 
Figure 4. The comparison of T1 for different repair time 

 

 
Figure 5. The comparison of the total cost in different repair time 

 

 The sensitivity analysis of the stochastic repair model with exponential 

distribution repair time uses similar data as the uniform distribution repair time model 



  

except that the maintenance rate ( λ ) equals to 20 is used. The sensitivity analysis is 

conducted by varying the data from -20% to 20%.  

 Figure 6 shows that the production rate is the most important parameter in 

decision making since it is the most sensitive parameter of the optimal production up 

time.  

 Figure 7 shows the sensitivity analysis of the total cost per unit time for various 

parameter values; the total cost is sensitive to the change in production rate, demand rate, 

holding cost and repair time rate. The total cost tends to increase as the parameter values 

increase except for repair time and production rate.  

 

 
Figure 6. The T1 sensitivity analysis for exponential distribution model 



  

 
Figure 7. The total cost per unit time sensitivity analysis for exponential distribution 

model 

 
 

4. Conclusion 

The deteriorating items production inventory models with machine breakdown and 

stochastic repair time (for uniformly and exponentially distributed repair time) have been 

developed. The sensitivity analysis shows that the stochastic repair time model has a 

longer optimal production time than the fix repair time model when lost sales cost is high 

and shorter time when lost sales cost is low. The total cost difference between the 

stochastic model and the fix model is wider when lost sale cost increases. The optimal 

production time of the stochastic model is less sensitive than the fix model when the 

repair time varies, and the total cost gap is not as big as the total gap when lost sales cost 

varies. Sensitivity analysis shows that the production rate and demand rate are the most 

sensitive parameters for the stochastic repair time model with exponentially distributed 

repair time. The most sensitive parameter for the total cost is demand rate. Future 

research can be done to consider preventive maintenance. 
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Appendix A  

Using property 1, we set f(x) = the total cost per unit time, g(x) = the total cost and h(x) 

= the total replenishment time. The total cost per unit time is convex if the total cost is 

convex and the total replenishment time is concave.  

The total cost of uniform distribution repair time is: 
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(A1) 

 

The second derivative of (A1) with respect to T1 is: 

 

 

 

 

 

(A2) 

     

Set T1 = 0, one has: 

 
(A3) 

Equation (A3) is convex if: 

 

 

(A4) 

 

Set , one has: 



  

 

 

 

(A5

) 

Equation (A5) convex if: 

 
(A6) 

The total cost of uniform distribution repair time is convex in  when 

(A4) and (A6) are fulfilled. 

  

The expected replenishment time of uniform distribution repair can be written as follows: 
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 (A7) 

The second derivative of (A7) with respect to T1 is: 

 

 

 

 

(A8) 

 

Set T1 = 0, one has: 

 
(A9) 

Equation (A9) is concave since d < p. 

Set , one has: 

 

(A10) 

Equation (A10) is concave if: . So the expected total time of uniform distribution 

repair time is concave in  if . 

 

  



  

Appendix B 

The expected replenishment time of exponential distribution repair time can be written as 

follows: 
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The second derivative of (B1) with respect to T1 is:  
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Equation (B2) can be simplified as: 

 

 

 

 

 

 

 

(B3

) 

where: 

 



  

We can rewrite (B3) as: 

 
where: 
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and 

 

 

 

 

 

 

 

 

(B5
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Equation (B5) can be rewritten as: 

 
 

 
(B6) 
 

where: 

 

 

 
 

 

Since Zb>Za then (B6) is positive, so the expected total time of exponential distribution 

repair time is concave if: 

 

 

(B7) 

 

When θT1 is small (B7) can be rewritten as: 



  

 

 

(B8) 

 

When λ, µ, and T1 are small, and through some simplifications one has: 

 

 

(B9) 

 

Equation (B9) true if λ<0.5 or .  So the expected time for exponential 

distribution time is also concave when λ, µ, and T1 are small and λ<0.5 or .   

 

The total cost model of exponential distribution repair time can be modeled as: 
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(B10) 

The second derivative of (B10) with respect to T1 is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(B11
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When λ,µ, and T1 are small, (B11) can be rewritten as: 

 
The expected total cost of exponential distribution repair time is convex if: 
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