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Abstract. The persistent reliance on fossil fuels for energy will yield enduring adverse effects on the tourism sector, particularly the hotel industry.
Wind energy represents a renewable electricity source that can facilitate the transition of small-scale hotels to clean energy. The main objective of
this research is to propose a methodology for evaluating the potential of wind energy to support sustainable tourism in developing nations, specifically
in fulfilling the electricity requirements of small hotels. This study aims to assess and compare the potential contribution of small wind turbines to
hotel energy demand by modelling a historical hourly wind dataset spanning ten years (2011-2020) and forecasting a portion of the dataset. This
research selected three sites in Indonesia exhibiting varying wind energy potentials: Tepus District in Gunung Kidul Regency, Losari Beach in
Makassar City, and Nusa Penida Island in Bali. This study utilises multiple linear regression to examine the impact of external variables on wind
speed, and it applies Seasonal Autoregressive Integrated Moving Average (SARIMA) and Holt-Winters Exponential Smoothing (HWES) for wind
speed forecasting in these three locations. The hourly and daily interval datasets analysis reveals a weak correlation between external factors and
wind speed, with the HWES method identified as the most appropriate approach for modelling and forecasting wind speed, surpassing the SARIMA
model by 0.309 RMSE. Forecasting results indicate that a 30-kW wind turbine could supply 8.8 - 35.3% of a small hotel's electricity consumption,
depending upon the occupancy rate.

Keywords: Wind energy, sustainable tourism, multiple linear regression, SARIMA, Holt-Winters Exponential Smoothing

’m @ The author(s). Published by CBIORE. This is an open access article under the CC BY-SA license
Oianicon (http://creativecommons.org/licenses/by-sa/4.0/).
B L) Received: 19" Dec 2024; Revised: 7" Feb 2025; Accepted: 6™ March 2025; Available online: 16™ March 2025
1. Introduction 2024), while Lake Toba in North Sumatra province is developing

electric vehicle charging stations and clean energy
infrastructures (LTAIA 2022). These efforts aim to increase the
number of establishments adhering to green standards.
Renewable energy (RE) provides a viable alternative for
electrifying the untapped tourism potential in remote regions
and enhancing the tourism appeal of specific locations (Beer et
al 2017). For businesses, RE could provide an economic benefit
by lowering energy expenses and increasing potential income
from the power produced by renewable sources (Luo et al.
2024). Meanwhile, visitors have expressed favourable attitudes
towards using RE in tourism facilities (Navratil et al. 2019). An
empirical study using long-term panel data has shown that RE
positively influences sustainable tourism goal achievement
(Hailiang et al. 2023). In practice, RE may be the sole viable
option for developing tourism destinations in remote regions
lacking access to conventional utility grids. Kamanggih Village
in East Nusa Tenggara, Indonesia, for instance, fulfils its daily
energy demand through RE sources (Petromindo 2024).
Several studies have examined the capacity of RE, particularly
wind and solar, to improve the energy sustainability of hotels,
while evaluating more economical and environmentally friendly

The hotel industry, one of the significant energy end-users, is
among the most promising sectors in tourism for utilizing clean
electricity to advance sustainable tourism (UNEP, 2024). The
term "sustainable tourism" denotes tourism that comprehensively
addresses its current and future socio-economic and
environmental impacts while fulfilling visitors' needs, the industry,
the environment, and local communities (GSTC 2024; UNT 2024).
The beneficial effects of sustainable tourism may encompass a
wide array of economic, environmental, sociocultural, wildlife
conservation, and additional advantages (Li et al. 2024; Rahman
et al. 2024). Sustainable tourism development, focusing on
environmental sustainability, is increasingly recognized by
countries, including those in the developing world, as it can
significantly boost local and national economies.

In recent years, developing countries have been working to
promote sustainable tourism in their accommodation sectors.
The Indonesian government is partnering with the US on a $6
billion investment to develop eco-friendly hotels (IBP 2023).
This is crucial as only a few tourist destinations have adopted
sustainable tourism practices. Misool Eco Resort in Raja Ampat,
Papua, uses solar photovoltaic systems for energy (MTCE
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energy sources for hotel operations. A grid-connected solar
photovoltaic system was designed for a proposed hotel in Jordan
utilising PVGIS and PVSyst simulation software (Al-Zoubi et al.
2021). The study analyzed various techno-economic metrics
based on the projected energy consumption of the proposed hotel
and the regional average occupancy rate.

Research on hybrid RE systems has garnered significant
interest. A study was conducted in Turkey on meeting electricity
demand in a medium-sized hotel utilising a hybrid system (Giiler
et al. 2013). The authors employed four scenarios to evaluate the
techno-economic viability of the proposed systems, including a
scenario permitting the purchase and export of electricity, and
three others presuming that all demand is met by RE, with any
surplus electricity sold to the grid. The research indicated that
grid-wind turbines, exhibiting a renewable fraction of 74%,
represented the optimal solution, surpassing other scenarios.

To achieve the net-zero energy consumption objective in
Konya, Turkey, optimal off-grid and on-grid hybrid RE systems
were designed and evaluated, encompassing a four-story hotel
(Gugil 2023). The author determined that, for identical annual
loads, on-grid photovoltaic and wind systems were more
economically viable for the hotel building compared to other
structures. Another study indicated that an on-grid small wind
turbine, despite lacking sell-back payments, was the most
economical solution for a small hotel in Jordan (Aagreh 2013).

A separate study identified the ideal hybrid grid-connected
photovoltaic, wind, and biogas generators for a hotel in Egypt
(Abdelhady 2023). Additional research utilised hybrid systems
for a medium-sized hotel in Iran (Fazelpour et al. 2014). A study
employed Monte Carlo simulation to determine the optimal
proportions of solar and wind energy while addressing the
variability of weather and occupancy in the Canary Islands
(Meschede et al. 2017).

Another study integrated RE with energy storage and building
automation systems (Beccali et al. 2018). Further studies
compared hybrid renewable systems with grid-only and
renewable-only configurations for a large-scale (over 100 beds)
grid-connected hotel in Queensland, Australia (Dalton et al.
2009a), and for stand-alone settings (Dalton et al. 2008). The
authors also examined the techno-economic of stand-alone RE
systems utilizing hydrogen fuel cell storage across different small
to medium-sized accommodations (Dalton et al. 2009b). Lastly, a
study explored various RE fraction scenarios, including on-site
wind and solar photovoltaic systems, to mitigate CO, emissions
from a modelled hotel building in Qatar (Ayoub et al. 2014).

Existing studies, as shown above, have focused mainly on
several aspects of the hotel energy supply, including the on-
grid/hybrid feasibility analysis and design and techno-
economic prospects of RE systems, but have left out the insights
offered from exploring the performance of long-term RE data.
Furthermore, although several RE adoption techniques have
been proposed, little is known about wind energy adoption
potential and effectiveness in small-scale hotels due to
differences in hotel occupancy rates and long-term temporal
data. Hence, despite some research on hotels' wind and solar
potential and utilization strategies, there is still a lack of
understanding about how small-scale hotels in developing
countries deal with long-term renewable energy data,
particularly wind energy resources, and the available strategies
for utilization decisions.

Evaluating the potential influence of meteorological factors
on wind speed and the power output capacity of wind turbines
through long-term historical data may enhance comprehension
of these factors and facilitate improved investment decisions in
hotels. Nonetheless, studies examining the effects of wind
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energy on small hotels are scarce. In this context, minimal
exploration has been done into the effects of long-term hourly
temporal datasets of wind speed and other meteorological
variables on the feasibility of small wind turbines for sustainable
energy provision in hotels.

Thus, this study seeks to address the research problem of
understanding the long-term hourly temporal wind speed dataset
and how small-scale hotels can better deal with and utilize the
historical and projected wind data for their sustainable energy
supply. This research aims to provide valuable insights for system
planners, hotel investors, and other stakeholders in planning and
developing renewable energy systems, particularly wind to
enhance energy resilience and reliability in the small-scale hotel
sector in developing countries.

2. Methodology

Figure 1 illustrates the comprehensive workflow of this
research. The process commences with identifying sites for
investigation, succeeded by data collection and analysis to
assess the potential energy generation of wind turbines.
Multiple linear regression (MLR), Seasonal Autoregressive
Integrated Moving Average (SARIMA), and Holt-Winters
Exponential Smoothing (HWES) are employed for model
development, forecasting, and result assessment. The capacity
to fulfii power requirements at designated locations is
subsequently evaluated, followed by an outcomes analysis.

2.1 Sites Selection and Hotel’s Electricity Efficiency Ratings

This research considers three sites in Indonesia with varying wind
energy potentials for the case study. The evaluation of the three
sites examined in this study commences with analysing location
appropriateness. The indicators encompass tourism potential, the
necessity for alternative energy sources, and geographical
characteristics.

It should be noted that the case study's selected locations do
not correspond to established hotels, given that this is a planning
study focusing on temporal dataset analysis and modelling. This
study not only identified sites for analysis but also collected
relevant information to evaluate wind energy potential by
determining the average number of guest rooms in small-sized
hotels and their corresponding electricity energy efficiency
ratings and total energy consumption threshold. Figure 2
illustrates the site selection and data collection and the hotel’s
electricity efficiency rating, followed by wind dataset collection
and pre-processing.

Sites selection and Wind datasets
hotel electricity collection and
efficiency rating analysis

Wind turbine Modelling wind datasets using
selectionand | multiple linear regression, SARIMA,
wind-to-power |~ and Holt-Winters Exponential
conversion Smoothing

Wind contribution for
hotel electricity
demand

Fig 1 Research methodology flowchart
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Fig 2. A detailed methodology for site selection and hotel’s
electricity efficiency rating followed by wind dataset collection and
pre-processing

2.2 Wind Dataset Collection and Pre-processing

This study examines several critical variables for modelling and
analytical purposes, including wind speed, relative humidity,
temperature, wind direction, and pressure. As shown in Figure
2, the data collection procedure for these variables on selected
locations involves downloading hourly data at one-year
intervals over a decade (2011-2020) by querying coordinates on
the National Solar Radiation Database (NSRDB) website,
accessible at https://nsrdb.nrel.gov/ (NREL 2024). The
collected information is subsequently combined into a singular
data set.

Data preprocessing entails verifying and transforming data
into the appropriate format, addressing errors, and implementing
other essential modifications. Subsequently, the data is analyzed
through aggregation and graphical representation to discern
patterns or valuable insights, facilitating further wind dataset
modelling and the selection of the optimal wind turbine model.
The dataset and data preprocessing results are accessible
through
https://drive.google.com/drive/folders/1IwuR_bsiTt5Hx7OR
HGRT7EfSdK3C9Fw7?usp=sharing.

2.3 Modelling of Wind Dataset
2.3.1 Multiple Linear Regression (MLR)

MLR is a statistical technique that broadens the scope of simple
linear regression. Simple linear regression involves a single
independent variable, while MLR encompasses two or more
independent variables. Notwithstanding this distinction, the
objective of MLR is identical to that of simple linear regression:
to determine the relationship between variables and facilitate
predictions. The equation model for MLR can be expressed as
follows (Kati¢ et al. 2024).

Y=a+ Ble + ﬁZXZ + ﬁan +e (1)

where: Y is the dependent variable, X; ... X, is the 1% to the n
independent variable, @ is a constant or the starting point
(where all independent variables are equal to 0), f; ... f, is the
15t to the n™ regression coefficient and e is the prediction error.

Figure 3 shows the flowchart in which MLR is utilized in this
research. The method is employed to analyze the correlation
between selected independent variables (wind direction,
temperature, pressure, and relative humidity) and the dependent
variable (wind speed). If a strong correlation is found, additional
independent variables may be added to improve the model's fit
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variable combinations

Fig 3 Modelling procedure using MLR

when using different methods. The model evaluation utilizes Root
Mean Squared Error (RMSE).

2.3.2 Seasonal Autoregressive Moving Average (SARIMA)

The SARIMA model is an extension of the Autoregressive
Integrated Moving Average (ARIMA) model. The ARIMA
method is effective in analyzing and forecasting time series data;
however, it cannot accommodate seasonal characteristics or
patterns within the wind dataset. This study formulates the
SARIMA model and integrates seasonal elements into it. The
SARIMA model consists of up to 7 components, namely p (the
trend autoregression order), d (the trend difference order), q
(the trend’s moving average order), P (the seasonal
autoregressive order), D (the seasonal difference order), Q (the
seasonal moving average order), and m (the number of periods
per season to be calculated) (Machine Learning Mastery 2019).
The equation for SARIMA is as follows (Christie et al. 2022).

¢p(B*)¢p(BY(1 — B)H(1 — B*)PY, = 6,(B)0o(B)E,  (2)

where: p is trend autoregression order, P is the seasonal
autoregressive order, d is trend difference order, D is the seasonal
difference order, q is the trend-moving average order, Q is
seasonal moving average order, ¢,(B) is the non-seasonal
autoregressive level, ¢, (B®) is the seasonal autoregressive level,

(1 — B)%is the non-seasonal differencing level, (1 — B%)P is the
seasonal differencing level, 6,(B) is the non-seasonal moving
average level, @, (B?) is the seasonal moving average level, Y; is
the actual data for the period t, and &, represents the error in
the period t.

Figure 4 illustrates the particular SARIMA process employed
in this study. The Augmented Dickey-Fuller (ADF) test verifies
the stationarity of data. Should the data exhibit non-stationarity,
the differencing procedure is implemented repeatedly until
stationarity is achieved. The data is subsequently partitioned for
fitting and testing purposes. The optimal SARIMA model (the
values for p, d, q, P, D, and Q) is determined using two
approaches: the auto_arima function from a Python library and
the grid search method. The grid search technique evaluates the
spectrum of parameter values by analyzing the autocorrelation
function (ACF) and partial autocorrelation function (PACF)
graphs. Upon identifying the optimal parameters, a SARIMA
prediction model will be developed, and the outcomes will be
compared (auto_arima and grid search). The model's efficacy is
assessed through Root Mean Squared Error (RMSE).

2.3.3 Holt-Winters Exponential Smoothing (HWES)

HWES is a modification of Holt's exponential smoothing,
commonly called double exponential smoothing. The Holt-
Winters method assumes that time-series data comprises level,
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trend, and seasonal components. The Holt-Winters method for
addressing seasonality comprises two variations: additive and
multiplicative. Time series can be modelled through the additive
trend with additive seasonality, the additive trend with
multiplicative seasonality, the multiplicative trend with additive
seasonality, and the multiplicative trend with multiplicative
seasonality.

The formulas employed in HWES are presented below,
beginning with level smoothing (L,) for additive variation in Eq. 3
and multiplicative variation in Eq. 4 (Irandi et al. 2021). The
formulas used to calculate trend pattern smoothing, seasonal
pattern smoothing, and the prediction for the next period, are
shown in Eq. 5, Eq. 6 (additive) and Eq. 7 (multiplicative), and Eq.
8 (additive) and Eq. 9 (multiplicative), respectively.

Ly=a(:—Si—s) + (1 — a)(Le—q + Teo1) (3)
Vi
Le=a(Z5) + (1= )Lt +be-r) @
by = B(Ly—Lt—1) + (1 — B)b;—4 (5)
Vi
Se=v(Z5)+ 1 =1Ses ®)
Vi
Se=v (%) + 1= 1Si-s (7)
From = Le + bem + S¢—sym (8)
Fiam = (Le + bym)Sy_gsim 9
Loading Prepare Python
analyzed data | || libraries for
for wind dataset [ ~ [modelling using
modelling HWES Split data for
fitting and
Create HWES Finding best testing
prediction models | smoothing
usingthebest [~ |constants using
smoothing constants grid search

Using best smoothing
evgli‘:‘;'on » constants to predict
data

Fig 5 Flowchart for modelling using HWES
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where: «, 5, and y are smoothing constants, y, is the observed
value at the time t, L, is the smoothing level value at the time t,
b, is trend pattern smoothing value at the time ¢, S; is the
seasonal pattern smoothing value at the time ¢, F; ., is forecast
for a time t + m, and s represents the seasonal length.

Figure 5 shows the application of Holt-Winters exponential
smoothing in this study. The dataset is partitioned into training
and testing groups, and the grid search technique is employed
to identify the optimal smoothing constants, considering
variations in trend and seasonality types. The modelling results
are assessed utilizing the RMSE method, and the optimal
smoothing constants are selected for data prediction.

2.4 Wind Turbine Selection and Wind-to-Power Conversion

Small wind turbine candidates are identified after analyzing and
modelling the wind dataset using the three techniques outlined
in the previous section. The main criterion for selecting a wind
turbine is its power curve, which should be aligned with the
potential wind speed. In this context, the power curve of each
wind turbine candidate is modelled using either polynomial,
linear or piecewise regression techniques. Polynomial
regression can be used due to the non-linear relationship
between the independent variable (wind speed) and the
dependent variable (power output). The equation for the
polynomial regression is as follows (Morala et al. 2021).

Y'= by + by X + b X%+ -+ b X" (10)

where: Y’ is the dependent variable, X is the independent
variable, X2 ...X™ are the independent variables with n degree
of the polynomial, b, is a constant or the starting point (where
all independent variables are equal to 0), and by ... b, are the
regression coefficients.

Upon fitting, the polynomial regression model of the power
curve converts wind speed into potential electrical power
output at designated sites. The conversion outcomes will be
assessed to ascertain the electrical power contribution provided
by the wind to the hotel energy demand, given the selected
historical and forecasted wind speed model, which is obtained
from one of the three methods explained in Section 2.3. Figure
6 illustrates a flowchart detailing the wind turbine selection and
wind-to-power conversion process.

3. Results and Discussion

This section presents the analysis results of all aspects described
in the methodology section. These include the selected sites and
the hotel’s electricity efficiency ratings, the wind data
characteristics over a decade (2011-2020) for all locations, and
the modelling outcomes derived from MLR, SARIMA, and HWES
techniques. This section also presents the analysis results of wind
turbine selection and wind-to-power conversion, and the
potential of wind energy in supplying hotel electricity, considering
varying occupancy rates.

3.1 Selected Sites and Hotels’ Electricity Efficiency Ratings

All three chosen locations are situated on different islands. The
first location is the Tepus District, in Gunung Kidul Regency.
The geographical coordinates for this study are 7°58'11.79"
South latitude and 110°29'17.25" East longitude. Gunung Kidul,

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE



Y. Tanoto et al

near the southern Java coastline, has significant tourism
potential due to its elevation and wind speed. The low
population density ensures minimal disruption to local
communities. The predominantly level terrain allows for
increased electricity generation from wind turbines due to
enhanced wind velocity (Elgendi et al. 2023).

The second location is Losari Beach in Makassar (5°08'34"
South and 119°24'25" East). It is a recognized coastal region
potentially appropriate for small turbine applications (Prabowo
et al. 2022). The third location is Nusa Penida Island in Bali
Province. The selected geographical coordinates are 8°48'00.0"
South latitude and 115°34'00.0" East longitude. Nusa Penida
experiences elevated wind speeds. However, this resource
remains underexploited, signifying considerable unutilized wind
energy potential (Darmana, Koerniawan 2019).

The hotel’s electricity efficiency rating is determined based
on the hotel’s capacity, i.e., the available rooms (Bohdanowicz
2001). The average number of guest rooms in small hotels
within Gunung Kidul Regency is 23 (GKTA 2019), while the
majority of small lodgings in Nusa Penida possess between 5
and 14 guest rooms (Berita Satu 2019).

The suggested electricity efficiency ratings are less than 60
kWh/m?/year for Gunung Kidul and Nusa Penida and less than
70 kWh/m?/year for Makassar, based on the average number of
guest rooms. Following a similar study, the advised total energy
consumption thresholds for Gunung Kidul and Nusa Penida are
below 240 kWh/m?/year, while for Makassar, it is below 260
kWh/m?/year (Bohdanowicz 2001).

3.2 Wind Dataset Collection and Pre-processing Results

The analysis of wind data is initiated by data aggregation. The
dataset comprises a decade of hourly data intervals for pressure
(P), relative humidity (RH), temperature (T), wind direction (WD),
and wind speed (WS). The hourly values collected over a decade
(87,600 hours) are averaged in wind speed data for each 24-hour
interval. Consequently, all daily averaged wind speeds are
derived by consolidating the 24-hour wind speed data ranges.
Upon acquiring the complete set of daily average wind speed data
(3,650 entries), the weekly average wind speed values are
determined by consolidating the daily averages every 7 days.

A monthly averaged wind speed is derived by consolidating
all daily averaged data for that month. This study comprises 120
months of average wind speed data spanning 10 years. The
minimum, maximum, and mean values for hourly to monthly

Gunung Kidul Nusa Penida Losari (Makassar)
12 1
10 A
L 87
E 6
4 4
2 A + + Y
4 & ¥
0 . L4 P ‘ 4+
H D WM H D WM H D W M
Aggregation period
—+—Min Max Mean

Fig 6. Comparison of hourly (H), daily (D), weekly (W), and
monthly (M) aggregated wind speed during 2011-2020 in Gunung
Kidul, Nusa Penida, and Losari Beach (Makassar)
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Fig 7. The range of hourly- to monthly average wind speed data in
a selected location at Nusa Penida Island over a total of 10 years
dataset (2011-2020)

aggregated wind speed at three locations are calculated
accordingly.

Figure 6 presents the minimum, maximum, and mean values
of hourly and monthly aggregated temporal wind speeds at three
locations. The data indicates that Nusa Penida in Bali exhibits the
highest maximum wind speed values across all aggregation
periods compared to the other two locations. The peak wind
speed at Nusa Penida is 10.3 m/s, with daily, weekly, and monthly
averages of 8.3 m/s, 6 m/s, and 5.3 m/s, respectively. The
average wind speed for data aggregated from hourly to monthly
intervals is 3.64 m/s. A seasonal pattern is discernible, recurring
roughly every 8760 data rows (equivalent to 12 months of data).

Figure 7 shows box-whisker plots of hourly to monthly
average wind speed data collected over a decade at a selected
location on Nusa Penida Island. The 87,600-hourly dataset
exhibits a maximum wind speed of 7.8 m/s when excluding
outliers, and 10.3 m/s when including them. The maximum
daily average wind speed is 7.8 m/s excluding outliers and 8.3
m/s including outliers. The maximum average wind speeds for
weekly and monthly intervals are 6 m/s and 5.3 m/s,
respectively, while the minimum averages are 1.1 m/s and 1.9
m/s. All time intervals exhibit mean wind speeds of 3.6 m/s.

Figure 8 depicts a box and whisker plot representing the
monthly average wind speed from 2011 to 2020 at a designated
location on Nusa Penida. The graph illustrates various ranges of
monthly average wind speeds, derived from daily average
values, spanning from 2011 to 2020. In the 10-year dataset (up

4 !!+.+
; : & *

Wind speed (m/s)

R
IR
B -
—F

Jan  Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fig 8. The ranges of monthly average wind speed from 2011-2020
in Nusa Penida as grouped monthly up to 120 months (aggregated
from daily average values)
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Table 1 Table 2
Wind data characteristics — Nusa Penida The best RMSE and R-squared, and combination of variables involved
Interval  Variable Mean Max Min in the MLR models
Pressure (mbar) 1015 1034 993 Interval  Location Involved = b rop R-
Relative humidity (%) 80,6 95,58 57,32 . Variables squared
g ’ g Hourly Gunung Kidul RH,P, T 0.981 0.261
Hourly = Temperature (°C) 27,8 32,3 23 Losari RH, P, T 0.924 0.086
Wind direction (%) 164 360 0 Nusa Penida RH,P,T, 1264  0.241
Wind speed (m/s) 3,6 10,3 0,1 WD
Pressure (mbar) 1015 1032,3  995,1 Daily Gunung Kidul RH,P, T 0.757 0.279
Relative humidity (%) 80,6 91,9 65,4 Losari RH,P, T 0.668 0.241
Daily Temperature (°C) 27,8 31,1 24 Nusa Penida RH, P, T, 1.074 0.367
Wind direction (°) 164 3343 31,1 WD
Wind speed (m/s) 3.6 8.3 0.8 Weekly Gunung Kidul RH, T 0.540 0.464
Pressure (mbar) 1015 10312 9975 Losari RH, P, T 0.502 0327
Relative humidity %) 807 89 73,1 Nusa Penida R T 082 0516
Weekly  Temperature (°C) 278 307 244 Monthly  Gunung Kidul RH, P, T 0384 0641
Wind direction (°) 164 3324 80,7 Loser RH. P, T 0.357 YT
Wind speed (m/s) 3.6 6 L1 Nusa Penida RH,P,T, 0482  0.769
Pressure (mbar) 1015  1030,3 999,44 WD
Relative humidity (%) 80,7 87,3 74,4
Monthly  Temperature (°C) 27,8 30,3 24,8
Wind direction (°) 164 256,3 109 squared value. The performance metrics indicate that the ideal
Wind speed (m/s) 3.6 53 1.9 variable combinations for each location yield consistent results

to 120 months), the months from June to September exhibited
higher monthly average wind speeds compared to the
remaining months. Table 1 summarizes all principal variables
examined in this study that are believed to influence wind-
derived electrical energy in Nusa Penida from 2011 to 2020. The
variables include pressure, relative humidity, temperature, wind
direction, and wind speed. This study additionally examines the
data for Gunung Kidul and Losari.

3.3 Wind Datasets Modelling Results
3.3.1 MLR results

The MLR method applies to all temporal data intervals,
including hourly, daily, weekly, and monthly. The evaluation
performance metrics employed are RMSE, R-squared, and
adjusted R-squared. In Gunung Kidul, hourly, daily, and monthly
models are predicated on relative humidity (RH), pressure (P),
and temperature (T). The weekly period is determined by
relative humidity (RH) and temperature (T). The optimal result,
characterised by the minimal RMSE, is achieved at Losari Beach
through the integration of relative humidity (RH), pressure (P),
and temperature (T). The interplay of relative humidity (RH),
pressure (P), temperature (T), and wind direction (WD) in Nusa
Penida yields the minimal RMSE.

Table 2 presents the variable combinations employed in the
MLR models, yielding the optimal RMSE and R-squared across
all intervals. The coefficient of determination (R-squared)
quantifies the extent to which the independent variable elucidates
the dependent variable. The R-squared values in Table 2,
especially for hourly and daily intervals, demonstrate a weak
correlation between the independent variables (RH, P, T, and
WD) and wind speed at all locations. This indicates that the
independent variables are insufficient to completely elucidate the
dependent variable. Simultaneously, the R-squared values for
variable combinations at weekly and monthly intervals
sufficiently elucidate aggregated wind speed, especially for Nusa
Penida.

As the data aggregation interval increases, the performance
metrics improve, indicated by a lower RMSE and a higher R-

across all data intervals. The optimal variable combination for
Gunung Kidul and Losari is relative humidity (RH), precipitation
(P), and temperature (T), whereas for Nusa Penida, it includes
RH, P, T, and wind direction (WD).

Nevertheless, incorporating additional independent
variables into the MLR model does not enhance the fit of the
Gunung Kidul and Losari data. The data from Nusa Penida
presents divergent results. Despite the RMSE being greater than
that of the other two locations, the R-squared value remains
comparatively high.

3.3.2 SARIMA results

In SARIMA, the Augmented Dickey-Fuller (ADF) test is utilized
to verify data stationarity. The test results are displayed in Table
3 and Table 4 for hourly, weekly, and monthly intervals,
respectively. The ADF test results indicate that the data is
stationary at the weekly interval but non-stationary at the monthly
interval. This is evidenced by a p-value exceeding 0.05 and an
ADF statistic surpassing the critical threshold. Seasonal
differencing is applied once (D=1) to rectify the absence of
stationarity in the monthly dataset.

Table 4 presents the results of the differencing analysis, while
Table 5 shows possible SARIMA model parameters for all
locations. The SARIMA model is subsequently fitted utilizing

Table 3
ADF Test results
Interval  Location ADF p- Critical values
value
Hourly Gunung -6.37 2.36x 1%: -3.44; 5%: -2.87;
Kidul 10°8 10%: -2.57
Losari -8.68 4.27x 1%: -3.44; 5%: -2.87,
10714 10%: -2.57
Nusa -6.09 1.04 x 1%: -3.44; 5%: -2.87;
Penida 1077 10%: -2.57
Daily Gunung -2.05 0.26 1%: -3.49; 5%: -2.89;
Kidul 10%: -2.58
Losari -2.46 0.13 1%: -3.49; 5%: -2.89;
10%: -2.58
Nusa -1.70 0.43 1%: -3.49; 5%: -2.89;
Penida 10%: -2.58
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Table 4
ADF Test results on seasonal differencing monthly data
Location  ADF statistic p-value Critical values
Gunung -6.578 7.66x 1077 1%: -3.493
Kidul 5%: -2.890
10%: -2.581
Losari -7.156 3.06 x 10710 1%: -3.493
5% :-2.890
10% : -2.581
Nusa -4.361 3.48x 10710 1%: -3,501
Penida 5%: -2,892
10%: -2,583
Table 5
Possible SARIMA model parameters for all locations
Interval parameter Gupung Losari  Nusa Penida
Kidul
Weekly p 0-3 0-1 0-3
d 0 0 0
q 0-9 0-5 0-8
P 0-1 0 0
D 0 0 0
Q 0-2 0-2 0-2
Monthly P 0-1 0-1 0-1
d 0 0 0
q 0-1 0-2 0-1
P 0-2 0-1 0-2
D 1 1 1
Q 0-1 0-1 0-1

auto_arima and grid search techniques. The RMSE value
identifies the optimal model and fitting technique. The number of
periods per season (m) will be established as 52 weekly intervals
and 12 monthly intervals. The results for weekly and monthly
intervals are presented in Table 6.

Table 6
SARIMA fitting results comparison
Interval Location Method Best model RMSE
Weekly Gunung auto_arima SARIMA 0.802
Kidul (1,0,2);(2,0,0);52
grid search SARIMA 0.490
(0,0,1);(1,0,2);52
Losari auto_arima SARIMA 1.655
(1,0,0);(2,0,0);52
grid search SARIMA 0.575
(1,0,4);(0,0,2);52
Nusa auto_arima SARIMA 1.468
Penida (1,0,2);(0,0,0);52
grid search SARIMA 1.067
(3,0,8);(0,0,2);52
Monthly  Gunung auto_arima SARIMA 0.443
Kidul (1,0,0);(1,0,1);12
grid search SARIMA 0.315
(0,0,0);(1,0,1);12
Losari auto_arima SARIMA 0.688
(1,0,0);(2,0,0);12
grid search SARIMA 0.304
(0,0,2);(1,0,0);12
Nusa auto_arima SARIMA 0.419
Penida (0,0,2);(1,0,1);12
grid search SARIMA 0.379

(0,0,0);(0,0,1);12
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The findings in Table 6 indicate that the SARIMA method is
appropriate for datasets of moderate size, as it can process data
at weekly intervals within a reasonable timeframe. As the
dataset size expands, the number of possible models fit also
increases, augmenting the model's complexity and requiring
additional computation time. In comparing RMSE results, the
grid search method exhibits lower RMSE values across all data
intervals at the three locations than the auto_arima method.
Moreover, it was found that extending the data aggregation
interval diminishes the RMSE.

3.3.3 HWES results

The HWES model is formulated to exclude trends and
incorporate additive seasonality. This study utilizes RMSE to
identify the optimal model and fitting method for each interval
and location. Table 7 presents the optimal model outcomes for
the HWES model.

The modelling outcomes presented in Table 7 utilize the
2011-2018 dataset for training and the 2019-2020 dataset for
testing. The RMSE of 0.374 for Nusa Penida (monthly) indicates
the prediction error for 2019-2020 concerning the actual data
from that period. This study establishes the number of periods
per season (s) as 365 for daily intervals, 52 for weekly, and 12
for monthly intervals. A grid search method is employed to
identify the optimal alpha (@) and gamma (y) values.

Upon establishing the optimal smoothing constants, the
historical data is plotted, and model fitting is conducted for all
potential intervals across all locations. This paper shows HWES
results for Nusa Penida, as illustrated in Figures 9a to 9c. The
figures show the model fitting for daily interval data, weekly
intervals, and monthly intervals, respectively.

The analysis indicates that the HWES method can efficiently
accommodate large datasets while maintaining high processing
speed. Consequently, the method is effective with data
characterized by lower aggregation levels or larger volumes.
The HWES method surpasses both SARIMA and MLR methods
in overall computational efficacy. While certain locations
employing the SARIMA method exhibited marginally reduced
RMSE values, the disparity was minimal (approximately 0.02).

Nevertheless, as the degree of data aggregation diminishes,
the resultant RMSE value escalates. Datasets with monthly
aggregation intervals exhibited the lowest RMSE for each
location. The model-fitting graph can reflect the rising and
falling trends of wind speed indicated by actual historical data.

Although the HWES model fittings for both daily and weekly
intervals are insufficient for predicting short-term operational
needs for wind turbines or supply systems, it provides

Table 7
HWES fitting results
Interval  Location Alpha Gamma RMSE
(@) (07)
Daily Gunung 0.05 0.05 0.819
Kidul
Losari 0.05 0.05 0.702
Nusa Penida 0.8 0.05 1.014
Weekly  Gunung 0.2 0.25 0.511
Kidul
Losari 0.1 0.15 0.489
Nusa Penida 0.05 0.25 0.769
Monthly  Gunung 0.05 0.15 0.309
Kidul
Losari 0.05 0.25 0.322
Nusa Penida 0.05 0.15 0.374
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Fig 9. HWES plot for Nusa Penida — (a) daily interval, (b) weekly
interval, (c) monthly interval

stakeholders with insights into the fluctuating wind speed
patterns to forecast energy supply security rather than providing
precise numerical wind speed values for a specific period. By
providing more precise forecasts for monthly aggregated wind
resources, the monthly model fitting can assist stakeholders in
making investment decisions.

3.4 Wind Turbine Selection and Wind-to-Power Conversion

The analysis of wind data has resulted in the identification of
three small wind turbines as candidates: Pitchwind Systems AB
30 kW, Eoltec WindRunner 25 kW (European Commission
2020), and Fuhrlénder FL-100 100 kW (The Wind Power 2024).
These turbines are selected primarily for their power curves,
which align with the potential wind speed.

Figure 10a illustrates the power curves of the Pitchwind
Systems AB 30 kW and Eoltec WindRunner 25 kW wind
turbines, while Figure 10b illustrates the power curve of a
Fuhrlander FL-100 100 kW wind turbine.
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Fig 10. The power curves of (a) Pitchwind Systems AB 30 kW and
Eoltec WindRunner 25 kW wind turbines, (b) Fuhrlénder FL-100
100 kW wind turbine

The relevant regression equations can be derived from the
wind turbine’s supplied power curves. The Pitchwind Systems
AB 30 kW and Eoltec WindRunner 25 kW models utilize a
modified piecewise regression method, applying distinct
regression types to specific intervals of data points along the
power curve. Conversely, the Fuhrlander FL-100 100 kW model
solely utilizes polynomial regression.

Eq. 11 presents the linear regression equation for Pitchwind
Systems AB 30 kW, whereas Eq. 12 presents the polynomial
regression equation. Meanwhile, the linear regression equations
for Eoltec WindRunner 25 kW can be seen in Eq. 13, while the
polynomial regression equation for the Fuhrlander FL-100 100
kW is presented in Eq. 14.

y = (0,1999999x) + (—0,2999977) (11)

y = (0,0006013x11) — (0,001071x10) +

(0,006777x%) — (0,002255x8) + (0,04551x7) —
(0,5942x5) + (5,148x"5) — (29,66x 4 ) +

(111,4x3) — (259,1x"2 ) + (335,4x) — 182,8  (12)

y = (0,49999999x) + (—0,99999996 (13)

y = (—0,0005086x1) + (0,004726x10) —
(0,001955x°) + (0,04744x8) — (0,7507x7) +

(8,123x%) — (61,3x5) + (322,4x%) — (1157x3) +
(2696x2) — (3671x) + 2209 (14)
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Table 8
Electricity Use Index - CHENACT Benchmarks
Hotel Size (# of Guestrooms)

<=50 51- 101- >200
100 200
High (kWh/Guest 118 87 43 50
Night)
Average (kWh/Guest 43 44 32 34
Night)
Low (kWh/Guest 12 18 25 22
Night)

where: y is the power output, and x denotes wind speed.

3.5 Wind Contribution in Supplying Hotel Electricity Demand

This study examines a hotel’s electricity consumption,
considering usage levels and the number of rooms, with an
emphasis on small hotels. It employs the Energy Use Index
(EUI) metric from the Caribbean Hotel Energy Efficiency Action
Programme (CHENACT) to evaluate the feasibility of satisfying
a hotel's electricity requirements, as illustrated in Table 8
(CHTA 2012).

The EUI of the Caribbean Hotel was utilised in this study due
to the resemblance between Indonesia's tropical climate and
that of the Caribbean. This indicates that hotel energy
consumption remains consistent regardless of variations in
guests' cultural backgrounds, which may affect energy usage
behaviour. The EUI evaluates three levels of energy
consumption, measured in kWh per Guest Night, across four
categories of hotel size based on the number of guestrooms.
"Guest Night" denotes the aggregate count of hotel occupants.

This study suggests, according to the data in Table 8, that the
small hotel comprises a maximum of 50 guestrooms, each
occupied by a single guest, with a minimal electricity
consumption of 12 kWh per guest night. This study computes
total electricity consumption per night and hour by multiplying
electricity usage by the number of rooms and dividing by 24.
Consequently, a hotel with 50 rooms occupied by a single guest
each, consuming 12 kWh per guest night, results in a total energy
consumption of 600 kWh per night, equating to 25 kWh per hour.

Meanwhile, Table 9 presents the computation outcomes for
various levels of energy consumption and occupancy. The energy
consumption values in Table 9 may also reflect the hotel's total
electricity usage, encompassing facilities such as the kitchen,
office, lobby, and others, expressed as the average energy
consumption per guest per night across different occupancy
levels.

The contribution of wind energy to hotel electricity demand is
quantified as a percentage, determined by dividing the average
power output of the wind turbine by the energy consumption
linked to hotel occupancy. This study employs low-to-high

Table 9
The calculated electricity energy consumption
Energy. Time Occupancy
consumption 100% 75% 50% 25%
High Per night 5,900 4,423 2,950 1,475
Per hour 246 184 123 62
Average Pernight 2,150 1,613 1,075 538
Per hour 90 67 45 22
Low Per night 600 450 300 150
Per hour 25 19 13 7
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Table 10

Wind energy contribution (in percentage) for different hotel occupancies
while considering daily, weekly, and monthly averaged wind speed data
interval

Mean Occupancy (%)

Location Data
kWh 100 75 50 25

Daily averaged wind speed-based data interval

Gunung Historical 0.45 1.8 2.4 3.6 7.2
Kidul Predicted 0.32 1.3 1.7 2.6 5.1
Losari Historical 0.35 1.4 1.9 2.8 5.6
Predicted 0.24 1 1.3 1.9 3.8
Nusa Historical 1.83 7.3 9.8 14.7 29.3
Penida Predicted 2.21 8.8 11.8 17.6 35.3
Weekly averaged wind speed-based data interval
Gunung Historical 0.37 1.5 2 3 5.9
Kidul Predicted 0.35 1.4 1.9 2.8 5.6
Losari Historical 0.27 1.1 1.5 2.2 4.4
Predicted 0.21 0.8 1.1 1.6 3.3
Nusa Historical 1.61 6.6 8.7 13.1 26.2
Penida Predicted 1.79 7 9.5 14.3 28.6
Monthly averaged wind speed-based data interval
Gunung Historical 0.32 1.3 1.7 2.5 5.1
Kidul Predicted 0.35 14 1.9 2.8 5.6
Losari Historical 0.22 0.9 1.2 1.8 3.5
Predicted 0.22 0.9 1.2 1.7 3.5
Nusa Historical 1.46 5.8 7.8 11.7 23.3
Penida Predicted 1.57 6.3 8.4 12.5 25.1

kWh/ Guest Night values, specifically ranging from 25% to 100%
hotel occupancy, to calculate the contribution of wind energy.

Utilizing HWES to predict wind speed and wind turbine
power output demonstrated that the Pitchwind Systems AB 30
kW turbine outperformed the Fuhrldnder FL 100 100 kW and
the Eoltec WindRunner 25 kW turbines. Therefore, the
Pitchwind Systems AB 30 kW is chosen to evaluate the potential
contribution of wind energy. Table 10 shows the potential
percentages of electricity consumption that can be satisfied by
a single installed wind turbine for small hotels across various
locations, categorised by daily, weekly, and monthly data
intervals, respectively.

The wind energy contribution shown in Table 10 evaluates
both historical and projected average kWh produced by the
Pitchwind Systems AB 30 kW turbine by its power curve
characteristics. The predicted mean kWh is derived from the
HWES models presented in Table 7. The data in Table 10 indicate
that the anticipated energy contribution of a Pitchwind Systems
AB 30 kW turbine to the hotel's energy requirements across all
locations varies from 0.8% to 35.3%, based on hotel occupancy
levels ranging from 100% to 25%, specifically at Losari (100%
occupancy, weekly averaged interval) and Nusa Penida (25%
occupancy, daily averaged interval).

According to daily average wind speed data, Nusa Penida
exhibits the greatest contribution of wind turbine energy
generation in fulfilling hotel electricity demand across various
occupancy levels. The predicted mean energy output of the wind
turbine, quantified at 2.21 kWh, could fulfil 8.8% of the hotel’s
energy requirements at full occupancy and escalate to 35.3% at
25% occupancy. Concurrently, Losari Beach has demonstrated
the least potential across all data intervals.

Results in Table 10 also illustrate a trade-off between hotel
occupancy rates and the contribution of wind turbine energy
generation to the energy demands of hotels. The daily interval
results for Nusa Penida indicate that reducing hotel occupancy to
25% has led to a fourfold increase in the energy generation
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contribution from wind turbines. Table 10 indicates that small
wind turbines possess significant potential to fulfil partial
electricity requirements of hotels at low-to-medium occupancy
levels, specifically between 25% and 50%. Wind turbines are
projected to fulfil 10% to 35% of energy requirements.

This contribution rate is particularly advantageous for the
hotel as it alleviates the burden of grid energy expenses during
the off-peak season. This also enables the integration of small
wind turbines with other RE technologies, such as solar power
and batteries, to enhance the clean energy supply for hotel energy
requirements. This study, although focused on Indonesian
locations, offers valuable methodology and analysis applicable to
other developing countries and jurisdictions.

4, Conclusion

This study examined renewable energy (RE) use to promote
sustainable tourism in developing countries. Using a 10-year
historical wind dataset, it looked specifically at the role of small
wind turbines in meeting some of the electricity demands of
small-sized hotels. This study developed the wind speed model
by incorporating the impact of pressure, relative humidity,
temperature, and wind direction on wind speed over selected
locations using MLR, SARIMA, and HWES.

The key findings of the case study, which considered three
selected locations across different islands of Indonesia, are as
follows:

e The hourly and daily interval datasets analysis reveals a
weak correlation between weather factors (pressure,
relative humidity, temperature, and wind direction) and
wind speed. Wind direction has shown a stronger
correlation for monthly interval data in locations
exhibiting higher wind energy potential.

e The HWES method is the most appropriate approach for
modelling and forecasting wind speed considering long-
term datasets and different data intervals. The RMSE
values indicate that monthly interval data has the lowest
RMSE, followed by weekly and daily interval data.

e The Pitchwind Systems AB 30 kW wind turbine has been
identified as the most appropriate type of turbine due to
its power curve alignment with wind speed data and
power output potential based on the HWES model’s wind
speed prediction.

e The installation of a single wind turbine could supply
between 8.8% and 35.3% of the hotel's electricity
demand, depending upon the occupancy rate levels
ranging from 100% (8.8% contribution) to 25% (35.3%
contribution).

This study is limited in that it analysed planned locations. It
does not consider the economic feasibility of installing small
wind turbines on-site. These economic implications can help
determine the overall wind energy potential and feasibility of
the chosen location. Furthermore, this study does not take into
account or analyze the impact of hotel electricity demand
patterns, such as hourly or daily, on the temporal contribution
period of wind energy supply.

Nomenclature
Y : dependent variable of multiple linear
regression
a : constant or the starting point (where all

independent variables are equal to 0)
: the 1% to the n' regression coefficient
: the 1*t to the n™ independent variable

B1 --Bn
Xi . Xn
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e : prediction error
p : trend on autoregression order
P : seasonal autoregressive order
d : trend on difference order
D : seasonal difference order
q : trend-moving average order
Q : seasonal moving average order
¢p(B) : non-seasonal autoregressive level
¢p(B?®) : seasonal autoregressive level
(1- B)d : non-seasonal differencing level,
(1—B5)? :seasonal differencing level
64(B) : non-seasonal moving average level
04(B*%) : seasonal moving average level
Y, : actual data for the period t
o : error in the period t
a, B,y : smoothing constants
Ve : observed value at the time ¢t
L¢ : smoothing level value at the time t
b, : trend pattern smoothing value at the time ¢
St : seasonal pattern smoothing value at the time t
Fiim : forecast for a time t + m
s : seasonal length
y : power output
x : wind speed
Y’ : dependent variable of polynomial regression
X : independent variable of polynomial regression
X2 ..X™ :the independent variable with n degree of the
polynomial
by : constant or the starting point (where all
independent variables are equal to 0)
by ...b, : polynomial regression coefficients
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