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Abstract. The persistent reliance on fossil fuels for energy will yield enduring adverse effects on the tourism sector, particularly the hotel industry. 
Wind energy represents a renewable electricity source that can facilitate the transition of small-scale hotels to clean energy. The main objective of 
this research is to propose a methodology for evaluating the potential of wind energy to support sustainable tourism in developing nations, specifically 
in fulfilling the electricity requirements of small hotels. This study aims to assess and compare the potential contribution of small wind turbines to 
hotel energy demand by modelling a historical hourly wind dataset spanning ten years (2011-2020) and forecasting a portion of the dataset. This 
research selected three sites in Indonesia exhibiting varying wind energy potentials: Tepus District in Gunung Kidul Regency, Losari Beach in 
Makassar City, and Nusa Penida Island in Bali. This study utilises multiple linear regression to examine the impact of external variables on wind 
speed, and it applies Seasonal Autoregressive Integrated Moving Average (SARIMA) and Holt-Winters Exponential Smoothing (HWES) for wind 
speed forecasting in these three locations. The hourly and daily interval datasets analysis reveals a weak correlation between external factors and 
wind speed, with the HWES method identified as the most appropriate approach for modelling and forecasting wind speed, surpassing the SARIMA 
model by 0.309 RMSE. Forecasting results indicate that a 30-kW wind turbine could supply 8.8 - 35.3% of a small hotel's electricity consumption, 
depending upon the occupancy rate.  
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1. Introduction 

The hotel industry, one of the significant energy end-users, is 
among the most promising sectors in tourism for utilizing clean 
electricity to advance sustainable tourism (UNEP, 2024). The 
term "sustainable tourism" denotes tourism that comprehensively 
addresses its current and future socio-economic and 
environmental impacts while fulfilling visitors' needs, the industry, 
the environment, and local communities (GSTC 2024; UNT 2024). 
The beneficial effects of sustainable tourism may encompass a 
wide array of economic, environmental, sociocultural, wildlife 
conservation, and additional advantages (Li et al. 2024; Rahman 
et al. 2024). Sustainable tourism development, focusing on 
environmental sustainability, is increasingly recognized by 
countries, including those in the developing world, as it can 
significantly boost local and national economies.  

In recent years, developing countries have been working to 
promote sustainable tourism in their accommodation sectors. 
The Indonesian government is partnering with the US on a $6 
billion investment to develop eco-friendly hotels (IBP 2023). 
This is crucial as only a few tourist destinations have adopted 
sustainable tourism practices. Misool Eco Resort in Raja Ampat, 
Papua, uses solar photovoltaic systems for energy (MTCE 
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2024), while Lake Toba in North Sumatra province is developing 
electric vehicle charging stations and clean energy 
infrastructures (LTAIA 2022). These efforts aim to increase the 
number of establishments adhering to green standards. 

Renewable energy (RE) provides a viable alternative for 
electrifying the untapped tourism potential in remote regions 
and enhancing the tourism appeal of specific locations (Beer et 
al. 2017). For businesses, RE could provide an economic benefit 
by lowering energy expenses and increasing potential income 
from the power produced by renewable sources (Luo et al. 
2024). Meanwhile, visitors have expressed favourable attitudes 
towards using RE in tourism facilities (Navratil et al. 2019). An 
empirical study using long-term panel data has shown that RE 
positively influences sustainable tourism goal achievement 
(Hailiang et al. 2023). In practice, RE may be the sole viable 
option for developing tourism destinations in remote regions 
lacking access to conventional utility grids. Kamanggih Village 
in East Nusa Tenggara, Indonesia, for instance, fulfils its daily 
energy demand through RE sources (Petromindo 2024). 

Several studies have examined the capacity of RE, particularly 
wind and solar, to improve the energy sustainability of hotels, 
while evaluating more economical and environmentally friendly 
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energy sources for hotel operations. A grid-connected solar 
photovoltaic system was designed for a proposed hotel in Jordan 
utilising PVGIS and PVSyst simulation software (Al-Zoubi et al. 
2021). The study analyzed various techno-economic metrics 
based on the projected energy consumption of the proposed hotel 
and the regional average occupancy rate.  

Research on hybrid RE systems has garnered significant 
interest. A study was conducted in Turkey on meeting electricity 
demand in a medium-sized hotel utilising a hybrid system (Güler 
et al. 2013). The authors employed four scenarios to evaluate the 
techno-economic viability of the proposed systems, including a 
scenario permitting the purchase and export of electricity, and 
three others presuming that all demand is met by RE, with any 
surplus electricity sold to the grid. The research indicated that 
grid-wind turbines, exhibiting a renewable fraction of 74%, 
represented the optimal solution, surpassing other scenarios. 

To achieve the net-zero energy consumption objective in 
Konya, Turkey, optimal off-grid and on-grid hybrid RE systems 
were designed and evaluated, encompassing a four-story hotel 
(Güğül 2023). The author determined that, for identical annual 
loads, on-grid photovoltaic and wind systems were more 
economically viable for the hotel building compared to other 
structures. Another study indicated that an on-grid small wind 
turbine, despite lacking sell-back payments, was the most 
economical solution for a small hotel in Jordan (Aagreh 2013). 

A separate study identified the ideal hybrid grid-connected 
photovoltaic, wind, and biogas generators for a hotel in Egypt 
(Abdelhady 2023). Additional research utilised hybrid systems 
for a medium-sized hotel in Iran (Fazelpour et al. 2014). A study 
employed Monte Carlo simulation to determine the optimal 
proportions of solar and wind energy while addressing the 
variability of weather and occupancy in the Canary Islands 
(Meschede et al. 2017).  

Another study integrated RE with energy storage and building 
automation systems (Beccali et al. 2018). Further studies 
compared hybrid renewable systems with grid-only and 
renewable-only configurations for a large-scale (over 100 beds) 
grid-connected hotel in Queensland, Australia (Dalton et al. 
2009a), and for stand-alone settings (Dalton et al. 2008). The 
authors also examined the techno-economic of stand-alone RE 
systems utilizing hydrogen fuel cell storage across different small 
to medium-sized accommodations (Dalton et al. 2009b). Lastly, a 
study explored various RE fraction scenarios, including on-site 
wind and solar photovoltaic systems, to mitigate CO2 emissions 
from a modelled hotel building in Qatar (Ayoub et al. 2014).  

Existing studies, as shown above, have focused mainly on 
several aspects of the hotel energy supply, including the on-
grid/hybrid feasibility analysis and design and techno-
economic prospects of RE systems, but have left out the insights 
offered from exploring the performance of long-term RE data. 
Furthermore, although several RE adoption techniques have 
been proposed, little is known about wind energy adoption 
potential and effectiveness in small-scale hotels due to 
differences in hotel occupancy rates and long-term temporal 
data. Hence, despite some research on hotels' wind and solar 
potential and utilization strategies, there is still a lack of 
understanding about how small-scale hotels in developing 
countries deal with long-term renewable energy data, 
particularly wind energy resources, and the available strategies 
for utilization decisions.  

Evaluating the potential influence of meteorological factors 
on wind speed and the power output capacity of wind turbines 
through long-term historical data may enhance comprehension 
of these factors and facilitate improved investment decisions in 
hotels. Nonetheless, studies examining the effects of wind 

energy on small hotels are scarce. In this context, minimal 
exploration has been done into the effects of long-term hourly 
temporal datasets of wind speed and other meteorological 
variables on the feasibility of small wind turbines for sustainable 
energy provision in hotels. 

Thus, this study seeks to address the research problem of 
understanding the long-term hourly temporal wind speed dataset 
and how small-scale hotels can better deal with and utilize the 
historical and projected wind data for their sustainable energy 
supply. This research aims to provide valuable insights for system 
planners, hotel investors, and other stakeholders in planning and 
developing renewable energy systems, particularly wind to 
enhance energy resilience and reliability in the small-scale hotel 
sector in developing countries.  

2. Methodology 

Figure 1 illustrates the comprehensive workflow of this 
research. The process commences with identifying sites for 
investigation, succeeded by data collection and analysis to 
assess the potential energy generation of wind turbines. 
Multiple linear regression (MLR), Seasonal Autoregressive 
Integrated Moving Average (SARIMA), and Holt-Winters 
Exponential Smoothing (HWES) are employed for model 
development, forecasting, and result assessment. The capacity 
to fulfil power requirements at designated locations is 
subsequently evaluated, followed by an outcomes analysis. 

2.1 Sites Selection and Hotel’s Electricity Efficiency Ratings 

This research considers three sites in Indonesia with varying wind 
energy potentials for the case study. The evaluation of the three 
sites examined in this study commences with analysing location 
appropriateness. The indicators encompass tourism potential, the 
necessity for alternative energy sources, and geographical 
characteristics.  

It should be noted that the case study's selected locations do 
not correspond to established hotels, given that this is a planning 
study focusing on temporal dataset analysis and modelling. This 
study not only identified sites for analysis but also collected 
relevant information to evaluate wind energy potential by 
determining the average number of guest rooms in small-sized 
hotels and their corresponding electricity energy efficiency 
ratings and total energy consumption threshold. Figure 2 
illustrates the site selection and data collection and the hotel’s 
electricity efficiency rating, followed by wind dataset collection 
and pre-processing.  
 

 
 

 Fig 1 Research methodology flowchart 
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2.2 Wind Dataset Collection and Pre-processing 

This study examines several critical variables for modelling and 
analytical purposes, including wind speed, relative humidity, 
temperature, wind direction, and pressure. As shown in Figure 
2, the data collection procedure for these variables on selected 
locations involves downloading hourly data at one-year 
intervals over a decade (2011-2020) by querying coordinates on 
the National Solar Radiation Database (NSRDB) website, 
accessible at https://nsrdb.nrel.gov/ (NREL 2024). The 
collected information is subsequently combined into a singular 
data set.  

Data preprocessing entails verifying and transforming data 
into the appropriate format, addressing errors, and implementing 
other essential modifications. Subsequently, the data is analyzed 
through aggregation and graphical representation to discern 
patterns or valuable insights, facilitating further wind dataset 
modelling and the selection of the optimal wind turbine model. 
The dataset and data preprocessing results are accessible 
through 
https://drive.google.com/drive/folders/1IwuR_bsiTt5Hx7OR
HGRT7EfSdK3C9Fw7?usp=sharing.  

2.3 Modelling of Wind Dataset  

2.3.1 Multiple Linear Regression (MLR) 

MLR is a statistical technique that broadens the scope of simple 
linear regression. Simple linear regression involves a single 
independent variable, while MLR encompasses two or more 
independent variables. Notwithstanding this distinction, the 
objective of MLR is identical to that of simple linear regression: 
to determine the relationship between variables and facilitate 
predictions. The equation model for MLR can be expressed as 
follows (Katić et al. 2024). 

𝑌 =  𝛼 +  𝛽1𝑋1 +  𝛽2𝑋2 + 𝛽𝑛𝑋𝑛 + e (1) 
 
where: 𝑌 is the dependent variable, 𝑋1 … 𝑋𝑛 is the 1st to the nth 
independent variable, 𝛼 is a constant or the starting point 
(where all independent variables are equal to 0), 𝛽1 … 𝛽𝑛 is the 
1st to the nth regression coefficient and 𝑒 is the prediction error. 

Figure 3 shows the flowchart in which MLR is utilized in this 
research. The method is employed to analyze the correlation 
between selected independent variables (wind direction, 
temperature, pressure, and relative humidity) and the dependent 
variable (wind speed). If a strong correlation is found, additional 
independent variables may be added to improve the model's fit 

when using different methods. The model evaluation utilizes Root 
Mean Squared Error (RMSE). 

2.3.2 Seasonal Autoregressive Moving Average (SARIMA) 

The SARIMA model is an extension of the Autoregressive 
Integrated Moving Average (ARIMA) model. The ARIMA 
method is effective in analyzing and forecasting time series data; 
however, it cannot accommodate seasonal characteristics or 
patterns within the wind dataset. This study formulates the 
SARIMA model and integrates seasonal elements into it. The 
SARIMA model consists of up to 7 components, namely 𝑝 (the 
trend autoregression order), 𝑑 (the trend difference order), 𝑞 
(the trend’s moving average order), 𝑃 (the seasonal 
autoregressive order), 𝐷 (the seasonal difference order), 𝑄 (the 
seasonal moving average order), and 𝑚 (the number of periods 
per season to be calculated) (Machine Learning Mastery 2019). 
The equation for SARIMA is as follows (Christie et al. 2022). 

𝜙𝑝(𝐵𝑠)𝜙𝑝(𝐵)(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑌𝑡 = 𝜃𝑞(𝐵)Θ𝑄(𝐵𝑠)ℰ𝑡   (2) 

 
where: 𝑝 is trend autoregression order, 𝑃 is the seasonal 
autoregressive order, 𝑑 is trend difference order, 𝐷 is the seasonal 
difference order, 𝑞 is the trend-moving average order, 𝑄 is 
seasonal moving average order, 𝜙𝑝(𝐵) is the non-seasonal 

autoregressive level, 𝜙𝑝(𝐵𝑠) is the seasonal autoregressive level, 

(1 − 𝐵)𝑑 is the non-seasonal differencing level, (1 − 𝐵𝑠)𝐷 is the 
seasonal differencing level, 𝛳𝑞(𝐵) is the non-seasonal moving 

average level, 𝛩𝑞(𝐵𝑠) is the seasonal moving average level, 𝑌𝑡 is 

the actual data for the period 𝑡, and ℰ𝑡 represents the error in 
the period 𝑡. 

Figure 4 illustrates the particular SARIMA process employed 
in this study. The Augmented Dickey-Fuller (ADF) test verifies 
the stationarity of data. Should the data exhibit non-stationarity, 
the differencing procedure is implemented repeatedly until 
stationarity is achieved. The data is subsequently partitioned for 
fitting and testing purposes. The optimal SARIMA model (the 
values for 𝑝, 𝑑, 𝑞, 𝑃, 𝐷, and 𝑄) is determined using two 
approaches: the auto_arima function from a Python library and 
the grid search method. The grid search technique evaluates the 
spectrum of parameter values by analyzing the autocorrelation 
function (ACF) and partial autocorrelation function (PACF) 
graphs. Upon identifying the optimal parameters, a SARIMA 
prediction model will be developed, and the outcomes will be 
compared (auto_arima and grid search). The model's efficacy is 
assessed through Root Mean Squared Error (RMSE). 

2.3.3 Holt-Winters Exponential Smoothing (HWES) 

HWES is a modification of Holt's exponential smoothing, 
commonly called double exponential smoothing. The Holt-
Winters method assumes that time-series data comprises level, 

 
 

Fig 2. A detailed methodology for site selection and hotel’s 
electricity efficiency rating followed by wind dataset collection and 
pre-processing  

 

 

Fig 3 Modelling procedure using MLR  
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trend, and seasonal components. The Holt-Winters method for 
addressing seasonality comprises two variations: additive and 
multiplicative. Time series can be modelled through the additive 
trend with additive seasonality, the additive trend with 
multiplicative seasonality, the multiplicative trend with additive 
seasonality, and the multiplicative trend with multiplicative 
seasonality. 

The formulas employed in HWES are presented below, 
beginning with level smoothing (𝐿𝑡) for additive variation in Eq. 3 
and multiplicative variation in Eq. 4 (Irandi et al. 2021). The 
formulas used to calculate trend pattern smoothing, seasonal 
pattern smoothing, and the prediction for the next period, are 
shown in Eq. 5, Eq. 6 (additive) and Eq. 7 (multiplicative), and Eq. 
8 (additive) and Eq. 9 (multiplicative), respectively. 

 
 

𝐿𝑡 = 𝛼(𝑦𝑡 − 𝑆𝑡−𝑠) + (1 − 𝛼)(𝐿𝑡−1 + 𝑇𝑡−1) (3) 
 

𝐿𝑡 = 𝛼 (
𝑦𝑡

𝑆𝑡−𝑠
) + (1 − 𝛼)(𝐿𝑡−1 + 𝑏𝑡−1) (4) 

 
𝑏𝑡 = 𝛽(𝐿𝑡 − 𝐿𝑡−1) + (1 − 𝛽)𝑏𝑡−1 (5) 
 

𝑆𝑡 = 𝛾 (
𝑦𝑡

𝐿𝑡−1
) + (1 − 𝛾)𝑆𝑡−𝑠 (6) 

 

𝑆𝑡 = 𝛾 (
𝑦𝑡

𝐿𝑡
) + (1 − 𝛾)𝑆𝑡−𝑠 (7) 

 
𝐹𝑡+𝑚 = 𝐿𝑡 + 𝑏𝑡𝑚 + 𝑆𝑡−𝑠+𝑚 (8) 
 
𝐹𝑡+𝑚 = (𝐿𝑡 + 𝑏𝑡𝑚)𝑆𝑡−𝑠+𝑚 (9) 

where: 𝛼, 𝛽, and 𝛾 are smoothing constants, 𝑦𝑡 is the observed 
value at the time 𝑡, 𝐿𝑡 is the smoothing level value at the time 𝑡, 
𝑏𝑡 is trend pattern smoothing value at the time 𝑡, 𝑆𝑡 is the 
seasonal pattern smoothing value at the time 𝑡, 𝐹𝑡+𝑚 is forecast 
for a time 𝑡 + 𝑚, and 𝑠 represents the seasonal length.  

Figure 5 shows the application of Holt-Winters exponential 
smoothing in this study. The dataset is partitioned into training 
and testing groups, and the grid search technique is employed 
to identify the optimal smoothing constants, considering 
variations in trend and seasonality types. The modelling results 
are assessed utilizing the RMSE method, and the optimal 
smoothing constants are selected for data prediction. 

 

2.4 Wind Turbine Selection and Wind-to-Power Conversion  

Small wind turbine candidates are identified after analyzing and 
modelling the wind dataset using the three techniques outlined 
in the previous section. The main criterion for selecting a wind 
turbine is its power curve, which should be aligned with the 
potential wind speed. In this context, the power curve of each 
wind turbine candidate is modelled using either polynomial, 
linear or piecewise regression techniques. Polynomial 
regression can be used due to the non-linear relationship 
between the independent variable (wind speed) and the 
dependent variable (power output). The equation for the 
polynomial regression is as follows (Morala et al. 2021). 
 
 
𝑌′ =  𝑏0 + 𝑏1𝑋 + 𝑏2𝑋2 + ⋯ + 𝑏𝑛𝑋𝑛 (10) 

 
 

where: 𝑌′ is the dependent variable, 𝑋 is the independent 
variable, 𝑋2 … 𝑋𝑛 are the independent variables with 𝑛 degree 
of the polynomial, 𝑏0 is a constant or the starting point (where 
all independent variables are equal to 0), and 𝑏1 … 𝑏𝑛 are the 
regression coefficients. 
 

Upon fitting, the polynomial regression model of the power 
curve converts wind speed into potential electrical power 
output at designated sites. The conversion outcomes will be 
assessed to ascertain the electrical power contribution provided 
by the wind to the hotel energy demand, given the selected 
historical and forecasted wind speed model, which is obtained 
from one of the three methods explained in Section 2.3. Figure 
6 illustrates a flowchart detailing the wind turbine selection and 
wind-to-power conversion process.  

3. Results and Discussion 

This section presents the analysis results of all aspects described 
in the methodology section. These include the selected sites and 
the hotel’s electricity efficiency ratings, the wind data 
characteristics over a decade (2011-2020) for all locations, and 
the modelling outcomes derived from MLR, SARIMA, and HWES 
techniques. This section also presents the analysis results of wind 
turbine selection and wind-to-power conversion, and the 
potential of wind energy in supplying hotel electricity, considering 
varying occupancy rates.  
 
3.1 Selected Sites and Hotels’ Electricity Efficiency Ratings 

All three chosen locations are situated on different islands. The 
first location is the Tepus District, in Gunung Kidul Regency. 
The geographical coordinates for this study are 7°58'11.79" 
South latitude and 110°29'17.25" East longitude. Gunung Kidul, 

 
Fig 4 Flowchart for modelling using SARIMA  

 

 
 

Fig 5 Flowchart for modelling using HWES 

 



Y. Tanoto et al  Int. J. Renew. Energy Dev 2025, 14(3), 429-440 

| 433 

 

ISSN: 2252-4940/© 2025. The Author(s). Published by CBIORE 

near the southern Java coastline, has significant tourism 
potential due to its elevation and wind speed. The low 
population density ensures minimal disruption to local 
communities. The predominantly level terrain allows for 
increased electricity generation from wind turbines due to 
enhanced wind velocity (Elgendi et al. 2023).  

The second location is Losari Beach in Makassar (5°08'34" 
South and 119°24'25" East). It is a recognized coastal region 
potentially appropriate for small turbine applications (Prabowo 
et al. 2022). The third location is Nusa Penida Island in Bali 
Province. The selected geographical coordinates are 8°48'00.0" 
South latitude and 115°34'00.0" East longitude. Nusa Penida 
experiences elevated wind speeds. However, this resource 
remains underexploited, signifying considerable unutilized wind 
energy potential (Darmana, Koerniawan 2019). 

The hotel’s electricity efficiency rating is determined based 
on the hotel’s capacity, i.e., the available rooms (Bohdanowicz 
2001). The average number of guest rooms in small hotels 
within Gunung Kidul Regency is 23 (GKTA 2019), while the 
majority of small lodgings in Nusa Penida possess between 5 
and 14 guest rooms (Berita Satu 2019).  

The suggested electricity efficiency ratings are less than 60 
kWh/m²/year for Gunung Kidul and Nusa Penida and less than 
70 kWh/m²/year for Makassar, based on the average number of 
guest rooms. Following a similar study, the advised total energy 
consumption thresholds for Gunung Kidul and Nusa Penida are 
below 240 kWh/m2/year, while for Makassar, it is below 260 
kWh/m2/year (Bohdanowicz 2001). 
 
3.2 Wind Dataset Collection and Pre-processing Results 

The analysis of wind data is initiated by data aggregation. The 
dataset comprises a decade of hourly data intervals for pressure 
(P), relative humidity (RH), temperature (T), wind direction (WD), 
and wind speed (WS). The hourly values collected over a decade 
(87,600 hours) are averaged in wind speed data for each 24-hour 
interval. Consequently, all daily averaged wind speeds are 
derived by consolidating the 24-hour wind speed data ranges. 
Upon acquiring the complete set of daily average wind speed data 
(3,650 entries), the weekly average wind speed values are 
determined by consolidating the daily averages every 7 days.  

A monthly averaged wind speed is derived by consolidating 
all daily averaged data for that month. This study comprises 120 
months of average wind speed data spanning 10 years. The 
minimum, maximum, and mean values for hourly to monthly 

aggregated wind speed at three locations are calculated 
accordingly.  

Figure 6 presents the minimum, maximum, and mean values 
of hourly and monthly aggregated temporal wind speeds at three 
locations. The data indicates that Nusa Penida in Bali exhibits the 
highest maximum wind speed values across all aggregation 
periods compared to the other two locations. The peak wind 
speed at Nusa Penida is 10.3 m/s, with daily, weekly, and monthly 
averages of 8.3 m/s, 6 m/s, and 5.3 m/s, respectively. The 
average wind speed for data aggregated from hourly to monthly 
intervals is 3.64 m/s. A seasonal pattern is discernible, recurring 
roughly every 8760 data rows (equivalent to 12 months of data).  

Figure 7 shows box-whisker plots of hourly to monthly 
average wind speed data collected over a decade at a selected 
location on Nusa Penida Island. The 87,600-hourly dataset 
exhibits a maximum wind speed of 7.8 m/s when excluding 
outliers, and 10.3 m/s when including them. The maximum 
daily average wind speed is 7.8 m/s excluding outliers and 8.3 
m/s including outliers. The maximum average wind speeds for 
weekly and monthly intervals are 6 m/s and 5.3 m/s, 
respectively, while the minimum averages are 1.1 m/s and 1.9 
m/s. All time intervals exhibit mean wind speeds of 3.6 m/s.  

Figure 8 depicts a box and whisker plot representing the 
monthly average wind speed from 2011 to 2020 at a designated 
location on Nusa Penida. The graph illustrates various ranges of 
monthly average wind speeds, derived from daily average 
values, spanning from 2011 to 2020. In the 10-year dataset (up 

 
 

Fig 6. Comparison of hourly (H), daily (D), weekly (W), and 
monthly (M) aggregated wind speed during 2011-2020 in Gunung 
Kidul, Nusa Penida, and Losari Beach (Makassar) 

 

 
 

Fig 7. The range of hourly- to monthly average wind speed data in 
a selected location at Nusa Penida Island over a total of 10 years 
dataset (2011-2020) 

 

 
 

Fig 8. The ranges of monthly average wind speed from 2011-2020 
in Nusa Penida as grouped monthly up to 120 months (aggregated 
from daily average values) 
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to 120 months), the months from June to September exhibited 
higher monthly average wind speeds compared to the 
remaining months. Table 1 summarizes all principal variables 
examined in this study that are believed to influence wind-
derived electrical energy in Nusa Penida from 2011 to 2020. The 
variables include pressure, relative humidity, temperature, wind 
direction, and wind speed. This study additionally examines the 
data for Gunung Kidul and Losari. 
 
3.3 Wind Datasets Modelling Results 

3.3.1 MLR results 

The MLR method applies to all temporal data intervals, 
including hourly, daily, weekly, and monthly. The evaluation 
performance metrics employed are RMSE, R-squared, and 
adjusted R-squared. In Gunung Kidul, hourly, daily, and monthly 
models are predicated on relative humidity (RH), pressure (P), 
and temperature (T). The weekly period is determined by 
relative humidity (RH) and temperature (T). The optimal result, 
characterised by the minimal RMSE, is achieved at Losari Beach 
through the integration of relative humidity (RH), pressure (P), 
and temperature (T). The interplay of relative humidity (RH), 
pressure (P), temperature (T), and wind direction (WD) in Nusa 
Penida yields the minimal RMSE.  

Table 2 presents the variable combinations employed in the 
MLR models, yielding the optimal RMSE and R-squared across 
all intervals. The coefficient of determination (R-squared) 
quantifies the extent to which the independent variable elucidates 
the dependent variable. The R-squared values in Table 2, 
especially for hourly and daily intervals, demonstrate a weak 
correlation between the independent variables (RH, P, T, and 
WD) and wind speed at all locations. This indicates that the 
independent variables are insufficient to completely elucidate the 
dependent variable. Simultaneously, the R-squared values for 
variable combinations at weekly and monthly intervals 
sufficiently elucidate aggregated wind speed, especially for Nusa 
Penida. 

As the data aggregation interval increases, the performance 
metrics improve, indicated by a lower RMSE and a higher R-

squared value. The performance metrics indicate that the ideal 
variable combinations for each location yield consistent results 
across all data intervals. The optimal variable combination for 
Gunung Kidul and Losari is relative humidity (RH), precipitation 
(P), and temperature (T), whereas for Nusa Penida, it includes 
RH, P, T, and wind direction (WD).  

Nevertheless, incorporating additional independent 
variables into the MLR model does not enhance the fit of the 
Gunung Kidul and Losari data. The data from Nusa Penida 
presents divergent results. Despite the RMSE being greater than 
that of the other two locations, the R-squared value remains 
comparatively high. 

3.3.2 SARIMA results 

In SARIMA, the Augmented Dickey-Fuller (ADF) test is utilized 
to verify data stationarity. The test results are displayed in Table 
3 and Table 4 for hourly, weekly, and monthly intervals, 
respectively. The ADF test results indicate that the data is 
stationary at the weekly interval but non-stationary at the monthly 
interval. This is evidenced by a p-value exceeding 0.05 and an 
ADF statistic surpassing the critical threshold. Seasonal 
differencing is applied once (D=1) to rectify the absence of 
stationarity in the monthly dataset.  

Table 4 presents the results of the differencing analysis, while 
Table 5 shows possible SARIMA model parameters for all 
locations. The SARIMA model is subsequently fitted utilizing 

Table 1  
Wind data characteristics – Nusa Penida 

Interval Variable Mean Max Min 

Hourly 

Pressure (mbar) 1015 1034 993 

Relative humidity (%) 80,6 95,58 57,32 

Temperature (°C) 27,8 32,3 23 

Wind direction (°) 164 360 0 

Wind speed (m/s) 3,6 10,3 0,1 

Daily 

Pressure (mbar) 1015 1032,3 995,1 

Relative humidity (%) 80,6 91,9 65,4 

Temperature (°C) 27,8 31,1 24 

Wind direction (°) 164 334,3 31,1 

Wind speed (m/s) 3,6 8,3 0,8 

Weekly 

Pressure (mbar) 1015 1031,2 997,5 

Relative humidity (%) 80,7 89 73,1 

Temperature (°C) 27,8 30,7 24,4 

Wind direction (°) 164 332,4 80,7 

Wind speed (m/s) 3,6 6 1,1 

Monthly 

Pressure (mbar) 1015 1030,3 999,4 

Relative humidity (%) 80,7 87,3 74,4 

Temperature (°C) 27,8 30,3 24,8 

Wind direction (°) 164 256,3 109 

Wind speed (m/s) 3,6 5,3 1,9 

 

Table 2 
The best RMSE and R-squared, and combination of variables involved 
in the MLR models  

Interval Location 
Involved 
Variables 

RMSE 
R-

squared 

Hourly Gunung Kidul RH, P, T 0.981 0.261 

Losari RH, P, T 0.924 0.086 

Nusa Penida RH, P, T, 
WD 

1.264 0.241 

Daily Gunung Kidul RH, P, T 0.757 0.279 

Losari RH, P, T 0.668 0.241 

Nusa Penida RH, P, T, 
WD 

1.074 0.367 

Weekly Gunung Kidul RH, T 0.540 0.464 

Losari RH, P, T 0.502 0.327 

Nusa Penida RH, P, T, 
WD 

0.821 0.516 

Monthly Gunung Kidul RH, P, T 0.384 0.641 

Losari RH, P, T 0.357 0.433 

Nusa Penida RH, P, T, 
WD 

0.482 0.769 

 

Table 3 
ADF Test results  

Interval Location ADF  
p-

value 
Critical values 

Hourly Gunung 
Kidul 

-6.37 2.36 x 
10−8 

1%: -3.44; 5%: -2.87; 
10%: -2.57 

Losari -8.68 4.27 x 
10−14 

1%: -3.44; 5%: -2.87; 
10%: -2.57 

Nusa 
Penida 

-6.09 1.04 x 
10−7 

1%: -3.44; 5%: -2.87; 
10%: -2.57 

Daily Gunung 
Kidul 

-2.05 0.26 1%: -3.49; 5%: -2.89; 
10%: -2.58 

Losari -2.46 0.13 1%: -3.49; 5%: -2.89; 
10%: -2.58 

Nusa 
Penida 

-1.70 0.43 1%: -3.49; 5%: -2.89; 
10%: -2.58 
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auto_arima and grid search techniques. The RMSE value 
identifies the optimal model and fitting technique. The number of 
periods per season (m) will be established as 52 weekly intervals 
and 12 monthly intervals. The results for weekly and monthly 
intervals are presented in Table 6. 

The findings in Table 6 indicate that the SARIMA method is 
appropriate for datasets of moderate size, as it can process data 
at weekly intervals within a reasonable timeframe. As the 
dataset size expands, the number of possible models fit also 
increases, augmenting the model's complexity and requiring 
additional computation time. In comparing RMSE results, the 
grid search method exhibits lower RMSE values across all data 
intervals at the three locations than the auto_arima method. 
Moreover, it was found that extending the data aggregation 
interval diminishes the RMSE. 

3.3.3 HWES results 

The HWES model is formulated to exclude trends and 
incorporate additive seasonality. This study utilizes RMSE to 
identify the optimal model and fitting method for each interval 
and location. Table 7 presents the optimal model outcomes for 
the HWES model. 

The modelling outcomes presented in Table 7 utilize the 
2011–2018 dataset for training and the 2019–2020 dataset for 
testing. The RMSE of 0.374 for Nusa Penida (monthly) indicates 
the prediction error for 2019-2020 concerning the actual data 
from that period. This study establishes the number of periods 
per season (𝑠) as 365 for daily intervals, 52 for weekly, and 12 
for monthly intervals. A grid search method is employed to 
identify the optimal alpha (𝛼) and gamma (𝛾) values.  

Upon establishing the optimal smoothing constants, the 
historical data is plotted, and model fitting is conducted for all 
potential intervals across all locations. This paper shows HWES 
results for Nusa Penida, as illustrated in Figures 9a to 9c. The 
figures show the model fitting for daily interval data, weekly 
intervals, and monthly intervals, respectively. 

The analysis indicates that the HWES method can efficiently 
accommodate large datasets while maintaining high processing 
speed. Consequently, the method is effective with data 
characterized by lower aggregation levels or larger volumes. 
The HWES method surpasses both SARIMA and MLR methods 
in overall computational efficacy. While certain locations 
employing the SARIMA method exhibited marginally reduced 
RMSE values, the disparity was minimal (approximately 0.02).  

Nevertheless, as the degree of data aggregation diminishes, 
the resultant RMSE value escalates. Datasets with monthly 
aggregation intervals exhibited the lowest RMSE for each 
location. The model-fitting graph can reflect the rising and 
falling trends of wind speed indicated by actual historical data.  

Although the HWES model fittings for both daily and weekly 
intervals are insufficient for predicting short-term operational 
needs for wind turbines or supply systems, it provides 

Table 4 
ADF Test results on seasonal differencing monthly data 

Location ADF statistic p-value Critical values 

Gunung 
Kidul 

-6.578 7.66 x 10−9 1%: -3.493 
5%: -2.890 

10%: -2.581 

Losari  -7.156 3.06 x 10−10 1%: -3.493 
5% : -2.890 

10% : -2.581 

Nusa 
Penida 

-4.361 3.48 x 10−10 1%: -3,501 
5%: -2,892 

10%: -2,583 

 

Table 5 
Possible SARIMA model parameters for all locations 

Interval parameter 
Gunung 

Kidul 
Losari Nusa Penida 

Weekly 𝑝 0-3 0-1 0-3 

𝑑 0 0 0 

𝑞 0-9 0-5 0-8 

𝑃 0-1 0 0 

𝐷 0 0 0 

𝑄 0-2 0-2 0-2 

Monthly 𝑝 0-1 0-1 0-1 

𝑑 0 0 0 

𝑞 0-1 0-2 0-1 

𝑃 0-2 0-1 0-2 

𝐷 1 1 1 

𝑄 0-1 0-1 0-1 

 

Table 6 
SARIMA fitting results comparison 

Interval Location Method Best model RMSE 

Weekly Gunung 
Kidul 

auto_arima SARIMA 
(1,0,2);(2,0,0);52 

0.802 

grid search SARIMA 
(0,0,1);(1,0,2);52 

0.490 

Losari auto_arima SARIMA 
(1,0,0);(2,0,0);52 

1.655 

grid search SARIMA 
(1,0,4);(0,0,2);52 

0.575 

Nusa 
Penida 

auto_arima SARIMA 
(1,0,2);(0,0,0);52 

1.468 

grid search SARIMA 
(3,0,8);(0,0,2);52 

1.067 

Monthly Gunung 
Kidul 

auto_arima SARIMA 
(1,0,0);(1,0,1);12 

0.443 

grid search SARIMA 
(0,0,0);(1,0,1);12 

0.315 

Losari  auto_arima SARIMA 
(1,0,0);(2,0,0);12 

0.688 

  grid search SARIMA 
(0,0,2);(1,0,0);12 

0.304 

 Nusa 
Penida 

auto_arima SARIMA 
(0,0,2);(1,0,1);12 

0.419 

  grid search SARIMA 
(0,0,0);(0,0,1);12 

0.379 

 

Table 7 
HWES fitting results 

Interval Location 
Alpha 

(α) 
Gamma 

(γ) 
RMSE 

Daily Gunung 
Kidul 

0.05 0.05 0.819 

Losari 0.05 0.05 0.702 

Nusa Penida 0.8 0.05 1.014 

Weekly Gunung 
Kidul 

0.2 0.25 0.511 

 Losari 0.1 0.15 0.489 

 Nusa Penida 0.05 0.25 0.769 

Monthly Gunung 
Kidul 

0.05 0.15 0.309 

 Losari 0.05 0.25 0.322 

 Nusa Penida 0.05 0.15 0.374 
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stakeholders with insights into the fluctuating wind speed 
patterns to forecast energy supply security rather than providing 
precise numerical wind speed values for a specific period. By 
providing more precise forecasts for monthly aggregated wind 
resources, the monthly model fitting can assist stakeholders in 
making investment decisions. 

3.4 Wind Turbine Selection and Wind-to-Power Conversion 

The analysis of wind data has resulted in the identification of 
three small wind turbines as candidates: Pitchwind Systems AB 
30 kW, Eoltec WindRunner 25 kW (European Commission 
2020), and Fuhrländer FL-100 100 kW (The Wind Power 2024). 
These turbines are selected primarily for their power curves, 
which align with the potential wind speed.  

Figure 10a illustrates the power curves of the Pitchwind 
Systems AB 30 kW and Eoltec WindRunner 25 kW wind 
turbines, while Figure 10b illustrates the power curve of a 
Fuhrländer FL-100 100 kW wind turbine. 

The relevant regression equations can be derived from the 
wind turbine’s supplied power curves. The Pitchwind Systems 
AB 30 kW and Eoltec WindRunner 25 kW models utilize a 
modified piecewise regression method, applying distinct 
regression types to specific intervals of data points along the 
power curve. Conversely, the Fuhrländer FL-100 100 kW model 
solely utilizes polynomial regression.  

Eq. 11 presents the linear regression equation for Pitchwind 
Systems AB 30 kW, whereas Eq. 12 presents the polynomial 
regression equation. Meanwhile, the linear regression equations 
for Eoltec WindRunner 25 kW can be seen in Eq. 13, while the 
polynomial regression equation for the Fuhrländer FL-100 100 
kW is presented in Eq. 14. 

 
 

𝑦 = (0,1999999𝑥) + (−0,2999977)               (11) 
 
 𝑦 = (0,0006013𝑥11) − (0,001071𝑥10) +
(0,006777𝑥9) − (0,002255𝑥8) + (0,04551𝑥7) −
(0,5942𝑥6) +  (5,148𝑥^5 ) − (29,66𝑥^4 ) +
(111,4𝑥^3 ) − (259,1𝑥^2 ) + (335,4𝑥) − 182,8           (12) 

    
𝑦 = (0,49999999𝑥) + (−0,99999996   (13) 
 
𝑦 = (−0,0005086𝑥11) + (0,004726𝑥10) −
(0,001955𝑥9) + (0,04744𝑥8) − (0,7507𝑥7) +
(8,123𝑥6) − (61,3𝑥5) + (322,4𝑥4) − (1157𝑥3) +
(2696𝑥2) − (3671𝑥) + 2209            (14) 

 
(a) 

 

 
(b) 

 

 
(c) 
 

Fig 9. HWES plot for Nusa Penida – (a) daily interval, (b) weekly 
interval, (c) monthly interval 

 

 
(a) 

 

 
(b) 

 
Fig 10. The power curves of (a) Pitchwind Systems AB 30 kW and 
Eoltec WindRunner 25 kW wind turbines, (b) Fuhrländer FL-100 
100 kW wind turbine 
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where: 𝑦 is the power output, and 𝑥 denotes wind speed. 

3.5 Wind Contribution in Supplying Hotel Electricity Demand  

This study examines a hotel’s electricity consumption, 
considering usage levels and the number of rooms, with an 
emphasis on small hotels. It employs the Energy Use Index 
(EUI) metric from the Caribbean Hotel Energy Efficiency Action 
Programme (CHENACT) to evaluate the feasibility of satisfying 
a hotel's electricity requirements, as illustrated in Table 8 
(CHTA 2012).  

The EUI of the Caribbean Hotel was utilised in this study due 
to the resemblance between Indonesia's tropical climate and 
that of the Caribbean. This indicates that hotel energy 
consumption remains consistent regardless of variations in 
guests' cultural backgrounds, which may affect energy usage 
behaviour. The EUI evaluates three levels of energy 
consumption, measured in kWh per Guest Night, across four 
categories of hotel size based on the number of guestrooms. 
"Guest Night" denotes the aggregate count of hotel occupants.  

This study suggests, according to the data in Table 8, that the 
small hotel comprises a maximum of 50 guestrooms, each 
occupied by a single guest, with a minimal electricity 
consumption of 12 kWh per guest night. This study computes 
total electricity consumption per night and hour by multiplying 
electricity usage by the number of rooms and dividing by 24. 
Consequently, a hotel with 50 rooms occupied by a single guest 
each, consuming 12 kWh per guest night, results in a total energy 
consumption of 600 kWh per night, equating to 25 kWh per hour.  

Meanwhile, Table 9 presents the computation outcomes for 
various levels of energy consumption and occupancy. The energy 
consumption values in Table 9 may also reflect the hotel's total 
electricity usage, encompassing facilities such as the kitchen, 
office, lobby, and others, expressed as the average energy 
consumption per guest per night across different occupancy 
levels. 
The contribution of wind energy to hotel electricity demand is 
quantified as a percentage, determined by dividing the average 
power output of the wind turbine by the energy consumption 
linked to hotel occupancy. This study employs low-to-high 

kWh/Guest Night values, specifically ranging from 25% to 100% 
hotel occupancy, to calculate the contribution of wind energy.  

Utilizing HWES to predict wind speed and wind turbine 
power output demonstrated that the Pitchwind Systems AB 30 
kW turbine outperformed the Fuhrländer FL 100 100 kW and 
the Eoltec WindRunner 25 kW turbines. Therefore, the 
Pitchwind Systems AB 30 kW is chosen to evaluate the potential 
contribution of wind energy. Table 10 shows the potential 
percentages of electricity consumption that can be satisfied by 
a single installed wind turbine for small hotels across various 
locations, categorised by daily, weekly, and monthly data 
intervals, respectively.  

The wind energy contribution shown in Table 10 evaluates 
both historical and projected average kWh produced by the 
Pitchwind Systems AB 30 kW turbine by its power curve 
characteristics. The predicted mean kWh is derived from the 
HWES models presented in Table 7. The data in Table 10 indicate 
that the anticipated energy contribution of a Pitchwind Systems 
AB 30 kW turbine to the hotel's energy requirements across all 
locations varies from 0.8% to 35.3%, based on hotel occupancy 
levels ranging from 100% to 25%, specifically at Losari (100% 
occupancy, weekly averaged interval) and Nusa Penida (25% 
occupancy, daily averaged interval).  

According to daily average wind speed data, Nusa Penida 
exhibits the greatest contribution of wind turbine energy 
generation in fulfilling hotel electricity demand across various 
occupancy levels. The predicted mean energy output of the wind 
turbine, quantified at 2.21 kWh, could fulfil 8.8% of the hotel’s 
energy requirements at full occupancy and escalate to 35.3% at 
25% occupancy. Concurrently, Losari Beach has demonstrated 
the least potential across all data intervals.  

Results in Table 10 also illustrate a trade-off between hotel 
occupancy rates and the contribution of wind turbine energy 
generation to the energy demands of hotels. The daily interval 
results for Nusa Penida indicate that reducing hotel occupancy to 
25% has led to a fourfold increase in the energy generation 

Table 9 
The calculated electricity energy consumption  

Energy 
consumption 

Time 
Occupancy 

100% 75% 50% 25% 

High Per night 5,900 4,423 2,950 1,475 

Per hour 246 184 123 62 

Average Per night 2,150 1,613 1,075 538 

Per hour 90 67 45 22 

Low Per night 600 450 300 150 

Per hour 25 19 13 7 

 

Table 10 
Wind energy contribution (in percentage) for different hotel occupancies 
while considering daily, weekly, and monthly averaged wind speed data 
interval 

Location Data 
Mean 
kWh 

Occupancy (%) 

100 75 50 25 

Daily averaged wind speed-based data interval 

Gunung 
Kidul 

Historical 0.45 1.8 2.4 3.6 7.2 

Predicted 0.32 1.3 1.7 2.6 5.1 

Losari  Historical 0.35 1.4 1.9 2.8 5.6 

Predicted 0.24 1 1.3 1.9 3.8 

Nusa 
Penida 

Historical 
Predicted 

1.83 
2.21 

7.3 
8.8 

9.8 
11.8 

14.7 
17.6 

29.3 
35.3 

Weekly averaged wind speed-based data interval 

Gunung 
Kidul 

Historical 0.37 1.5 2 3 5.9 

Predicted 0.35 1.4 1.9 2.8 5.6 

Losari  Historical 0.27 1.1 1.5 2.2 4.4 

Predicted 0.21 0.8 1.1 1.6 3.3 

Nusa 
Penida 

Historical 
Predicted 

1.61 
1.79 

6.6 
7 

8.7 
9.5 

13.1 
14.3 

26.2 
28.6 

Monthly averaged wind speed-based data interval 

Gunung 
Kidul 

Historical 0.32 1.3 1.7 2.5 5.1 

Predicted 0.35 1.4 1.9 2.8 5.6 

Losari  Historical 0.22 0.9 1.2 1.8 3.5 

Predicted 0.22 0.9 1.2 1.7 3.5 

Nusa 
Penida 

Historical 
Predicted 

1.46 
1.57 

5.8 
6.3 

7.8 
8.4 

11.7 
12.5 

23.3 
25.1 

 

 

Table 8 
Electricity Use Index - CHENACT Benchmarks 

 Hotel Size (# of Guestrooms) 

<=50 51-
100 

101-
200 

>200 

High (kWh/Guest 
Night) 

118 87 43 50 

Average (kWh/Guest 
Night) 

43 44 32 34 

Low (kWh/Guest 
Night) 

12 18 25 22 
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contribution from wind turbines. Table 10 indicates that small 
wind turbines possess significant potential to fulfil partial 
electricity requirements of hotels at low-to-medium occupancy 
levels, specifically between 25% and 50%. Wind turbines are 
projected to fulfil 10% to 35% of energy requirements.  

This contribution rate is particularly advantageous for the 
hotel as it alleviates the burden of grid energy expenses during 
the off-peak season. This also enables the integration of small 
wind turbines with other RE technologies, such as solar power 
and batteries, to enhance the clean energy supply for hotel energy 
requirements. This study, although focused on Indonesian 
locations, offers valuable methodology and analysis applicable to 
other developing countries and jurisdictions.  

4.   Conclusion 

This study examined renewable energy (RE) use to promote 
sustainable tourism in developing countries. Using a 10-year 
historical wind dataset, it looked specifically at the role of small 
wind turbines in meeting some of the electricity demands of 
small-sized hotels. This study developed the wind speed model 
by incorporating the impact of pressure, relative humidity, 
temperature, and wind direction on wind speed over selected 
locations using MLR, SARIMA, and HWES.  

The key findings of the case study, which considered three 
selected locations across different islands of Indonesia, are as 
follows: 

• The hourly and daily interval datasets analysis reveals a 
weak correlation between weather factors (pressure, 
relative humidity, temperature, and wind direction) and 
wind speed. Wind direction has shown a stronger 
correlation for monthly interval data in locations 
exhibiting higher wind energy potential.  

• The HWES method is the most appropriate approach for 
modelling and forecasting wind speed considering long-
term datasets and different data intervals. The RMSE 
values indicate that monthly interval data has the lowest 
RMSE, followed by weekly and daily interval data.    

• The Pitchwind Systems AB 30 kW wind turbine has been 
identified as the most appropriate type of turbine due to 
its power curve alignment with wind speed data and 
power output potential based on the HWES model’s wind 
speed prediction. 

• The installation of a single wind turbine could supply 
between 8.8% and 35.3% of the hotel's electricity 
demand, depending upon the occupancy rate levels 
ranging from 100% (8.8% contribution) to 25% (35.3% 
contribution). 

This study is limited in that it analysed planned locations. It 
does not consider the economic feasibility of installing small 
wind turbines on-site. These economic implications can help 
determine the overall wind energy potential and feasibility of 
the chosen location. Furthermore, this study does not take into 
account or analyze the impact of hotel electricity demand 
patterns, such as hourly or daily, on the temporal contribution 
period of wind energy supply.  

Nomenclature 

𝑌 : dependent variable of multiple linear 
regression 

𝛼 : constant or the starting point (where all 
independent variables are equal to 0) 

𝛽1 … 𝛽𝑛 : the 1st to the nth regression coefficient 
𝑋1 … 𝑋𝑛 : the 1st to the nth independent variable 

e : prediction error 
𝑝 : trend on autoregression order  
𝑃 : seasonal autoregressive order  
𝑑 : trend on difference order  
𝐷 : seasonal difference order 
𝑞 : trend-moving average order 
𝑄 : seasonal moving average order 

𝜙𝑝(𝐵) : non-seasonal autoregressive level 

𝜙𝑝(𝐵𝑠) : seasonal autoregressive level 

(1 − 𝐵)𝑑 : non-seasonal differencing level, 

(1 − 𝐵𝑠)𝐷 : seasonal differencing level 
𝛳𝑞(𝐵) : non-seasonal moving average level 

𝛩𝑞(𝐵𝑠) : seasonal moving average level 

𝑌𝑡 : actual data for the period 𝑡 
ℰ𝑡 : error in the period 𝑡 

𝛼, 𝛽, 𝛾 : smoothing constants 
𝑦𝑡 : observed value at the time 𝑡 
𝐿𝑡 : smoothing level value at the time 𝑡 
𝑏𝑡 : trend pattern smoothing value at the time 𝑡 
𝑆𝑡 : seasonal pattern smoothing value at the time 𝑡 

𝐹𝑡+𝑚 : forecast for a time 𝑡 + 𝑚 
𝑠 : seasonal length 
𝑦 : power output 
𝑥 : wind speed 
𝑌′ : dependent variable of polynomial regression 
𝑋 : independent variable of polynomial regression 

𝑋2 … 𝑋𝑛 : the independent variable with 𝑛 degree of the  
polynomial 

𝑏0 : constant or the starting point (where all 
independent variables are equal to 0) 

𝑏1 … 𝑏𝑛 : polynomial regression coefficients 
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