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 Abstract 
 
This paper presents an approach for constructing field-consistent 
Timoshenko beam elements using least-squares smoothed (LSS) shape 
functions. The variational basis for shear strain redistribution is 
thoroughly explained, leading to the derivation of LSS shape functions 
for linear, quadratic, and cubic Timoshenko beam elements. These 
elements are then applied to linear static analysis, bifurcation buckling 
analysis, and free vibration analysis of prismatic and tapered beams. 
Numerical tests demonstrate that the LSS-based beam elements 
effectively eliminate shear locking and provide accurate, reliable 
results. Their performance is comparable to the discrete shear gap 
technique but with a simpler implementation procedure. The LSS shape 
function approach offers a practical and efficient alternative for achieving 
field consistency in Timoshenko beam elements, with potential applications 
in enhanced finite element methods (FEMs) such as isogeometric FEM 
and Kriging-based FEM. 
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INTRODUCTION 
 
Beam finite elements are essential in practical structural engineering applications. One of the most widely used 
theories for developing beam elements is the Timoshenko beam model [1], which accounts for shear deformation 
and cross-sectional rotatory inertia. However, Timoshenko beam elements developed strictly from the standard 
displacement-based finite element formulation can produce erroneous results, particularly in the case of thin beams. 
These errors may manifest as very small displacement results compared to the correct solution—a phenomenon 
known as shear locking [2]—as well as suboptimal convergence or severe oscillations in the shear force distribution 
[3,4].  
 
The primary cause of these errors is that the standard finite element formulation, which employs the same 
interpolation scheme for both deflection and rotation fields, leads to an inconsistent transverse shear strain field [3]. 
This means that the approximate shear strain is inconsistent with the physical behavior of thin beams, where the shear 
strain approaches zero. Thus, standard Timoshenko beam elements are unable to represent bending deformation 
without transverse shear strain (shearless bending deformation).  
 
An early proposed method to make Timoshenko beam elements consistent and hence free from shear locking is the 
selective reduced integration (SRI) technique [2]. In this technique, the number of Gaussian quadrature sampling 
points for evaluating the stiffness matrix associated with shear deformation is intentionally reduced from the one 
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required for an exact integration. This technique has also been applied in various enhanced finite element methods 
(FEMs), including Kriging-based FEM [5] and NURBS (Non-Uniform Rational B-Splines) isogeometric FEM [6]. 
The SRI technique can effectively eliminate the shear-locking phenomenon in both traditional and enhanced FEMs. 
However, the resulting shear force is only accurate at the quadrature sampling points. The overall shear force 
distribution can be even more erratic (oscillating) than that of the original inconsistent beam element [4,5].  
 
A more recent method to ensure consistency in Timoshenko beam elements and eliminate shear locking is the discrete 
shear gap (DSG) technique [7]. In this technique, the inconsistent shear strain field is replaced with a substitute shear 
strain field derived from the interpolated shear gap. Wong and Sugianto [8] demonstrated that the DSG technique is 
effective in ensuring the consistency of linear, quadratic, and cubic Timoshenko beam elements. Furthermore, this 
technique has also been successfully applied within the frameworks of Kriging-based FEM [9-12] and NURBS 
isogeometric FEM [6,13]. Although the DSG technique works perfectly to make Timoshenko beam elements 
consistent, its implementation procedure is quite complicated.  
 
A simpler alternative method for achieving field consistency in Timoshenko beam elements is to redistribute the 
shear strain field using a set of least-squares smoothed (LSS) shape functions for the rotation field. This approach 
was originally proposed by Prathap and Babu [14-16] for eliminating shear locking and/or membrane locking in 
shear-deformable linear and quadratic beams. However, this simple strain redistribution technique does not appear 
to be widely recognized (outside Prathap and co-workers’ research group), which can be attributed to several reasons. 
The LSS shape functions in References [14-16] were presented without a derivation, and there was no detailed 
elaboration on the variational principle associated with the strain redistribution.  
 
This paper aims to present in detail the variational basis for the redistribution of shear strain and outline a systematic 
procedure for constructing LSS shape functions in Timoshenko beam elements. The procedure is used to develop a 
set of LSS shape functions for linear, quadratic, and cubic Timoshenko beam elements. The resulting beam elements 
are then applied for linear static analysis, bifurcation buckling analysis, and free vibration analysis of prismatic or 
tapered beams. A series of numerical tests are conducted to evaluate the performance of these field-consistent beam 
elements. The results are compared to those obtained using the original field-inconsistent beam elements and the 
beam elements with the DSG technique [8].  
 
Timoshenko Beam Elements 
 
Governing Variational Equations 
 
Consider a beam of length L that is subjected to a distributed transverse load q = q(X, t) and an axial compressive 
load P = P(t), as illustrated in Figure 1. The beam is assumed to be made from a homogeneous and isotropic linear 
elastic material with a modulus of elasticity E, shear modulus G, and mass density ρ. According to Timoshenko beam 
theory, the motion of the beam at any time 𝑡𝑡 ≥ 0 can be described using two independent field variables: the 
deflection of the neutral axis 𝑤𝑤 = 𝑤𝑤(𝑋𝑋, 𝑡𝑡) and the rotation of cross sections 𝜃𝜃 = 𝜃𝜃(𝑋𝑋, 𝑡𝑡), 0 ≤ 𝑋𝑋 ≤ 𝐿𝐿.  

 
Figure 1. Coordinate System and the Positive Sign Convention for the Beam Deflection, w, Cross-Section Rotation θ, 

Distributed Load q, and Axial Load P 
 
The weak form of governing equations for the beam motion that accounts for the effect of the axial force on bending 
deformation can be written as [9]:  

� 𝛿𝛿𝛿𝛿 𝜌𝜌𝜌𝜌𝑤̈𝑤 𝑑𝑑𝑑𝑑
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In this equation, the symbol δ denotes the variational operator; A and IY denote the cross-sectional area and the cross-
sectional second moment of area about the Y-axis, respectively. In general, A and IY may vary along the length of the 
beam. The variable k refers to the shear correction factor, which depends on the geometrical shape of the beam. The 
double dots signify the partial second derivative of the corresponding variable with respect to time t, whereas the 
comma followed by subscript X signifies the partial derivative of the variable with respect to X. The shear strain γ is 
given as 
 𝛾𝛾 = 𝑤𝑤,𝑋𝑋− 𝜃𝜃 (2) 
 
The symbol ℍ1(0,𝐿𝐿) denotes the Sobolev function space of the first degree in interval 0 < X < L.  
 
The bending moment and the shear force (perpendicular to the X-axis) are given as [9]:  

 𝑀𝑀 = 𝐸𝐸𝐼𝐼𝑌𝑌𝜃𝜃,𝑋𝑋 (3) 

 𝑄𝑄 = 𝑘𝑘𝑘𝑘𝑘𝑘(𝑤𝑤,𝑋𝑋− 𝜃𝜃)− 𝑃𝑃𝑤𝑤,𝑋𝑋 (4) 
 
Finite Element Formulation 
 
Suppose the beam is partitioned into Ne number of elements with Np number of nodes. Consider a typical beam 
element (element number e) possessing n nodes. The displacement and rotation fields over this element are 
approximated as follows: 
 𝑤𝑤 ≈ 𝑤𝑤ℎ = ∑ 𝑁𝑁𝑖𝑖(𝜉𝜉)𝑤𝑤𝑖𝑖(𝑡𝑡)𝑛𝑛

𝑖𝑖=1 = [𝑁𝑁𝑤𝑤]{𝑑𝑑} (5) 

 𝜃𝜃 ≈ 𝜃𝜃ℎ = ∑ 𝑁𝑁𝑖𝑖(𝜉𝜉)𝜃𝜃𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑖𝑖=1 = [𝑁𝑁𝜃𝜃]{𝑑𝑑} (6) 

 [𝑁𝑁𝑤𝑤] = {𝑁𝑁1(𝜉𝜉) 0 𝑁𝑁2(𝜉𝜉) 0 ⋯ 𝑁𝑁𝑛𝑛(𝜉𝜉) 0} (7) 

 [𝑁𝑁𝜃𝜃] = {0 𝑁𝑁1(𝜉𝜉) 0 𝑁𝑁2(𝜉𝜉) ⋯ 0 𝑁𝑁𝑛𝑛(𝜉𝜉)} (8) 

     {𝑑𝑑} = {𝑤𝑤1(𝑡𝑡) 𝜃𝜃1(𝑡𝑡) 𝑤𝑤2(𝑡𝑡) 𝜃𝜃2(𝑡𝑡) ⋯ 𝑤𝑤𝑛𝑛(𝑡𝑡) 𝜃𝜃𝑛𝑛(𝑡𝑡)}T (9) 
 
In these equations, the superscript h refers to the association of wh and θh with a discretization using a mesh of an 
element characteristic length scale h. Function Ni(ξ) represents the element shape functions associated with node i; 
wi(t) and θi(t) represent the deflection and rotation at nodal point number i, respectively. The shape functions are 
expressed in terms of natural coordinate ξ, −1 ≤ 𝜉𝜉 ≤ 1.  
 
The shape functions for a two-node linear element, a three-node quadratic element, and a four-node cubic element 
are respectively given as (assuming nodes 1 and 2 are the end nodes and the rests are the interior nodes): 

 𝑁𝑁1 = 1
2
(1 − 𝜉𝜉), 𝑁𝑁2 = 1

2
(1 + 𝜉𝜉) (10) 

 𝑁𝑁1 = −12𝜉𝜉(1 − 𝜉𝜉), 𝑁𝑁3 = 1 − 𝜉𝜉2, 𝑁𝑁2 = 1
2𝜉𝜉(1 + 𝜉𝜉) (11) 

 𝑁𝑁1 = − 1
16

(1 − 𝜉𝜉)(1 − 9𝜉𝜉2), 𝑁𝑁3 = 9
16

(1 − 3𝜉𝜉)(1 − 𝜉𝜉2),    

 𝑁𝑁4 = 9
16

(1 + 3𝜉𝜉)(1− 𝜉𝜉2), 𝑁𝑁2 = − 1
16

(1 + 𝜉𝜉)(1 − 9𝜉𝜉2) (12) 
 
The mapping from natural coordinate ξ to the global coordinate X is given as 

 𝑋𝑋 = ∑ 𝑁𝑁𝑖𝑖(𝜉𝜉)𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1  ;  𝐽𝐽 = 𝑋𝑋,𝜉𝜉 (13) 

 
In this equation, Xi is the global coordinate of nodal point number i and J is the Jacobian of the mapping.  
 
To derive the finite element equations, the integrals in the variational equation, Equation (1), are firstly expressed as 
the sum of the integrals over each element interval. Subsequently, substituting Equations (5) and (6) into the resulting 
equation and applying the standard finite element formulation yield the discretized system of equations as follows:  
 [𝑀𝑀]�𝐷̈𝐷(𝑡𝑡)� + �[𝐾𝐾] − 𝑃𝑃�𝐾𝐾g��{𝐷𝐷(𝑡𝑡)} = {𝐹𝐹(𝑡𝑡)} (14) 
 
where [M], [K], [Kg] are the discretized structural mass, stiffness, and geometric stiffness matrices, respectively. The 
vector {𝐷𝐷(𝑡𝑡)} is the vector of global nodal displacement, that is, 

 {D(𝑡𝑡)} = �𝑤𝑤1(𝑡𝑡) 𝜃𝜃1(𝑡𝑡) 𝑤𝑤2(𝑡𝑡) 𝜃𝜃2(𝑡𝑡) ⋯ 𝑤𝑤𝑁𝑁𝑝𝑝(𝑡𝑡) 𝜃𝜃𝑁𝑁𝑝𝑝(𝑡𝑡)�T  (15) 
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The vector {F(t)} is the vector of global nodal force.  
 
The structural mass, stiffness, and geometric stiffness matrices, as well as the global nodal force vector, are obtained 
by assembling the element mass matrix, [m]e, the element stiffness matrix, [k]e, the element geometric stiffness 
matrix, [kg]e, and the element nodal force vector, {f}e, respectively, for all elements (i.e., element number e = 1 to 
Ne). These element matrices are defined as follows: 

 [𝑚𝑚]𝒆𝒆 = ∫ [𝑁𝑁𝑤𝑤]T𝜌𝜌𝜌𝜌 [𝑁𝑁𝑤𝑤] 𝐽𝐽𝐽𝐽𝐽𝐽1
−1 + ∫ [𝑁𝑁𝜃𝜃]T𝜌𝜌𝐼𝐼𝑌𝑌[𝑁𝑁𝜃𝜃] 𝐽𝐽𝐽𝐽𝐽𝐽1

−1  (16) 

 [𝑘𝑘]𝒆𝒆 = [𝑘𝑘]b𝑒𝑒 + [𝑘𝑘]s𝑒𝑒 (17a) 

 [𝑘𝑘]b𝑒𝑒 = ∫ [𝑁𝑁𝜃𝜃],𝜉𝜉
T 𝐸𝐸𝐼𝐼𝑌𝑌[𝑁𝑁𝜃𝜃],𝜉𝜉 𝐽𝐽−1𝑑𝑑𝑑𝑑

1
−1  (17b) 

 [𝑘𝑘]s𝑒𝑒 = ∫ �[𝑁𝑁𝑤𝑤],𝜉𝜉 𝐽𝐽−1 − [𝑁𝑁𝜃𝜃]�
T
𝑘𝑘𝑘𝑘𝑘𝑘�[𝑁𝑁𝑤𝑤],𝜉𝜉 𝐽𝐽−1 − [𝑁𝑁𝜃𝜃]� 𝐽𝐽𝐽𝐽𝐽𝐽1

−1  (17c) 

 �𝑘𝑘g�
𝑒𝑒 = ∫ [𝑁𝑁𝑤𝑤],𝜉𝜉

T [𝑁𝑁𝑤𝑤],𝜉𝜉 𝐽𝐽−1𝑑𝑑𝑑𝑑
1
−1  (18) 

 
The element nodal force vector is defined as 

 {𝑓𝑓}𝑒𝑒 = ∫ [𝑁𝑁𝑤𝑤]𝑇𝑇 𝑞𝑞 𝐽𝐽𝐽𝐽𝐽𝐽1
−1  (19) 

 
The discretized equations for linear static, free vibration, and bifurcation buckling problems can be derived from 
Equation (14) by reducing it, respectively, to 

 [𝐾𝐾]{𝐷𝐷} = {𝐹𝐹} (20) 

 [𝑀𝑀]�𝐷̈𝐷(𝑡𝑡)� + [𝐾𝐾]{𝐷𝐷(𝑡𝑡)} = {0} (21) 

 �[𝐾𝐾] − 𝑃𝑃�𝐾𝐾g��{𝐷𝐷} = {0} (22) 
 
Least Squares Smoothed Shape Functions 
 
As mentioned in the introduction section, the standard interpolations for the Timoshenko beam field variables, i.e. 
Equations (5) and (6), result in a discretized shear strain, γh, that is inconsistent with the physical constraint of 
vanishing the shear strain, Equation (2), when the beam becomes infinitely thin (the Kirchhoff constraint). This 
inconsistency in the discretized shear strain leads to shear locking, poor convergence, and severe stress oscillation 
commonly observed when using standard displacement-based Timoshenko beam elements [3] (with exact calculation 
of all integrals). 
 
To develop beam elements that are consistent with the Kirchhoff constraint, Prathap and Babu [14-16] proposed a 
set of least-squares smoothed shape functions for interpolating the rotation field in the shear strain expression. This 
section addresses the variational basis and a detailed derivation of the smoothed shape functions.  
 
Variational Basis 
 
The variational basis for the development of a field-consistent Timoshenko beam element is a modified Hellinger-
Reissner’s variational principle [3,17]. In this principle, the discretized strain energy for a Timoshenko beam element 
of length Le is expressed in the following form: 

 𝑈𝑈ℎ = ∫ 1
2
𝐸𝐸𝐼𝐼𝑦𝑦�𝜃𝜃,𝑥𝑥ℎ �

2𝑑𝑑𝑑𝑑𝐿𝐿𝑒𝑒

0 − ∫ 1
2
𝑘𝑘𝑘𝑘𝑘𝑘𝛾̅𝛾2𝑑𝑑𝑑𝑑𝐿𝐿𝑒𝑒

0 + ∫ 𝑘𝑘𝑘𝑘𝑘𝑘𝛾̅𝛾𝛾𝛾ℎ𝑑𝑑𝑑𝑑𝐿𝐿𝑒𝑒

0  (23) 
 
where θh and γh are the discretized rotation and the discretized kinematic shear strain, respectively, while 𝛾̅𝛾 denotes 
an assumed shear strain. The variable x is the element coordinate, starting from the left end of the beam element. A 
variation of the functional in Equation (23) with respect to 𝛾̅𝛾 yields  
 ∫ 𝛿𝛿𝛾̅𝛾 𝑘𝑘𝑘𝑘𝑘𝑘�𝛾𝛾ℎ − 𝛾̅𝛾�𝑑𝑑𝑑𝑑𝐿𝐿𝑒𝑒

0 = 0 (24a) 
 
For a prismatic beam element made from a homogeneous material, kGA is constant along the element, hence Equation 
(24a) simplifies to  
 ∫ 𝛿𝛿𝛾̅𝛾 �𝛾𝛾ℎ − 𝛾̅𝛾�𝑑𝑑𝑑𝑑𝐿𝐿𝑒𝑒

0 = 0 (24b) 
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Equation (24) is known as the orthogonality condition [3]. This orthogonality condition can be utilized to determine 
a consistent assumed shear strain field, 𝛾̅𝛾, from the already known kinematically derived inconsistent γh.  
 
Least Squares Smoothed Shape Functions 
 
A method to achieve consistency in the shear strain field is to redistribute the kinematic shear strain through a least-
squares smoothing approach [14,16]. This process begins by defining the assumed shear strain field and its variations 
as follows:  
 𝛾̅𝛾 = 𝑤𝑤,𝑥𝑥ℎ− 𝜃̅𝜃 (25a) 

 𝛿𝛿𝛾̅𝛾 = −𝛿𝛿𝜃̅𝜃 (25b) 
 
where 𝜃̅𝜃 is the unknown substitute rotation field. Substituting these equations into Equation (24b) results in 

 ∫ 𝛿𝛿𝜃̅𝜃 �𝜃𝜃ℎ − 𝜃̅𝜃�𝑑𝑑𝑑𝑑𝐿𝐿𝑒𝑒

0 = 0 (26) 
 
This equation can be interpreted as the stationary condition of the following functional: 

 𝐹𝐹(𝜃̅𝜃) = ∫ 1
2
�𝜃𝜃ℎ − 𝜃̅𝜃�2𝑑𝑑𝑑𝑑𝐿𝐿𝑒𝑒

0  (27) 
 
Thus, the orthogonality condition of the rotation, expressed in Equation (26), requires that the substitute rotation 
field, 𝜃̅𝜃, is a least-squares equivalent of the discretized rotation field, θh.  
 
Next, the substitute rotation field is defined as follows: 

 𝜃̅𝜃 = ∑ 𝑁𝑁�𝑖𝑖(𝜉𝜉)𝜃𝜃𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑖𝑖=1 = [𝑁𝑁�𝜃𝜃]{𝑑𝑑} (28) 

 
where 𝑁𝑁�𝑖𝑖(𝜉𝜉), i = 1, …, n, represent substitute shape functions. Substituting Equations (6) and (28) into Equation (27) 
gives  
 𝐹𝐹([𝑁𝑁�𝜃𝜃]) = 1

2
{𝑑𝑑}T �∫ �[𝑁𝑁𝜃𝜃] − [𝑁𝑁�𝜃𝜃]�T�[𝑁𝑁𝜃𝜃] − [𝑁𝑁�𝜃𝜃]�𝑑𝑑𝑑𝑑𝐿𝐿𝑒𝑒

0 � {𝑑𝑑} (29) 
 
This equation indicates that the least-squares substitute rotation field can be obtained by using the least-squares 
substitute shape functions. Furthermore, to achieve field consistency, these shape functions must be chosen to be a 
one-order lower polynomial than the order of the shape functions for approximating the deflection. These consistent 
shape functions are referred to as LSS shape functions.  
 
An example of algebraic calculation for obtaining the LSS shape functions for a quadratic beam element is as follows. 
The general form of quadratic shape functions is given by: 

 𝑁𝑁𝑖𝑖(ξ) = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝜉𝜉2 (30) 
 
The LSS shape functions are chosen to be linear (one degree lower than quadratic), that is, 

 𝑁𝑁�𝑖𝑖(ξ) = 𝛼𝛼 + 𝛽𝛽𝛽𝛽 (31) 
 
The coefficients α and β are determined by minimizing the functional: 

 𝐺𝐺(𝑁𝑁�𝑖𝑖) = ∫ 1
2
�𝑁𝑁𝑖𝑖(ξ) −𝑁𝑁�𝑖𝑖(ξ)�

2𝑑𝑑𝑑𝑑1
−1  (32) 

 
Substituting Equations (30) and (31) into Equation (32) transforms the functional into a function of two variables, α 
and β, viz. 
 𝑓𝑓(𝛼𝛼,𝛽𝛽) = ∫ 1

2
�(𝑎𝑎 − 𝛼𝛼) + (𝑏𝑏 − β)𝜉𝜉 + 𝑐𝑐𝜉𝜉2�2𝑑𝑑𝑑𝑑1

−1  (33) 
 
The unknown coefficients α and β can be found using the standard calculus method to locate the extreme values of 
f(α, β), that is, 
 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0  and    𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0 (34) 
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Solving these equations yields 
 𝛼𝛼 = 𝑎𝑎 + 1

3
𝑐𝑐  and    𝛽𝛽 = 𝑏𝑏 (35) 

 
Thus, the resulting LSS shape function is 
 𝑁𝑁�𝑖𝑖(ξ) = �𝑎𝑎 + 1

3
𝑐𝑐� + 𝑏𝑏𝑏𝑏 (36) 

 
Using Equation (36), the LSS shape functions associated with node numbers 1, 2, and 3 for a quadratic beam element 
can be determined. For instance, the quadratic shape function corresponding to node number 1, refers to Equation 
(11), has coefficients 𝑎𝑎 = 0, 𝑏𝑏 = −1

2
, 𝑐𝑐 = 1

2
. Substituting these values into Equation (36) yields the LSS shape 

function associated with node number 1, that is, 

 𝑁𝑁�1(ξ) = �0 + 1
3
�1
2
�� − 1

2
𝜉𝜉 = 1

2
�1
3
− 𝜉𝜉� (37) 

 
This result is the same as what is presented in Ref. [14,16].  
 
By applying the abovementioned procedure, a set of LSS shape functions for linear, quadratic, and cubic beam 
elements can be derived. The results are respectively as follows: 

 𝑁𝑁�1 = 1
2, 𝑁𝑁�2 = 1

2 (38) 

 𝑁𝑁�1 = 1
2 �

1
3
− 𝜉𝜉� , 𝑁𝑁�3 = 2

3
, 𝑁𝑁�2 = 1

2 �
1
3

+ 𝜉𝜉� (39) 

 𝑁𝑁�1 = − 1
16 �1 + 22

5
𝜉𝜉 − 9𝜉𝜉2� , 𝑁𝑁�3 = 9

16
�1 − 6

5
𝜉𝜉 − 𝜉𝜉2�,    

 𝑁𝑁�4 = 9
16
�1 + 6

5
𝜉𝜉 − 𝜉𝜉2� , 𝑁𝑁�2 = − 1

16 �1 − 22
5
𝜉𝜉 − 9𝜉𝜉2� (40) 

 
The procedure to determine the unknown coefficients in the LSS shape functions described here involves the direct 
use of the functional, 𝐺𝐺(𝑁𝑁�𝑖𝑖), as expressed in Eq. (32). Alternatively, the coefficients can be determined by first 
invoking the stationarity of the functional with respect to 𝑁𝑁�𝑖𝑖, which leads to the following equation:  

 ∫ 𝛿𝛿𝑁𝑁�𝑖𝑖(ξ)�𝑁𝑁𝑖𝑖(ξ) −𝑁𝑁�𝑖𝑖(ξ)�𝑑𝑑𝑑𝑑 = 01
−1  (41) 

 
After this, the original shape function and the LSS shape function are substituted into this integral equation. The 
unknown coefficients in the LSS shape function can then be found by solving the resulting system of linear equations.  
 
It is important to note that, to construct field-consistent Timoshenko beam elements, the LSS shape functions for the 
rotation field are used to replace the original shape functions solely in the expression corresponding to the shear 
strain. This specifically applies to the shape functions in the shearing stiffness matrix, as expressed in Equation (17c). 
Meanwhile, the shape functions for the rotation field in the bending stiffness matrix (Equation (17b)) and the mass 
matrix (Equation (16)) remain unchanged.  
 
Numerical Tests 
 
The linear, quadratic, and cubic Timoshenko beam elements with the original shape functions (Equations (10), (11), 
and (12)) and LSS shape functions (Equations (38), (39), and (40)) have been implemented in Matlab. These elements 
are referred to as ‘Original SF’ and ‘LSS SF’, respectively. They have been tested and applied in static, buckling, 
and free vibration analyses of prismatic as well as tapered beams. Additionally, for comparison purposes, results 
obtained using locking-free Timoshenko beam elements with the discrete shear gap technique [8] (referred to as 
‘DSG’) are also included in the following report. 
 
The shear modulus and shear correction factor of a beam were calculated using the given modulus of elasticity, E, 
and Poisson's ratio, ν, with the following formula [18]: 

 𝐺𝐺 = 𝐸𝐸
2(1+𝜈𝜈)

 , 𝑘𝑘 = 10(1+𝜈𝜈)
12+11𝜈𝜈

 (42) 
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Table 1. Minimum Number of Quadrature Sampling Points for Prismatic and Tapered Timoshenko Beam Elements with 
Original Shape Functions of Different Orders 

Element Mass Bending Stiffness Shear Stiffness Geometry Force1 
Prismatic beam 

Linear 2 1 2 1 2 
Quadratic 3 2 3 2 2 
Cubic 4 3 4 3 3 

Tapered beam2 
Linear 2 1 2 1 2 
Quadratic 4 3 3 3 2 
Cubic 5 4 4 4 3 
1 Assuming that q is linearly distributed 
2 The cross-sectional area and moment of inertia are interpolated using the shape functions. 

 
For tapered beams, the cross-sectional area, A = A(X), and moment of inertia, IY = IY(X), for each beam element are 
interpolated from their values at the nodes.  
 
The integrals in the element matrix expressions, Equations (16)(19), were evaluated using the Gauss quadrature 
formula. The minimum number of quadrature sampling points required for each matrix to achieve exact integration 
results for the beam elements with original shape functions is presented in Table 1. For the beam elements with LSS 
shape functions, the number of sampling points required to evaluate the shear stiffness matrix can be reduced by one.  
 
Static Analysis 
 
Investigation of Shear Locking  
 
A fixed-fixed supported beam is used to detect shear locking. The geometrical, material, and loading parameters are 
as follows: L = 10 m, b = 1 m, E = 10×106 kN/m2, ν = 0.3, and q = −1 kN/m. The beam is discretized using eight 
elements of equal length, as shown in Figure 2. The length-to-thickness ratio of the beam varies from L/hB = 5 
(representing a thick beam), to 10, 100, 1000, and 10000 (representing an extremely thin beam). Although a beam 
with L/hB greater than 100 is outside the practical range for length-to-thickness ratios, it is included in this test to 
detect shear locking as the beam becomes extremely thin.  

 
Figure 2. Finite Element Model of a Fixed-Fixed Supported Beam Subjected to a Uniform Load 

 
The analytical solution for the beam mid-span deflection is given by 

 𝑤𝑤 �𝐿𝐿
2
�
exact

= 𝑞𝑞𝐿𝐿4

384𝐸𝐸𝐸𝐸
+ 𝑞𝑞𝐿𝐿2

8𝐺𝐺𝐺𝐺𝐺𝐺
 (43) 

 
The mid-span deflection results obtained using different Timoshenko beam elements, normalized to the exact 
solution, are presented in Table 2. 
 
The table indicates that the linear, quadratic, and cubic Timoshenko beam elements with the LSS shape functions are 
free from shear locking. The results are the same as those obtained using beam elements with the DSG technique. In 
contrast, the linear beam element with the original shape functions experiences shear locking. Although the quadratic 
original SF element does not suffer from shear locking, it is not as accurate as the quadratic LSS-based element. All 
cubic beam elements are unaffected by shear locking and can provide exact results for mid-span deflection.  

b 

hB 

q 

L 

3 4 5 6 7 8 2 1 

(b) Beam cross section (a) Finite element model of the beam 
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Table 2. Normalized Mid-Span Deflections of a Fixed-Fixed Supported Beam with Different Length-to-Thickness Ratios 
(L/Hb) Obtained using Various Beam Elements 

Element Type L/hB 
5 10 100 1000 1000 

Linear Beam Elements 
LSS SF 0.958 0.944 0.938 0.938 0.938 
DSG 0.958 0.944 0.938 0.938 0.938 
Original SF 0.887 0.662 0.019 0.000 0.000 

Quadratic Beam Elements 
LSS SF 1.000 1.000 1.000 1.000 1.000 
DSG 1.000 1.000 1.000 1.000 1.000 
Original SF 1.000 0.995 0.943 0.938 0.938 

Cubic Beam Elements 
LSS SF 

All results are exact. DSG 
Original SF 
LSS SF: Timoshenko beam elements using the LSS shape functions.  
DSG: Timoshenko beam elements with the discrete shear gap technique. The results were taken from Ref. [8].  
Original SF: Timoshenko beam elements using the original shape functions.  

 
Assessment of Accuracy and Convergence 
 
To evaluate the accuracy and convergence characteristics of Timoshenko beam elements, the fixed-fixed supported 
beam with a length-to-thickness ratio of 10 is discretized using different numbers of equal elements: Ne = 4. 8, 16, 
and 32. The analysis results for the mid-span defection, fixed-end moment, and fixed-end shear force, normalized to 
their corresponding exact values (Equations (43) and (44)), are presented in Tables 3(a)(c). 
 

Table 3. Normalized Mid-Span Deflections, Fixed-End Bending Moments, and Fixed-End Shear Forces of a Fixed-Fixed 
Supported Beam of L/Hb = 10 for Different Number of Elements, Ne, Obtained using Different Beam Elements 

(a) Normalized Results using Linear Beam Elements 

Ne Deflection Bending Moment Shear Force 
LSS SF DSG Original SF LSS SF DSG Original SF LSS SF DSG Original SF 

4 0.777 0.777 0.329 0.375 0.375 0.123 0.750 0.750 1.757 
8 0.944 0.944 0.662 0.656 0.656 0.434 0.875 0.875 2.650 
16 0.986 0.986 0.887 0.820 0.820 0.727 0.938 0.938 2.423 
32 0.997 0.997 0.969 0.908 0.908 0.880 0.969 0.969 1.868 

 
(b) Normalized Results using Quadratic Beam Elements 

Ne Deflection Bending Moment Shear Force 
LSS SF DSG Original SF LSS SF DSG Original SF LSS SF DSG Original SF 

4 1.000 1.000 0.935 0.938 0.937 0.774 1.000 1.000 2.088 
8 1.000 1.000 0.995 0.984 0.984 0.954 1.000 1.000 1.405 
16 1.000 1.000 1.000 0.996 0.996 0.992 1.000 1.000 1.117 
32 1.000 1.000 1.000 0.999 0.999 0.998 1.000 1.000 1.031 

 
(c) Normalized Results using Cubic Beam Elements 

Ne Deflection Bending Moment Shear Force 
LSS SF DSG Original SF LSS SF DSG Original SF LSS SF DSG Original SF 

4 

All results are exact. 

1.000 1.007 0.991 1.000 1.000 1.087 
8 1.000 1.002 0.999 1.000 1.000 1.012 
16 1.000 1.000 1.000 1.000 1.000 1.002 
32 1.000 1.000 1.000 1.000 1.000 1.000 

 

 𝑀𝑀(0)exact = 1
12
𝑞𝑞𝐿𝐿2,  𝑄𝑄(0)exact = 1

2
𝑞𝑞𝐿𝐿  (44) 

 
Table 3 shows that all results converge to the corresponding analytical values. As expected, higher-order Timoshenko 
beam elements yield more accurate results compared to lower-order elements. The results of the LSS-based and DSG 
elements are identical, except for the fixed-end moments obtained from the cubic beam elements, where some minor 
discrepancies are observed. The performance of the LSS-based element is superior to that of the original SF element. 
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Moreover, the cubic LSS-based element provides exact results for mid-span deflection, fixed-end moment, and fixed-
end shear force, even when using a minimal number of elements.  
 
Bifurcation Buckling Analysis 
 
The Timoshenko beam elements are now being used for the bifurcation buckling analysis of both prismatic and 
tapered beams. The same fixed-fixed supported beam as in the static analysis, with L/hB = 10, is considered. 
Additionally, the beam has been modified to have a tapered shape, as illustrated in Figure 3. Two tapering ratios are 
considered, namely c = 0.5 and c = 0.8 (refer to Figure 3 for the definition of c).  

 
Figure 3. Tapered Fixed-Fixed Supported Beam 

 
The resulting critical buckling loads, normalized to their respective reference values, are presented in Tables 4(a)(c). 
The reference value for the prismatic beam is calculated using the following analytical formula ([19] as cited in [20]): 

 𝑃𝑃cr =  𝜋𝜋
2𝐸𝐸𝐼𝐼𝑌𝑌
𝐿𝐿eff
2 � 1

1+ 𝜋𝜋2𝐸𝐸𝐼𝐼𝑌𝑌
𝐿𝐿eff
2 𝐺𝐺𝐴𝐴s

� (45) 

 
where the effective buckling length for the fixed-fixed supported beam is Leff = L/2. For the tapered beams, since an 
analytical solution is unavailable, the reference values are obtained from finite element analysis results using 48 cubic 
LSS-based elements. These values are taken as the reference solution because of the excellent performance of the 
cubic-LSS-based beam element and additionally, the use of 48 cubic elements represents a very fine finite element 
model. These reference values are listed in the last row of Table 4(c).  
 
The findings from the static analysis can be applied to the bifurcation buckling analysis. The results converge to their 
reference values. The performance of the LSS-based elements is superior to that of the original beam elements. The 
accuracy of both linear and quadratic LSS-based elements is the same as that of the corresponding elements with the 
DSG technique, while the cubic elements show a slight discrepancy in accuracy.  
 
Free Vibration Analysis 
 
The LSS-based Timoshenko beam elements are utilized to determine the first eight free-vibration frequencies of a 
tapered fixed-fixed supported beam of L/hB = 10 with the tapering ratio of c = 0.5, which has been considered in the 
bifurcation buckling analysis. The mass density is taken as ρ = 1000 kg/m3. The analysis is conducted using 16 beam 
elements. As in the bifurcation buckling analysis, the natural frequencies (in the unit of Hz) obtained with 48 elements 
of the cubic LSS-based beam element are used as the reference solution because of the unavailability of analytical 
results. The results are listed in Table 5. 
 
The table demonstrates the superiority of the field-consistent LSS-based beam elements compared to the original 
inconsistent beam elements when predicting natural frequencies, particularly for linear and quadratic beam elements. 
As expected, higher-order beam elements provide greater accuracy than the lower-order elements. Consistent with 
the findings in static and buckling analyses, the results for the linear and quadratic LSS-based and DSG beam 
elements are identical, while those for the cubic beam elements show slight differences. 

Sect. A-A 

y 

b 

hB(x) 

z 

L = 10 m, ℎB0 = 1 m, b = 1 m 
ℎ(𝑥𝑥) = ℎ0 �1 − 𝑐𝑐 𝑥𝑥

𝐿𝐿
�, c: tapering ratio 

L 

x 

z 
A 

A 

hB0 
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Table 4. Normalized Critical Buckling Loads of the Prismatic (C = 0) and Taped Fixed-Fixed Supported Beams of L/Hb = 10 
for Different Numbers of Elements, Ne, Obtained using Different Beam Elements 

(a) Normalized Results using Linear Beam Elements 

Nel Tapering ratio = 0 Tapering ratio = 0.5 Tapering ratio = 0.8 
LSS SF & DSG Original SF   LSS SF & DSG Original SF LSS SF & DSG Original SF 

4 1.5340 3.6276  1.7928 6.2890 3.2500 14.6035 
8 1.1012 1.5822  1.1498 2.2133 1.4583 4.4319 
16 1.0238 1.1409  1.0354 1.3048 1.1143 1.9873 
32 1.0059 1.0349  1.0087 1.0770 1.0288 1.2840 

 
(b) Normalized Results using Quadratic Beam Elements 

Nel Tapering ratio = 0 Tapering ratio = 0.5 Tapering ratio = 0.8 
LSS SF & DSG Original SF   LSS SF & DSG Original SF LSS SF & DSG Original SF 

4 1.0137 1.0613  1.0269 1.1671 1.2272 1.8825 
8 1.0009 1.0051  1.0021 1.0166 1.0214 1.1471 
16 1.0001 1.0003  1.0001 1.0013 1.0016 1.0179 
32 1.0000 1.0000  1.0000 1.0001 1.0001 1.0015 

 
(c) Normalized Results using Cubic Beam Elements and the Exact Critical Buckling Loads 

Nel 
Tapering ratio = 0 Tapering ratio = 0.5 Tapering ratio = 0.8 

LSS SF DSG Original SF LSS SF DSG Original SF LSS SF DSG Original SF 
4 1.0002 0.9986 1.0013 1.0011 1.0002 1.0026 1.0182 1.0143 1.1072 
8 1.0000 0.9999 1.0000 1.0000 0.9998 1.0001 1.0005 1.0012 1.0037 

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0001 
32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Pcr exact  2.9890.E+05 kN 1.1344.E+05 kN    
 

Table 5. The First Eight Natural Frequencies of the Taped Fixed-Fixed Supported Beams of L/Hb = 10, which are Obtained 
using 16 Beam Elements of Different Formulations, Normalized to the Reference Frequencies 

Mode 
shape 

Reference 
frequency* 

(Hz) 

Normalized natural frequency    
Linear element Quadratic element Cubic 

LSS SF & 
DSG 

Original 
SF 

LSS SF & 
DSG 

Original 
SF LSS SF DSG Original 

SF 
1 22.9107 1.0138 1.1268 1.0000 1.0007 1.0000 1.0000 1.0000 
2 60.4541 1.0325 1.1379 1.0001 1.0012 1.0000 1.0000 1.0000 
3 112.557 1.0572 1.1540 1.0004 1.0020 1.0000 1.0000 1.0000 
4 175.709 1.0872 1.1750 1.0011 1.0031 1.0000 0.9999 1.0000 
5 247.187 1.1214 1.2003 1.0021 1.0046 1.0000 0.9999 1.0000 
6 324.862 1.1595 1.2298 1.0037 1.0066 1.0000 0.9998 1.0001 
7 407.154 1.2008 1.2629 1.0060 1.0093 1.0001 0.9997 1.0001 
8 492.898 1.2448 1.2989 1.0091 1.0126 1.0002 0.9996 1.0002 

*Obtained using 48 elements of the cubic LSS SF element      
 
Remarks 
 
All the examples presented are based on the presumption that the interior element nodes are located at their ‘natural’ 
positions in the Cartesian coordinate system. For a quadratic beam element, this means the nodes are at the mid-
points, while for a cubic beam element, they are at the one-third points. If the interior element nodes do not lay at 
these natural positions, the use of the LSS shape functions cannot provide a consistent shear strain field distribution, 
leading to very poor results (shear locking). Prathap and Naganarayana [17] proposed a method to modify the use of 
the LSS shape functions for a quadratic Timoshenko beam element so that it can maintain the shear strain field 
consistency.   
 
CONCLUSIONS 
 
The variational foundation for the redistribution of shear strain in Timoshenko beam elements has been presented. 
This theoretical groundwork leads to a systematic procedure for deriving LSS shape functions. The LSS shape 
functions for linear, quadratic, and cubic Timoshenko beam elements have been derived and are expressed explicitly. 
These shape functions ensure field consistency within the beam elements. 
 
The LSS-based Timoshenko beam elements were applied to linear static analysis, bifurcation buckling analysis, and 
free vibration analysis of prismatic and tapered beams. The numerical tests demonstrated that the LSS-based beam 
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elements are free from shear locking and yield accurate and reliable results. Their performance is practically the same 
as that of the consistent beam elements with the DSG technique; however, the implementation for the LSS shape 
functions is simpler than that of the DSG technique. 
 
Further research could explore the development of LSS shape functions for plate and shell finite elements. 
Additionally, the potential application of the LSS approach to enhanced finite element methods, such as isogeometric 
analysis and Kriging-based FEM, warrants investigation.  
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