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Abstract

This study proposes a framework for predicting solar photovoltaic (solar PV) power
output using Machine Learning-based regressors for short-, medium-, and long-term
prediction horizons. To identify the most effective regressor, we propose a comparison
framework to evaluate the performance of several types of regressor models. This
evaluation will include Neural Networks, Boosting and Bagging Ensembles, and a
baseline assessment using a linear regressor family. In this study, we implement the
grid search method to improve model performance by fine-tuning hyperparameters, as
does the K-fold shuffle split cross-validation method. We consider large spatial and
long temporal historical datasets for the case study. A 5 km x 5 km gridded hourly
temporal-based 1 MW modelled Solar PV dataset consisting irect and diffuse
irradiation, temperature, and power output during 2013-2022 in the Java-Bali region,
Indonesia, is used as a case study. The grid search-optimized Neural Networks family,
the Multilayer Perceptron model, can ﬂurately predict power output from short-,
medium-, and long-term horizons, with an average MAE of 0.248 kW and an average
RMSE of 0.306 kW, followed by Random Forest, a grid search-optimized Bagging
Ensemble and a grid search-optimized Histogram Gradient Boosting Ensemble model.
All predictor models generally performed well under strong El-Nino-affected data but
were sensitive to very strong El-Nino during 2015-2016. The method used and insights
gained from this study also benefit other jurisdictions with similar contexts.

Keywords: machine learning, power output prediction, regressors, shuffle split cross-
validation, solar photovoltaic

1. INTRODUCTION

Asia and other parts of the world are currently facing unprecedented rises in energy demand
and environmental challenges, requiring every country to accelerate the energy transition [1].
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Renewable energy (RE) technologies have emerged as viable, clean energy sources that facilitate
the electricity industry transition from fossil fuels, including in Asian developing countries [2,3].
Nonetheless, numerous barriers to higher RE penetration are relevant factors that require deep
attention and must be resolved by stakeholders [4]. RE technologies are the most likely anticipated
strategies that countries have established and are implementing to meet a significant portion of total
electricity demand by 2030, eventually replacing fossil fuels [5,6] and mitigating environmental
impact [1]. Solar photovoltaic (solar PV) is a rapidly advancing, cost-competitive renewable energy
technology [7,8]. The recent development of large energy storage systems enables a greater share
of energy from solar PV during periods of insufficient solar radiation [9].

Global solar PV capacity is expected to increase to 2,840 GW by 2030 and 8,519 GW by 2050, up
from 480 GW in 2018 [7]. In Southeast Asia, RE will account for over three-quarters of electricity
over the long run. Solar PV will account for approximately 1,100 GW of this share, while fossil
fuel sources will account for less than 10%. By 2050, solar PV will account for nearly 1,600
Terawatt-hours of the region’s electricity generation [10].

The electricity generated by solar PV is primarily influenced g.rect and diffuse irradiation
and temperature [11,12]. The temperature significantly impacts the efficiency of solar PV panels.
In full sunlight, the temperature is typically 40 °C higher than the ambient temperature [13]. Every
ten degrees of temperature increase reduces the efficiency of crystalline silicon Solar PV by 6.5%
to 10% [13,14].

This study addresses the gaps in spatially and temporally predicting solar PV power output.
We aim to enhance the literature on machine learning (ML) applications for solar PV power output
forecasting by introducing an ML-based framework that utilises gridded long-term ho datasets
encompassing direct radiation, diffuse radiation, temperature, and power output. is study
uses the Java-Bali regions of Indonesia as a case study and particularly applies several types of
ML, which are: a Neural Networks type, the Multilayer Perceptron (MLP) [15,16]; an ensemble
boosting type, the Histogram Gradient Boosting (HGB) [17]; and a Bagging ensemble type, the
Random Forest (RF) [18] as regressor model candidates and evaluates their performance. Besides
that, we utilised Multiple Linear Regression (MLnR) [19] as a baseline assessment. Moreover,
this study also applies the Grid Search (GS) method! to tune each regressor’s hyperparameter to
improve the models’ performance, and the Shuffle Split Cross-validation (SSCV)2, a technique to
train and test the regressors. Their performance is measured using Mean Absolute Error (MAE),
Mean Squared Error (MSE), root MSE (RMSE) and R2.

Another significant research gap identified in prior studies is the lack of examination of the
impact of climate occurrences, such as El Nifio, on the analysis. This study, therefore, examines
how El Nifio influences the performance of the proposed models. This work thus contributes
to relevant research areas of solar energy supply prediction towards a more sustainable energy
future, particularly in the context of developing countries, while also considering the potential
impact of complex weather pattern phenomena like El Nifio on prediction accuracy. Accurate
Solar PV power output prediction will provide insights into power sector investment, including
selecting potential solar power plant locations and assisting the system planners and operators in
managing Solar PV electricity generation planning and fleet operations.

The structure of this paper is as follows: In Section 2, we provide a comprehensive review of
related work regarding the outputs of solar PV prediction. Section 3 elaborates on the dataset
employed in this study and outlines the detailed design of the solar PV prediction system.
The experimental results and corresponding discussions are presented in Section 4. Lastly, the
Conclusion section summarizes our findings and identifies potential directions for future research.

1 https:/ /scikit-learn.org /stable/ modules/ generated / sklearn.model_selection. GridSearchCV.html
zh&ps:/ /scikit-learn.org/stable/modules/generated / sklearn.model_selection.ShuffleSplit.html
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2. ReLATED WORK

The output prediction for solar PV systems is generally categorised according to the prediction
horizon. This term refers to the timeframe into the future for which the photovoltaic power output
is anticipated [5,20]. For this study, we will adhere to the category established by Iheanetu K.J [20].
The first category is centred on the very short-term prediction horizon, which encompasses a
timeframe from a few seconds to less than one hour. This category plays a critical role in the
management of power distribution [21,22]. The next prediction horizon is short-term, typically
from hours to days. This timeframe is crucial for the effective commitment, scheduling, and
dispatch of generated solar PV power. Recent studies have increasingly concentrated on enhancing
the accuracy of short-term solar PV output predictions [23-28]. The third category is designated
as medium-term, encompassing a timeframe of 1 week to 1 month. This category plays a crucial
role in optimising the planning and maintenance schedule of the solar PV system.

Notably, research efforts have predominantly concentrated on longer timeframes, such as short-
to medium-term analyses [29,30], medium- to long-term [31] or short- to long-term [2,32,33]. The
final category identified is long-term, encompassing timeframes ranging from one month to over a
year. Projections of solar PV output for the long term are critical for effective planning in electricity
generation, transmission, and distribution. In addition to the previously mentioned studies on
extended prediction horizons, numerous researchers have dedicated their efforts specifically to
exploring the long-term category [34,35]. A concise overview of related work from the past five
years (2020-2024) is provided in Table 1.

The input data are usually gathered from sensors and other measurement equipment. The
attributes used in the studies for the input features are solar irradiation and temperature. Moreover,
some studies used and added other attributes such as datetime and season [2, 22, 28]; weather
conditions [23,29,35]; wind speed, air pressure, and humidity [2,23,27-30,35]; and tilt and azimuth
angles of the solar PV devices [21,23]. Other studies have used time-series data to predict Solar
PV output in the future [26,33] or predict solar irradiation to calculate the amount of Solar PV
output [22,31]. Most studies keep their dataset in secret, except a few publish it to be used in
other studies [31,32]. The challenge associated with private datasets is that they hinder others
from replicating the research or advancing the study, which may prevent the achievement of
improved outcomes. We obtained our datasets from the publicly available Renewables.Ninja
website, ensuring that our study is easily replicable and can be enhanced by others in the field.

Recent studies mainly utilised ML regressors to predict the solar PV output with promising
results [2,21,23,24,26,28-30,32,34,35]. The ML models include the MLP/ Artificial Neural Network
(ANN)/Backpropagation NN (BPNN)/Feed-forward NN (FFNN), Ridge Regression (RdR), Lasso
Regression (LsR), Adaptive Boosting (AB), K-Nearest Neighbor (K-NN), Decision Trees (DT), RF,
Extreme Gradient Boosting (XGB), Support Vector Machine Regressor (SVR), Principal Component
Analysis (PCA), Long short-term memory (LSTM), Recurrent neural network (RNN), Gated
Recurrent Unit (GRU) and Transformer, which were tested for Solar PV output prediction. While
all the models performed well in predicting the output of Solar PV (see Table 1), most of these
studies focused on specific private datasets and also a specific range of prediction horizons (i.e.,
short-range, short to medium, or long-range). Using GS to optimise the ML models, our study
could identify the best model that could work in short-, medium- and long-range prediction
horizons on a public dataset.

Despite the success of ML/DL regressors, more traditional regressor methods, such as Linear
Regression (LnR), MLnR, Auto-regressive integrated moving average (ARIMA), Seasonal-ARIMA
(SARIMA) and ARIMA with exogenous variable (ARIMAX) were still tested to predict Solar
PV output of the time series data [2,23,31-33]. Traditional regression methods frequently do
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not achieve the predictive accuracy of ML models. Additionally, approaches such as ARIMA
and SARIMA are limited to forecasting a variable based solely on its historical values. While
the ARIMAX allows for the inclusion of one additional variable only in the prediction process.
Therefore, to achieve better results, Fan et al. [36] combined ARIMA with ML methods such as
BPNN and SVR.

Our study employs solar irradiation, encompassing both direct and diffuse components, as well
as ambient temperature, as key input features. We have also included location data, specifying the
relevant Regency or City, to enhance the predictive accuracy of our solar PV output model across
diverse geographical contexts. For this research, we have sourced datasets from publicly available
resources generated by MERRA-2 [37], which are also provided through the renewables.Ninja
website. This methodology is designed to promote transparency and facilitate the replication of
our study by other researchers.

As mentioned before, we evaluated three machine learning models, MLP, HGB, and RF,
as potential predictor candidates. Additionally, we included a traditional regression model,
MLnR, to serve as a baseline for comparison. Each of these models, along with MLnR, underwent
optimization using the G5 method. The performance of these models was assessed on a comparison
platform that was designed based on our prior research [38,39]. The SSCV is employed to evaluate
the performance of various model candidates. This validation process is essential for ensuring the
reliability of systems developed for the accurate prediction of solar PV output.

3. MATERIAL AND METHODS

This study gathers solar irradiation (direct and diffuse), ambient temperature, and solar PV power
output as input attributes from MERRA-2-based Solar PV model datasets in the Renewables. Ninjg}
website [8,34]. In this study, these hourly temporal-based solar PV datasets are gridded with a
spatial resolution of 0.05° x 0.05°, or every 0.5 kmZ2, collected from all locations in Indonesia’s Java
and Bali areas, from 2013 t@R022. This research also determines the geographical coordinates of
all Regencies/cities across the Java-Bali region, Indonesia, for solar PV power output prediction
at those locations, based on the best annual solar PV capacity facgy. Figure 1 (above) shows the
location coordinates of a spatial resolution of 0.05° x 0.05° within the Java-Bali region, Indonesia,
and (below) the mapping of the 1-year PV capacity factor in all Java-Bali areas in 2015, which
implicitly shows the solar PV output level of a modeled 1 MW solar PV plant in each spatial
resolution [40].

As previously mentioned in the introduction section, this study assesses four regressor models:
The MLP — an artificial neural networks method; The HGB, which is based on an ensemble boosting
method; and RE, which is based on an ensemble bagging method; as the predictor candidates
along with one traditional regressor, the MLnR, a linear regressor family that is commonly used
as the baseline. In this study, all these models are built using the scikit-learn library [41].

The MLP model learns mainly using two phases: The 1st phase is Feed-forward, and the
2nd phase is backpropagation [42]. The Feed-forward phase will present input data x;(p) and
propagate this data through the output to generate predicted output y; for each output unit. The
formula for this phase can be seen in equations 1 and 2.

yj(p) = activation_function ()n: xi(p) - w,,'(p')) (1)

i=1

—

Il
-

y(p) = activation_function ( xx(p) -wjk(p)) 2)
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Table 1: An overvicw of related work from 2020 to 2024

Author Year  Prediction Dataset”") Method Best Result™]
Horizon
Leeetal. [29] 2024  Short- to (Pr) Input: air pressure, temperature,  LSTM, MLI" nRMSE = 8.03%
medium- humidity, wind speed, rainfall, solar
term irradiance. Output: Solar PV output
Cuietal [30] 2024 Short- and  (Pr) Input: solar irradiance, air pres- MLP MAE = 236 MATFE =
‘medium- sure, wind speed, humidity. Output: 13.95%; RMSE = 6.28 kW
term Solar 'V output
Asiedu et al. 2024 Short-tolong-  (Pu) Input: solar irradiance, module  ANN, RdR, LnR, RZ=0.87, MAE = 03; RMSE
[32] term and ambient temperature. Qutput: LsR, AB, XGB, K- =075
Solar PV output NN, DT, RF, ANN-
RF, XGB-RF, ANN-
XGB-RF
Scottetal.[2] 2023 Short-tolong-  (Pr) Input: cloud coverage, humid- MLFE, SVM, RFE,  RMSE = 1.76 kW
term ity, rainfall, air pressure, temperature, MLnR
wind speed, DateTime. Output: So-
lar PV output
Visser et al. 2023  Shorl-term (Pr) Input: 26 variables (abso- RF, MLnR RMSE = 0.13 kW; MAE =
[23] lute/relative air mass, clear sky, di- 0.65 kW
rect and diffuse irradiance, etc.). Out-
put: Solar PV autput
Rahmanetal. 2023  Short-term (Pr) Input: solar irradiance, module  LSTM RMSE =1 kW; MAE 16
[24] temperature. Qutput: Solar PV out- kW; MAPE = 1.93%; R2 =1
put
Potietal [25] 2023  Short-term (Pr) Input: solar irradiance, cell tem-  Proposed new RMSE = 0.43 kW; MAE =
perature. Output: Solar PV output  dictor formula 025 kW; R2=1
Jeong [26] 2023 Shorl-term (Pr) Input/Output: Time series Solar  Transformer, MSE = 0.083; MAE = 0.15
PV output RNN, GRU, LSTM
Dimd et al 2023 Very shori- (Pr) Input solar irradiance, tempera-  LSTM RMSE = 2.24 kW; WAPE =
[21] term ture, tilt angle, azimuth angle. Out- 4.66%
put: Solar PV output
Dhaked et al. 2023  Shorl-term (Pr) Input: solar irradiance, temper-  LSTM, MLI RMSPE = 4.7%
[27] ature, humidity. Output: Solar PV
output
Alrashidi & 2023 Shorb-term {Pr) Input: DateTime (Month, Date, BPNN, SVR RMSE = 4.84 kKW; nRMSE
Rahman [28] hour), temperature, wind (direc- = 4.60%; MAE = 3.06 kW;
tion, speed), solar irradiance (direct, nMAE = 2.96%
global), pressure. Output: Solar PV
output
Chodakowska 2023 Medium- to  (Pu) Input/Output: Time series solar ~ ARIMA MSE = 183.18; RMSE =
etal [31] long-term irradiation 13.53; MAPE = 2.79%; Std.
Error = 14.14; R2 = 99.9%
Tanoto et al. 2023 Medium- to  (Pu) Input: solar irradiance (direct  ARIMAX, ARIMA, RMSE = 921 kW; MAE =
[33] long-term & diffuse), ambient temperature, PV SARIMA 252 kW; R2 = 0.41
power output. Output: Solar 'V out-
put
Fanetal [36] 2022  Shorl-term (Pr) Input/Output: Time series Solar ~ ARIMA-BPNN- MALE = 0.53; MSE = 0.41;
PV output SVR RMSE = 0.64; MA x
Kazem et al. 2022 Long-term (Pr) Input: solar irradiance, temper-  PCA, Full-RNN MSE = 0077; NMSE = 0.442;
[34] ature. Output: Solar PV power and R2 = 0.762
current output
Rodriguez el 2021 Very short-  (Pr) Inpul: season, ime of day, solar  FFNN, RNN, RMBSE = 6.08 W/m®
al. [22] term irradiance. Output: (predicted) Solar  SVM, FFNN spa-
irradiance tiotemporal
Jung el 2020 Long-lerm (Pr) Input: solar irradiation, temper-  LSTM-RNN NRMSE = 7.416%; RMSE =
al. [35] ature, humidity, wind speed, precip- 14.003; MAPE = 10.81%

itation, cloud amount, duration of
sunshine. Output: Solar PV oulput

17 Pr = Private dataset; Pu = Published dataset
{2) The first method in bold is the best method
) nRMSE: normalised RMSE; MAPE: Mean Absolute Percentage Error; WAPE: Weighted Absolute Percentage Error;
RMSPE: Root Mean Squared Percentage Error; nMAE = normalised MAE; MSE: Mean squared error
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Figure 1: (Above) Location coordinates of a spatial resolution of 0.05° x 0.05° across the Java-Bali region, Indonesia,
and (Below) mapping of 1-year 1 MW modelled solar PV capacity factor in all Java-Bali areas in 2015

Where n is the number of inputs of the hidden layer’s neuron j; w;; is the weight of input i to
the hidden layer’s neuron j; y; is the output of the neuron j in the hidden layer; xj; is the input of
the neuron k of the output layer from output y;; wj is the weight of the hidden layer’s neuron
j to the output layer’s neuron k; m is the inputs number of neuron k in the output layer. The
classical activation function of MLP is the Sigmoid function or Tanh, but lately, Rectified Linear
Unit (ReLU) and Softmax functions are commonly used.

The backpropagation phase begins directly after the Feed-forward finishes. Firstly, this phase
calculates the gradient error d; of the output layer’s neuron k, then uses the gradient error to update
the weights of the output layer and hidden layer neurons. The formulas for the Backpropagation
phase can be seen in equations 3 to 6.

Se(p) = ye(p) - (1 —ye(p)] - (ke — yi(p)) 3)
wik(p+1) = wi(p) -a- y;(p) - &(p) @)

1
5(p) = wi(p) - [1 —w;(p)] -k_Z;ék(P) ~wir(p) ®)
wij(p+1) = w;i(p) - a - x:(p) - ;(p) (6)

Where y is the target/real output from the dataset; & is the learning rate, a small number
from 0 to 1; §; is the gradient error of the hidden layer’s neuron j; and [ is the number of output
layer’s neurons that get input from the hidden layer’s neurons. These two phases are iterated
alternately for all the data in the training set until the selected error criterion is satisfied.

The RF ensembles multiple Decision Tree Regressors (DTR) and merges their results to improve
accuracy and reduce overfitting. The model implements Bootstrap Sampling, where it randomly
selects subsets of data with replacement. Each data subset is used to build a DTR using a random
subset of features at each split. The common split of DTR uses the MSE, with the formula in
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equation 7. The result of RF regression prediction y is the average of outputs from all DTR [18]
(see equation 8 for the formula).

MSE =1 )" (i~ §i)? )
=1
1 B

¥ B E hy(x) (8)
b=1

Where y; is the i-th observed /target value; g, is the i-th predicted value; » is the number of
data points; hy,(x) is the prediction from the i-th DTR for input x; B is the number of DTR.

The HGB is an advanced and efficient implementation of Gradient-boosted Decision Trees
(GBDT)?, designed to handle large datasets more quickly and with lower memory usage. It works
by discretising continuous input features into a fixed number of bins, essentially converting them
into histograms. This binning significantly reduces the number of split points the algorithm needs
to evaluate during training, which results in a major speed-up compared to traditional GBDT
methods. In HGB, each iteration adds a new DT that tries to correct the errors made by the
previous ensemble of DTs. To do this, gradient descent is used, where the new DT is trained to
predict the negative gradients (residuals) of the loss function with respect to the model’s current
predictions. The GBTD aims to minimize a loss function L(y, F(x)), where y is the true target and
F(x) is the predicted value. The model Fpr(x) comprises M additive functions [43], as seen in
equation 9.

M
Fa(x) = Y ah(x) M
m=1

Where hy,(x) is the m-th base learner (e.g., DT), and « is the learning rate.

The MLnR is a fundamental statistical technique that models the relationship between one
dependent and two independent variables. It extends simple linear regression, which involves
only one predictor, by allowing for multiple predictors. The formula to predict output y can be
seen in equation 10 [44].

y=po+pix1i+Paxa+ -+ Buxn+€ 2)

Where x4, X3, ..., X, are independent variables/features; 8y is the intercept (constant term);
B1. B2, .-, Bn are the coefficients of the predictors; ¢ is the error term (captures noise or unexplained
variation).

The GS method is used to optimise all ML and MLnR and tested on a comparison framework
modified from previous research [26,35]. The GS technique thoroughly searches a manually
specified subset of hyperparameter values, testing each combination to determine the best settings
for the model’s performance. The SSCV method is used to assess the performance of model
candidates, as it offers flexibility by allowing random shuffling of data and customizable numbers
of training and testing splits. All models are trained and tested with K-fold SSCV from scikit-learn
to avoid overfitting.

The SSCV, also known as Monte Carlo cross-validation, randomly splits the dataset into several
training and validation sets. Unlike k-fold cross-validation, which splits the dataset into fixed
K-fold, SSCV makes K random splits. The number of iterations, K, can vary based on the analysis
being conducted. The results of each split are then averaged. Additionally, the proportion of

https:/ /scikit-learn.org /stable/ modules/ gencrated / sklearn.cnsemble. HistGradientBoosting Regressor.html
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training and validation splits is not determined by the number of partitions. The visualisation of
SSCV can be seen in Figure 2. Because the split process is combined with data shuffle, the SSCV is
regarded as more equitable than the traditional K-fold cross-validation (CV). As a result, K-fold
SSCV could reduce overfitting more than K-fold CV and provide more accurate measurements.
The chosen trained model is saved for use in the subsequent section after the comparison.

Sample index

class

1

ShuffleSplit

CV iteration

2 3 4 5 6 71 &

N Testing set
N Training set

Figure 2: Example visualisation of SSCV (8-fold)

This study develops the Solar PV power output prediction model — inspired by the previous
research [6] — which consists of two sections. The first section is named Model Comparison and
Selection, and the second is Deployment. The first section is a comparison platform for training
and testing all considered regressors as potential Solar PV power output predictor candidates. The
flow diagrams of the Model Comparison and Selection section and the Deployment section are
presented in Figure 3 and Figure 4, respectively.

1 Data Preprocessing i
M L]
' L)
1 - Cleaning ] Load raw data
: process process process process . 1 ( from MERRA-2 . -
’ i (Finish)
memmsgeesans  pssssssssssssssssssessssssesssssssssssssssssesy
[ L 1
H [ i .
i | selectdata | {1 | rrincost predict Optimised the Measures the H save
1 |basedonthe | 1 using 1* regressor (=3 model parameters (~—f| performanca using : trained
i | b | g )7 model using Grid Search MAE and RMSE ' model
[ [ .
! v E ' H T
1| selectdsta | & |1 | Train-test predict Optimised the Measures the .
1 basedon | | using 2 f—— model parameters | performanca using i [ —
1 1 model ing Grid Search MAE and RMSE TN
i province, | 1 i regressor using a H gt
: B vy : : : model

. 1
T : :
! Selactthe | | || Train-test predict Optimised the Measures the H
[ timelines of . > using "™ =¥ model parameters —| performance using '
1 | data training ! H regressor model using Grid Search MAE and RMSE .
i : b H
i -1 & 1
| Data Selection ' | Shuffle Split Cross Validation .

- H
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Figure 4: The deployment section

and save the model

.

The subsequent phase in this first section, Data Selection, minimises the volume of processed
data to facilitate processing with constrained computer resources. Consequently, data training
concentrates on a certain province or city to ensure that the model addresses the requirements of
distinet features and locales. Consequently, the initial task in this phase is to choose the qualities
for input: Direct, Diffuse, Temperature, or a mix of two or all three features. Subsequently, we
select the dataset according to province, regency, and city. The concluding stage is to choose the
dataset according to time intervals (in years).

The Deployment section (flow diagram shown in Figure 4) is divided into two parts, each
directed by a condition. The first step involves creating a new model with updated data in CSV
format. The new model can be specified here, along with the test size and input features/attributes
used in the model training process. If the new data attributes match the input feature settings,
the model will start the training. On the other hand, if the new data attributes do not match, the
model will generate a notification and terminate. Once the training process is completed, the
trained model and its performance measurements for MAE, MSE, RMSE and R? formulas* will be
saved. The formulas of these measurements can be seen in equations 11 to 13.

MAE =03 1y~ )
RMSE = 1ﬂ%f(y,——y,—)z (4)
i=1
" 2
R =1 _ Lic1 (Wi —0i) 5
=90 ©

Where y; is the i-th observed /target value; §f; is the i-th predicted value; §; is the average of all
y observed /target values; n is the number of data points.

In the second part of the Deployment section, the new solar PV data can be entered for
prediction. The first step of this particular part is to select and load the desired model. After
the model has been loaded, its information is displayed, including whether it is only for specific

4htt]:v&:/ /scikit-learn.org/stable/api/sklearn.metrics.html
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features (e.g., Diffuse only or Direct-Diffuse only) and locations, e.g., Bali province only and East
Java provinces. This information is critical when selecting input data by CSV file mode because
the CSV file with the data structure that the model accepts must be synchronised. The solar PV
power output prediction model also accommodates a manual mode of inputting data, which is
manually entered and recorded directly in the system.

All records with null/zero attributes on the Direct, Diffuse, and Output tables are removed
during the raw data cleaning process. Zero/null values are typically present because it was
nighttime (no solar radiation) or due to an error in equipment. The raw data tables, Direct, Diffuse,
Temperature, and solar PV Output tables, are then integrated using date (rows) and locations
(columns). While being integrated, each record is aggregated and written to a new Table, the solar
PV dataset, which has the structure shown in Table 2. For this record, this study uses the Reverse
Geocoding API to extract information about the province and city /regency from the location
data (Latitude-Longitude). The final step in pre-processing is the Normalization Step. We use
the Min-Max Scaler method by Scikit-learn to normalize the Direct, Diffuse, and Temperature
attribute values.

Table 2: Selar PV dataset structure

Atiribute Data type _ Description

Date (GMT+7) DateTime  Converted from the Date attribute of the raw data to GMT+7.

Latitude & Longitude  Spatial The representation of a location on the earth. This attribute is from the Latitude-Longitude
attribute in all raw datasels.

Regency /city Text City or regency of a particular Latitude-Longitude that is converted using Reverse Geocoding
APL

Province Text City or regency of a particular Latitude-Longitude that is converled using Reverse Geocoding
APL

Direct (W,l'ml) Number A value from the “Direct” raw data table associated with a particular date and Latitude-
Longitude.

Diffuse (W/m?) Number A value from the “Diffuse” raw data table associated with a particular date and Latitude-
Longitude.

Temperature (°C) Number A value from the “Temp " raw data tabl iated with a particular date and Latitude-
Longitude.

Output (kW) Number A value from the “Solar PV_Output” raw data table associated.,

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1. Is grid search useful?

Experiments in this subsection are designed to evaluate how effective GS is at improving the
performance of regressor models. This study applies 410,260 records from the Central Java region’s
solar PV dataset in 2022 as a case study. The structure of this data can be seen in Table 2. Here,
we used “Regency /City”, “Province”, “Direct”, “Diffuse”, and “Temperature” attributes as the
input and “Output” attribute as labels/targets. All non-numerical attributes will be transformed
into numeric values. After that, all the used attributes will be normalised using a MinMax Scaler’®
to be 0 to 1 and considered as input vectors to evaluate the model candidates. The formula of
MinMax Scaler can be seen in equation 14.
,_ x—min(x)

X=—" (6)

"~ max(x) — min(x)

Where x' is the scaled feature, x is the data, min(x) and max(x) are the range of the feature.

Shttps:/ /scikit-learn.org/stable/ modules/ generated/ sklearn. preprocessing. MinMaxScaler html
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For analysis purposes, this study aggregates the hourly temporal-based data to obtain daily
averaged data and assigns a location with the highest capacity factor to represent each city or
regency in the province. The RMSE is measured using 5-fold SSCV. This means that the SSCV will
be iterated five times, and for each iteration, 20% of the dataset will be randomly selected for the
testing set, while the remaining portion will be used to train the model.

Figures 4 and 5 show the performance comparison between the default settings of the regressor
candidates, as specified by the Scikit-Learn library [41] and their performance after optimisation via
the GS, and a comparison of processing times, respectively. As shown in Figure 5, GS significantly
improved the HGB's performance while slightly improving the MLPs (the RMSE is reduced
by 0.13 kW). In the MLnR, the GS result is identical to the default parameters. However, the
default parameter setting remains the best for the RF. Meanwhile, Table 3 shows the GS-optimised
parameter results for regressor model candidates.
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Figure 5: Performances (RMSE in kW) of regressor models in default vs GS-optimized parameters

Table 3: The GS-optimized parameters of regressor model candidates

Model GS-optimized parameters

GS(RF) N_estimator = 40; max_depth = 20; max_features = auto; min_samples_leaf
=1; and min_samples_split = 2.

GS(HGB) Max_depth = 10; max_iter = 1000; learning_rate = (.1; min_samples_leaf =
20; loss = ‘squared_error”.

GS(MLP) Max_iter = 2(X); activation = ‘tanh’; solver = ‘adam’; learning_rate =
‘invscaling”; hidden_layer_sizes = (100,) = one hidden layer with 100
neurons.

GS(MLnR)  Fit_intercept = True; positive = False (these parameters are the same as the
default of Scikit-learn’s MLnR).

This study incorporates the second-best configuration identified by the GS process due to
computational memory constraints. The GS-optimised RF parameters yielded a marginally higher
RMSE, increasing by 0.02 kW. Nonetheless, as illustrated in Figure 6, GS could markedly decrease
the processing time in RF, achieving a reduction of 474.41 seconds. The processing time of
MLP could potentially be diminished to 1,360.02 seconds. Conversely, the GS-optimised HGB
necessitated a longer processing duration than the default version (81.29 seconds). The MLnR
required a minimal processing time of 2.1 seconds. A thorough examination of the performance of
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Figure 6: Processing time (in second) of regressor models in default vs GS-optimized parameters

regressor model candidates shows that, except for the MLnR, regressor models perform marginally
better on training data than the MLnR, and their performance on training data is slightly better
than on testing data, as illustrated in Figure 5.

Training data has been utilised to develop the models, while testing data has not. Nevertheless,
due to the negligible differences (under 0.5 kW), we determined that none of the models exhibited
overfitting. Moreover, the GS-optimised MLP surpassed the others in the testing data, achieving an
RMSE of 0.3 kW. The default RF parameters for testing data surpassed the GS-optimized parame-
ters in RMSE, recording values of 0.552 kW and 0.573 kW, respectively. The GS-optimized HGB
RMSE was 0.944 kW, whereas the MLnR RMSE was 4.245 kW. Moreover, the GS-optimized MLP
surpassed the others in the testing data, achieving an RMSE of 0.3 kW. The default configuration
of the MLP regressor surpasses other regressors, even following optimization through the GS
process. The model produced an RMSE of 0.43 kW. The R? of all models is 0.99, which means all
the models are good for use in solar PV output prediction.

4.2, Training and testing for the whole big dataset

The performance of GS experiments is evaluated over various prediction horizons, such as short-,
medium-, and long-term, by utilizing a daily Solar PV dataset from 2013 to 2022, as outlined
in [20]. Two sets of experiments were implemented for each prediction horizon. The first set is
situated in the middle of the prediction horizon range. For instance, if the short-term range is
from hours to days, one day is approximately central to this range. The second set is located at
the upper end of the range (six days) for the short term, as the medium term commences after one
week (7 days). The solar PV dataset range utilised in the experiments is presented in Table 4.

Table 4: Solar PV dataset range for experimenting on each prediction horizon

Prediction Horizon  Duration of Prediclion (daily)  Dala Training/Tesling Range for 10-Fold 5SCV
1 day 22 December 2022 - 31 December 2022
Shorl-term 6 days 2 November 2022 — 31 December 2022
15 days 1 August 2022 — 28 December 2022
Medium-term 30/31 days (1 month) 1 March 2022 - 31 December 2022
182/183 days {6 months) 1 January 2022 - 31 December 2022
Long-term 365 days (1 year) 1 January 2022 — 31 December 2022
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To evaluate the performance of the GS-optimized results in Table 3 on this large dataset, this
study trains the model candidates using 10-fold SSCV on the Solar PV dataset, as 10-fold is
considered a better measurement than 5-fold for big data. This study uses two measurements:
MAE and RMSE. This study includes default settings whenever possible, especially for the RF,
but if a memory error occurs during the process, this study only provides the GS(RF) results.
The memory error may occur due to the default RF configuration using 100 decision trees with a
maximum depth. Each decision tree will be grown until no more leaves can be split (minimum
sample split < 2). When the dataset is large, this setting requires a lot of memory to build the
decision trees inside.
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Figure 7: RMSE and MAE of the regressor candidates across the short-, medium-, and long-term prediction horizons
(data range 2013 to 2022)

Figure 7 illustrates that GS(MLP) achieves the lowest errors for short-term (6 days), medium-
term (6 weeks), and long-term (6 months) prediction horizons, with an RMSE of (.3 kW and an
MAE of 0.24 kW. The MAE of GS(RF) decreases from 0.39 kW to 0.33 kW, while the RMSE ranges
from 0.55 kW in the short-term (6 days) to 0.48 kW in the long-term (6 months). Nevertheless,
the MLnR and GS(HGB) errors increased in tandem with the extent of data training. Across all
prediction horizons, the MLnR exhibited the highest (worst) MAE and RMSE. The MLnR regressor
is regarded as weak due to its dependence on a linear equation.

Another drawback is that the MLnR generates a greater number of errors as the total volume of
data trained increases. For instance, the RMSEs of MLnR are less than 2 kW in the short term, over
3 kW in the medium term, and approximately 5 kW in the long term. The results of these studies
indicate that MLnR is a superior method for data training compared to medium- or long-term
predictions, which typically necessitate a greater amount of data to train the model. Nevertheless,
the MLnR continues to be the most unfavourable option in all instances.

The other three regressors in the ML method family have more intricate equations and can
learn from complex patterns more effectively. The implication is that the RF, HGB, and MLP
results outperform MLnR, with almost all MAEs and RMSEs less than 1 kW, except for GS(HGB),
over the long-term prediction horizon of approximately 1 kW. Nevertheless, the MAE and RMSE
of RE, G5(RF), and G5(MLP) improve as data training increases, in contrast to the MLnR. ML
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models are trained in a broader range of data, resulting in more generalised models and improved
prediction results, as a result of the increased data training. Nevertheless, the models’ performance
improves until they reach a specific threshold, at which point they reach a plateau [38].

The errors of RE, GS(RF), and GS(MLP) are greater than those of other prediction horizons
when the short-term (1 day) prediction horizon is considered. The absence of data is the reason
for the initial hypothesis. Additionally, experiments are implemented to verify the hypothesis
and observe the short-term (1-day) prediction horizon. Aside from the short-term (1 day) issue
with small data training, as illustrated in Figure 7, a second anomaly occurred in the long-term (1
year) when errors for all model candidates abruptly increased. Regarding technicality, only MLnR
is unsuitable for big data processing; therefore, the problem is most likely with the data rather
than the models. Consequently, further experiments are implemented to investigate this anomaly.
The following experiments employ only the lighter GS(RF), which did not induce computational
memory errors, due to the slight difference between RF and GS(RF) (+ 0.02 kW).

4.3. Small data training problem in short-term (1 day) prediction horizon

The short-term (1 day) variety of data training for a location is only nine days because this study
uses 10-fold SSCV. This results in slightly worse prediction performance for GS(RF) and GS(MLP)
than in the other cases. The initial hypothesis is that GS(RF) and GS(MLP) require additional
data training. Based on this hypothesis, this study investigated whether total data training can be
achieved by conducting experiments with small amounts of data ranging from 3 to 40 days and
running them using 3-fold SSCV to 40-fold SSCV. These settings ensure the testing data is always
one day old, while the rest is training data. For example, in 3-fold SSCV, the training data is two
days; in 40-fold SSCV, the training data is 39 days. Table 5 shows the detailed data ranges for each
n-fold SSCV in these experiments. Meanwhile, the results are shown in Figure 8.

Table 5: The data range of each fold setting for shori-term (1 day) prediction horizon

Told Data Time Range Total Data Training/Tesling
{in days)

3 29 December - 31 December 2022 2/1

5 27 December — 31 December 2022 4/1

7 25 December — 31 December 2022 6/1

10 22 December - 31 December 2022 9/1

15 17 December — 31 December 2022 14/1

20 12 December — 31 December 2022 19/1

30 2 December - 31 December 2022 29/1

40 22 December — 31 December 2022 39/1

Figure 8 shows that with sufficient data training (5-days), GS(RF), GS(HGB), and G5(MLP)
perform better than MLnR, with RMSE and MAE plateauing at + 1.5 kW and + 1 kW, respectively.
Furthermore, the MAE of GS(RF) and GS(HGB) is already lower than MLnR in the first experiment,
where data training lasts two days. It means that, after two days of data training, GS(RF) and
GS(HGB) produce fewer errors than MLnR (lower MAE), but they also produce a few significant
errors, resulting in a higher RMSE.

The GS(MLP) underfitted after two days of data training, a situation in which the model’s
performance suffers due to insufficient data training or training epochs (repetitions). As a result,
this study includes GS(MLP) experiments with two days of data training, increasing the number
of training epochs from 300 to 2,000. Figure 9 shows the results of MAE, RMSE, and processing
times of GS(MLP) with training epoch 200 to 2000 for a short-term (1-day) prediction horizon,
3-fold SSCV.
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Figure 9: The results of MAE, RMSE (left) and processing times (right) of GS(MLP) with training epoch 200 to 2000
for short-term (1 day) prediction horizon, 3-fold SSCV

Figure 9 also shows that adding more training epochs without more data significantly reduced
GS(MLP)'s RMSE and MAE. After 1,000 epochs, the GS(MLP) achieved the lowest MAE and
RMSE before plateauing. As a result, a maximum of 1,000 epochs is recommended for small
data training (i.e., two days) with a short prediction horizon of one day. However, as expected,
processing times would increase with each additional epoch. GS(MLP) with 1,000 training epochs
produces the lowest error among the model candidates based on 3-fold SSCV (see Figure 9). Given
enough epochs to train the model, the GS(MLP) may be the best candidate for short-term (1-day)
prediction. However, once the data training is large enough, i.e,, ten days, 200 epochs are sufficient
and do not cause an underfitting problem.

4.4. What happened in the long term (1 year)?

An anomaly occurs during the long-term (1 year) experiments using the solar PV dataset from
2013 to 2022 (see Figure 8). In these experiments, both MAE and RMSE of GS(HGB), GS(RF),
and GS(MLP) deteriorated and increased sharply, outperforming the short-term results (1 day).
Investigation of the Solar PV dataset turned up anomalies in the 2015-2016 data. Because weather
conditions influence our data, climate change is a plausible explanation for these anomalies.
Indonesia’s climate is heavily influenced by Indo-Pacific climate modes [45].

After analyzing Indonesian climates from 2005 to 2022 using the Oceanic Nino Index (ONI),
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this study found that a strong El Nifio occurred between 2015 and 2016, affecting weather in
Pacific areas such as Java and Bali. Figure 10 shows the Oceanic Nino Index (ONI) from 2005 to
2022. To conduct a thorough investigation, this study runs experiments for a long-term (1-year)
prediction horizon using data from a 10-fold SSCV range from 2011 to 2022 but excludes data from
2015 and 2016. Figure 11 shows RMSE and MAE of the regressor candidates across the short-,
medium-, and long-term prediction horizons (data range 2013 to 2022), with long-range data (1
year) without 2015-2016.

3-Month Nino Region 3.4 Average
: ] e [ :
s n
—A
e |

Figure 10: Oceanic Nino Index (ONI), 2005 to 2022

Figure 11 shows that without the data affected by a strong El Nino, the MAE and RMSE of
GS(HGB) and GS(MLP) do not increase but plateaued as prediction horizons shrank, whereas
GS(RF) errors decreased. Only MLnR is unaffected by the anomalies, but its errors are still higher
than those of other model candidates trained using anomaly data. As previously stated, the MLnR
maodel is not suitable for training on large datasets.

The best model is GS(MLP), which has an MAE of 0.258 kW and an RMSE of 0.318 kW while
being unaffected by robust El Nino data. The GS(RF) is marginally worse, with MAE equal to
0.283 kW and RMSE equal to 0.361 kW. Following that, the G5(HGB) MAE and RMSE were 01.768
kW and 1.017 kW, respectively. Figures 6 and 10 show a comparison of long-term (1 year) with
and without strong El Nino-affected data (2015-2016), demonstrating that ML predictor models
(RF, HGB, and MLP) are sensitive to robust (very strong) El Nino data.

5. Concrusion AND FUuTUure Work

Using Ee Java-Bali region as a case study and several ML techniques, this study shows that the
GS-optimised MLP model can accurately predict the solar PV power output across all prediction
horizons from short-term (1 day) to long-term (1 year). The Average MAE of GS(MLP) across all
prediction horizons is 0.248 kW with a standard deviation of 0.011, while the average RMSE is
0.306 kW with a standard deviation of 0.013. However, when total data training is small, i.e,, in a
short-term (1 day) prediction horizon, GS(MLP) requires many epochs to train the model, precisely

126




gurnal of Asian Energy Studies (2025), Vol. 9, 111-130

(Logarithmic scale, kW)
640

. ®  —8—MLoA RMSE

0L MAE

-ar= GS(HGB) RMSE

e GSIHGE) MAE

@ GS{RF) AMSE

e GS{RF) MAE

*—GS{MLP) RMSE

5 MILP) MAE
r o
¥ o o o
- + i
. ———
ax

Shaet-tarm Shot term Medumaemm Medumdorm Longterm Longeberm
1y} (6 days) (15 days) 11 menth {6 mornths) (1year, wioun 2015

Prediction Horizon )

Figure 11: RMSE and MAE of the regressor candidates across the short, medium, and long-term prediction horizons
(data range 2013 to 2022), with long-range data (1 year) without 2015-2016

1,000 epochs. When data training is sufficient, such as in short-term (6 days) to long-term (1 year)
prediction horizons, the G5(MLP) can be trained with only 200 epochs and perform well. G5(RF)
is the second-best model, with an average MAE of 0.373 kW, a standard deviation of 0.041, and an
average RMSE of 0.521 with a standard deviation of 0.07. The average MAE for the GS(HGB) is
0.718 kW with a standard deviation of 0.049, and the RMSE is 0.992 kW with a standard deviation
of 0.059. The MLnR performs poorly, with errors on all prediction horizons greater than 1 kW.

The analytical findings indicate that the machine learning family predictor models (MLP, RF,
and HGB) may be susceptible to robust El Nifio-induced training data. Future research should
focus on identifying alternative prediction models that are resilient to data influenced by severe El
Nifo events and evaluating the performance of deep learning-based models. Additional analysis
of the solar PV power output predictions, which integrate socioeconomic and electrical demand
data specific to the region, is also interesting.
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