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 Abstract 
 
Transit flows between stations are typically estimated indirectly using 
fare collecting data rather than through direct measurement. Traditional 
methods approximate transit flows by adapting Origin-Destination 
(OD) trip estimation techniques. However, these approaches have two 
significant limitations. First, transit link flows represent the number of 
passengers remaining within the transit vehicles between stations, 
while OD flows specifically represent passengers entering at one station 
and exiting at another station. Second, traditional methods rely on the 
assumption that a cost function is necessary without providing mathematical 
justification. Consequently, there lacks a robust theoretical foundation 
explicitly tailored for transit flow estimation.  This paper addresses this 
gap by developing an axiomatic framework based on the Ideal Flow 
Network. Through systematic mathematical derivations, we identify 
key balance conditions and necessary constraints to achieve more accurate 
transit flow estimation. 
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INTRODUCTION 
 
Transit flow estimation between stations is crucial for transit operations management and planning of transit systems. 
Accurate knowledge of transit flows directly impacts service quality, passenger comfort, and overall system 
reliability. Unlike direct measurements, transit flows between stations are predominantly inferred from fare collection 
data. An inaccurate understanding of transit flows can lead to overcrowding, negatively affecting passenger 
satisfaction and potentially undermining the structural and operational integrity of transit systems. A practical 
illustration of such challenges occurred with Metro Manila's MRT3 system in 2017 [1], demonstrating the necessity 
for reliable transit flow estimations. 
 
Transit flow estimation might initially seem analogous to Origin-Destination (OD) matrix estimation in trip 
distribution analysis. However, these two concepts differ fundamentally. The transit link flow refers to the passengers 
currently onboard as the train traverses between stations, whereas OD flow focuses on passengers entering at an 
origin station and alighting at a destination station. 
 
Traditional OD estimation methods typically rely on cost functions and heuristic approaches [2], such as the gravity 
model [3] or linear programming techniques [4], to estimate passenger distributions across networks. These methods 
assume passenger distributions based on trip costs or other heuristics without mathematical validation specific to 
transit systems. Although widely adopted, these approaches lack conclusive mathematical justification specifically 
for transit flows. The direct applicability and conditions for validity of these assumptions within transit scenarios 
remain ambiguous. Consequently, there is a pressing need for a theoretically justified methodology explicitly 
addressing transit flow estimation. 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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In response to these limitations, this paper proposes a rigorous axiomatic theory for transit flow estimation specifically 
tailored to transit lines. The approach presented is based on an Ideal Flow Network (IFN) [5], which provides a 
mathematically justified framework for evaluating transit flows within single transit lines with two-way connections 
between consecutive stations. We shall bound our space to include a single transit line of any number of stations 𝑁𝑁 ≥
2 with two-way links between any two consecutive stations. 
 
The axiomatic approach is preferable due to an integrated assertiveness, which give us solid theoretical foundation. 
Through the series of deductions into propositions and theorem, we show the conditions and constraints of the nature. 
Through rigorous axiomatic development, this theory establishes clear conditions and constraints that guide practical 
transit flow estimation methods. Thus, our contribution fills a significant theoretical gap by offering clarity, rigor, 
and practical guidelines for transit flow estimation. The numerical examples are provided in the Appendix below. 
 
Terminologies and General Definitions 
 
In this paper, we focus on a single transit line operating in two directions with a minimum of two stations. To maintain 
clarity, several terms are explicitly defined:  
 
Definition 1 
Transit link flow 𝑓𝑓𝑝𝑝𝑝𝑝 refers to the number of passengers within trains traversing a link 𝑝𝑝𝑝𝑝 between two consecutive 
stations. The term node represents a station and link represents directional line segment connecting two consecutive 
stations. The flow is the number of passengers in a link. As our convention, the flow has range from zero or positive 
infinity. Negative flow is not allowed by this convention. Inflow denotes passengers entering a station. Outflow 
indicates passengers exiting the station. Start station is the first station in the transit line. Since we have two 
directions, we use the convention that the most left station would be the start station when the train move from left 
to right and the rightest station would be the start station when the train moves from right to left. End station is the 
final station in the transit line, depending on the direction of the train’s movement. Middle station, if exist, is a station 
between the start and the end station. Middle link is a link between two consecutive middle stations. 
 
External environment is represented by a “cloud node” or station 𝑧𝑧, which symbolizes everything external to the 
transit system. Entry flow of a station, denoted as 𝑔𝑔𝑘𝑘, is the number of passengers inflow to station 𝑘𝑘 from the external 
environment (i.e. from outside of the station, excluding those who are already onboard the trains). Exit flow of a 
station ℎ𝑘𝑘  is the number of passengers leaving a station 𝑘𝑘 toward the external environment (i.e. including those who 
came out of the trains). 
 
In a network theory terms, a sink node only has inflows while a source node only emanates flow without receiving 
any. A network is strongly connected if there is a directed path between every pair of nodes. A component is a sub-
network that is strongly connected within itself. Specific components such as sink component and source component 
indicate isolated part of network with restricted directional flows. 
 
Through these definitions, we set the foundational terminology necessary for clear and precise mathematical analysis 
in subsequent sections. 
 
Derivation of Transit Flow Estimation 
 
In this section, we derive our main proposed method of estimation of transit flow based on Ideal Flow Network (IFN) 
[6]. 
 
Axioms for Transit Flow Estimation 
To develop a foundation for transit flow estimation, we introduce three fundamental axioms: 
Axiom 1: Flow conservation: In each station, the total of inflow is equal to the total of outflow.  
Axiom 1 is the principle ensuring continuity and consistency in passenger flows within the network. This axiom is 
known as Kirchhoff Law, originated in electricity circuits [7]. 
 
Axiom 2: Single External Environment: the external environment is represented by a single cloud node. 
The transit network interacts with a single external environment, represented by one cloud node. This axiom ensures 
network connectivity and irreducibility of the network matrix. The direct consequences of Axiom 2 is in Proposition 
1 that the network is strongly connected and in Proposition 2 that the pattern matrix is irreducible. 



Teknomo, K. 

       
Vol. 27, No. 1, March 2025: pp. 95-112 

97 

Axiom 3: No Immediate passing-through passengers: at any station, passenger who goes into the station will not 
immediately goes out of the same station. 
Passengers entering a station cannot exit immediately from the same station. This axiom provides realistic constraints 
by eliminating immediate passenger re-boarding at the same station, thus simplifying the estimation model. The 
immediate consequences of Axiom 3 is in Proposition 5 and Proposition 6 to give us start station constraint and end 
station constraint. 
 
These three axioms form the foundation of our theoretical framework and lead directly to crucial constraints and 
conditions essential for accurate transit flow estimation. 
 
Conditions 
To further specify scenarios, certain practical conditions are introduced as optional assumptions that simplify analysis 
under specific circumstances. While the mathematical proof is important to establish the theory, the conditions give 
the interpretation of the formulas needed for the applications. The following conditions are useful to derive the special 
properties, which are not in the general theory of transit flow estimation. These conditions shall serve as optional 
postulates that should be hold true only in order to deduce those special properties in later section below.  
 
Condition 1: No turning-back flow: if at any station, passenger who come from link 𝑖𝑖𝑖𝑖 will not immediately come 
back to link 𝑗𝑗𝑗𝑗. 
Passengers entering a station via a particular link cannot immediately return on the same link. This avoids unrealistic 
immediate reversals of travel direction. 
 
Condition 2: No passenger alighting until station 𝒑𝒑: if no passenger was alighting from start station up to this 
station 𝒑𝒑. 
In certain scenarios, no passengers disembark from the start station up to a designated station 𝑝𝑝. This condition 
simplifies flow calculations for specific cases. 
 
Condition 3: Complete Alighting up to station 𝒑𝒑: if all passengers who board the transit from previous stations up 
to this station alighting by reaching this station. 
All passengers who board trains from preceding stations alight by reaching a designated station q, providing another 
scenario-based simplification for specialized transit flow analysis. 
 
These three conditions simplify and clarify specific scenarios, ensuring precise estimation in targeted cases without 
generalizing excessively. 
  
Principles 
The following general mathematical principles support our theoretical derivations: 
Principle 1: Min-Max Exclusivity: Suppose we are maximizing and minimizing only based on the two variables. If 
one of the variables is equal to the maximum value, then the other must be the minimum value. The maximum value 
is equal to the minimum value if and only if the two variables are equal. 
 
Proof: 
Let 𝑋𝑋 = max(𝐴𝐴,𝐵𝐵) and 𝑃𝑃 = min (𝐴𝐴,𝐵𝐵).  
Suppose 𝐴𝐴 ≠ 𝐵𝐵: 

𝑋𝑋 = 𝐴𝐴 ↔  𝑃𝑃 = 𝐵𝐵 
𝑋𝑋 = 𝐵𝐵 ↔  𝑃𝑃 = 𝐴𝐴 (1) 

 
Suppose 𝐴𝐴 = 𝐵𝐵: 

𝐴𝐴 = 𝐵𝐵 ↔ 𝑋𝑋 = 𝑃𝑃 (2) 
 
QED 
When maximizing and minimizing two variables simultaneously, if one reaches its maximum, the other must reach 
its minimum, unless both variables are equal. 
 
Principle 2: Min-Max Balance: Suppose we are maximizing and minimizing only based on four variables in balance. 
The four variables represent two inflows and two outflows of a node. If the sum of one inflow and outflow is maximum, 
then the sum of the remaining inflow and outflow must be minimum to make it balance. 
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𝑋𝑋 = max(𝐴𝐴,𝐵𝐵),  
𝑌𝑌 = max(𝐶𝐶,𝐷𝐷), 
 𝑃𝑃 = min(𝐴𝐴,𝐵𝐵),  
𝑄𝑄 = min(𝐶𝐶,𝐷𝐷), 
 𝐵𝐵 + 𝐶𝐶 = 𝐴𝐴 + 𝐷𝐷 

(3) 

 
Then the following relationship holds 

𝑋𝑋 + 𝑄𝑄 = 𝑃𝑃 + 𝑌𝑌 (4) 
 
Proof: 
There are only five possible cases: 
Case 0: 𝑋𝑋 = 𝐴𝐴 = 𝐵𝐵 
Because 𝐵𝐵 + 𝐶𝐶 = 𝐴𝐴 + 𝐷𝐷, then 𝑋𝑋 = 𝐴𝐴 = 𝐵𝐵 = 𝑃𝑃 ↔ 𝑌𝑌 = 𝐶𝐶 = 𝐷𝐷 = 𝑄𝑄 

𝑋𝑋 + 𝑄𝑄 = 𝑃𝑃 + 𝑌𝑌 (5) 
 
Case 1: 𝑋𝑋 = 𝐴𝐴 > 𝐵𝐵 and Y = C > D 

𝑋𝑋 = 𝐴𝐴 ↔  𝑃𝑃 = 𝐵𝐵 
Y = C ↔ Q = D (6) 

 
Because 𝐵𝐵 + 𝐶𝐶 = 𝐴𝐴 + 𝐷𝐷, then 

𝑃𝑃 + 𝑌𝑌 = 𝑋𝑋 + 𝑄𝑄 (7) 
 
 
Case 2: 𝑋𝑋 = 𝐵𝐵 > 𝐴𝐴 and Y = D > C 

𝑋𝑋 = 𝐵𝐵 ↔  𝑃𝑃 = 𝐴𝐴 
Y = D ↔ Q = C (8) 

 
Because 𝐵𝐵 + 𝐶𝐶 = 𝐴𝐴 + 𝐷𝐷, then 

𝑋𝑋 + 𝑄𝑄 = 𝑃𝑃 + 𝑌𝑌 (9) 
 
Case 3: 𝑋𝑋 = 𝐴𝐴 > 𝐵𝐵 and Y = D > C 
We will prove that this case is invalid using contradiction. 
Since 𝐴𝐴 > 𝐵𝐵, we can write 𝐴𝐴 = 𝐵𝐵 + 𝑒𝑒, where 𝑒𝑒 > 0. 
Since 𝐷𝐷 > 𝐶𝐶, we can write 𝐷𝐷 = 𝐶𝐶 + 𝑟𝑟, where 𝑟𝑟 > 0. 
The balance equation dictates that 𝐵𝐵 + 𝐶𝐶 = 𝐴𝐴 + 𝐷𝐷 = (𝐵𝐵 + 𝑒𝑒) + (𝐶𝐶 + 𝑟𝑟) = 𝐵𝐵 + 𝐶𝐶 + (𝑒𝑒 + 𝑟𝑟). 
However, this contradicts the previous statements that 𝑒𝑒 > 0 and 𝑟𝑟 > 0. 
Thus, case 3 is invalid. The balance equation would only valid if 𝑒𝑒 = 𝑟𝑟 = 0, which the same is as case 0. 
 
Case 4: 𝑋𝑋 = 𝐵𝐵 > 𝐴𝐴 and Y = C > D 
We will prove that this case is also invalid using contradiction. 
Since 𝐴𝐴 < 𝐵𝐵, we can write 𝐴𝐴 = 𝐵𝐵 − 𝑒𝑒, where 𝑒𝑒 > 0. 
Since 𝐷𝐷 < 𝐶𝐶, we can write 𝐷𝐷 = 𝐶𝐶 − 𝑟𝑟, where 𝑟𝑟 > 0. 
The balance equation dictates that 𝐵𝐵 + 𝐶𝐶 = 𝐴𝐴 + 𝐷𝐷 = (𝐵𝐵 − 𝑒𝑒) + (𝐶𝐶 − 𝑟𝑟) = 𝐵𝐵 + 𝐶𝐶 − (𝑒𝑒 + 𝑟𝑟). 
However, this contradicts the previous statements that 𝑒𝑒 > 0 and 𝑟𝑟 > 0. 
Thus, case 4 is invalid. 
Out of all five possible cases, the three valid cases showed the given relationship. 
QED. 
 
If two inflows and two outflows at a node are balanced, maximizing one inflow-outflow pair necessitates minimizing 
the complementary pair. This balance is essential for maintaining flow equilibrium across nodes. 
 
These three principles provide foundational logic essential for deriving constraints and interpreting flow conditions 
clearly and rigorously. 
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General Theory of Transit Flow Estimation 
 
Networks can be classified based on connectivity: separate, weakly connected, or strongly connected. Our axiomatic 
framework ensures a strongly connected network by introducing the single external environment (cloud node). The 
following proposition guarantees that the network we have is strongly connected based on Axiom 2. Based on the 
following proposition, we can always convert a weakly connected network into a strongly connected network by 
adding a cloud node and a set of dummy links. 
 
Proposition 1: Strongly Connected networks: if a single cloud node is added to weakly connected network, then the 
network is irreducible. 
 
Proof: 
A weakly connected network is exhaustively contained either a sink node, a source node, a sink component or a 
source component. The following technique can be used to make a weakly connected network into a strongly 
connected network: 
• If a sink node exists, a dummy link with equal capacity of the sink node value would be directed from sink to a 

cloud node. 
• If a source node exists, a dummy link with equal capacity of the source node value would be directed from a cloud 

node to the source node. 
• If a sink component exists, dummy links from all nodes in the sink component would be directed to the cloud 

node. The capacity of the dummy link would be set to be equal to each node value it is connected to. 
• If a source component exists, dummy links to all nodes in the sink component would be directed from the cloud 

node. The capacity of the dummy link would be set to be equal to each node value it is connected to. 
 
Since we have addressed exhaustively all possible subsets of weakly connected component using a single cloud node, 
thus it proves the proposition. QED 
 
Incorporating a single external environment transforms weakly connected networks into strongly connected 
networks, ensuring comprehensive interconnectivity. 
 
Definition 2: Reducible and Irreducible: A nonnegative matrix 𝑨𝑨 is said to be reducible if there is a permutation 
matrix 𝑷𝑷 such that it can be decomposed into submatrices with at least one zero submatrix in the off diagonal (block 
lower or upper triangular matrix). 

𝐏𝐏𝐏𝐏𝐏𝐏𝑇𝑇 = �𝐀𝐀11 𝐀𝐀12
𝟎𝟎 𝐀𝐀22

� (10) 

 
If no such permutation matrix exists, matrix 𝑨𝑨 is called irreducible. 
 
Definition 3: Premagic: A square nonnegative matrix 𝑨𝑨 = �𝒂𝒂𝒊𝒊𝒊𝒊� is called premagic if the sum of elements in each of 
its rows equals the sum of elements in the corresponding column. 

�𝑎𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

= �𝑎𝑎𝑗𝑗𝑗𝑗

𝑛𝑛

𝑗𝑗=1

, 𝑖𝑖 = 1, … ,𝑛𝑛 
(11) 

 
In matrix notation, 

𝐀𝐀𝐀𝐀 = 𝐀𝐀𝑇𝑇𝐣𝐣 (12) 
 
 
Proposition 2: Irreducibility of Strongly Connected Networks: Strongly connected network has irreducible adjacency 
matrix. 
 
Proof: 
The mathematical proof that a matrix is irreducible if and only if its directed graph is connected can be found in [8]. 
QED 
 
Strong connectivity guarantees that the network’s adjacency matrix is irreducible, a key property in transit flow 
estimation. 
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Definition 4: Ideal flow matrix is defined as non-negative irreducible premagic matrix [6]. The corresponding 
directed graph of the ideal flow matrix is called ideal flow network. 
 
The following proposition stated that the first two axioms lead to ideal flow network. 
 
Proposition 3: Ideal flow network: A network that satisfied Axiom 1 and Axiom 2 is an ideal flow network. 
 
Proof: 
Based on Proposition 1, Axiom 2 leads to strongly connected network, which has irreducible adjacency matrix as 
stated in Proposition 2. A matrix that satisfied Axiom 1 is a premagic matrix. By Definition 4, we have an ideal flow 
network which adjacency matrix is irreducible premagic. QED 
 
Figure 1 will be helpful in understanding the notations in the next propositions. 

 
Figure 1. Transit Line of N Stations 

 
Proposition 4: Conservation of Entry and Exit Flow: The sum of all entry flows is equal to the sum of all exit flow. 

� 𝑔𝑔𝑘𝑘
𝑁𝑁

𝑘𝑘=1
= � ℎ𝑘𝑘

𝑁𝑁

𝑘𝑘=1
 (13) 

 
Proof. 
Axiom 2 stated that we have only a single cloud node. The sum of all entry flows is equal the sum of outflow of the 
cloud node. The sum of all exit flow is equal to the sum of inflow of the cloud node. Since Axiom 1 said the flow in 
cloud node is also conversed, then the proposition is proved. QED. 
Total entry flows across all stations equal total exit flows, maintaining flow conservation throughout the network. 
 
Proposition 5: Starting Station Constraint: the flow of between the start station and the immediate next station is 
equal to the entry flow of the start station. 
 
Proof: 
Due to flow conservation of Axiom 1, from the start station 1, the entry flow 𝑔𝑔1 can only be directed to either as exit 
flow ℎ1or link flow 𝑓𝑓12. By Axiom 3, immediate passing through flow from the entry 𝑔𝑔1 directly to the exit in the 
same station ℎ1is not allowed, thus, the only possibility is to make𝑓𝑓12 = 𝑔𝑔1. With similar argument for the start 
station 𝑁𝑁, we have 𝑓𝑓𝑁𝑁,𝑁𝑁−1 = 𝑔𝑔𝑁𝑁. QED 
 
The flow from the starting station to the next immediate station equals the entry flow at the start station, directly from 
flow conservation and Axiom 3. Similarly, the flow into the final station from its preceding station equals the exit 
flow from the final station as stated in the following proposition. 
 
Proposition 6: End Station Constraint: the flow of between the end station and the immediate previous station is 
equal to the exit flow of the end station. 
 
Proof: 
Due to flow conservation of Axiom 1, the only possible inflow to the end station 1 comes from either 𝑔𝑔1 or link 
flow 𝑓𝑓21. By Axiom 3, immediate passing through flow from the entry flow 𝑔𝑔1 directly to the exit flow ℎ1is not 
allowed, thus, the only possibility is to make 𝑓𝑓21 = ℎ1. With similar argument for the end station 𝑁𝑁, we have 𝑓𝑓𝑁𝑁−1,𝑁𝑁 =
ℎ𝑁𝑁. QED 
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Proposition 7: Left and Right Balance: Suppose we have link 𝑝𝑝𝑝𝑝 or link 𝑞𝑞𝑞𝑞, the sum of all exit flow minus the sum 
of all entry flow on the left side of this link would be exactly equal to the sum of all entry flow minus the sum of all 
exit flow in all the stations of the right side of this middle link. 

� ℎ𝑘𝑘
𝑝𝑝

𝑘𝑘=1
−� 𝑔𝑔𝑘𝑘

𝑝𝑝

𝑘𝑘=1
= � 𝑔𝑔𝑘𝑘

𝑁𝑁

𝑘𝑘=𝑞𝑞
−� ℎ𝑘𝑘

𝑁𝑁

𝑘𝑘=𝑞𝑞
 

(14) 
 
Proof: 
We can rearrange 

� ℎ𝑘𝑘
𝑝𝑝

𝑘𝑘=1
+ � ℎ𝑘𝑘

𝑁𝑁

𝑘𝑘=𝑞𝑞
= � 𝑔𝑔𝑘𝑘

𝑝𝑝

𝑘𝑘=1
+ � 𝑔𝑔𝑘𝑘

𝑁𝑁

𝑘𝑘=𝑞𝑞
 

(15) 
 

� ℎ𝑘𝑘
𝑁𝑁

𝑘𝑘=1
= � 𝑔𝑔𝑘𝑘

𝑁𝑁

𝑘𝑘=1
 (16) 

 
QED 
The total exit flow minus entry flow on one side of a middle link equals the entry flow minus exit flow on the opposite 
side, ensuring balance and continuity across middle links. 
 
In the following propositions, it is useful to visualize the transit line as cluster of super nodes. Each super node is a 
component. To cluster into two components, we combine all the nodes on the left of link 𝑝𝑝𝑝𝑝 as a super node 𝐿𝐿 and 
we combine all the nodes on the right of link 𝑝𝑝𝑝𝑝 as a super node 𝑅𝑅. Thus, we have a strongly connected network of 
three nodes including the cloud node 𝑧𝑧. 
 

  
Figure 2. Transit Line as Two Super Nodes on The Left and Right of Middle Links 

 
Definition 5 

𝑓𝑓𝐿𝐿𝐿𝐿 = � ℎ𝑘𝑘
𝑝𝑝

𝑘𝑘=1
 

𝑓𝑓𝑧𝑧𝑧𝑧 = � 𝑔𝑔𝑘𝑘
𝑝𝑝

𝑘𝑘=1
 

𝑓𝑓𝑧𝑧𝑧𝑧 = � 𝑔𝑔𝑘𝑘
𝑁𝑁

𝑘𝑘=𝑞𝑞
 

𝑓𝑓𝑅𝑅𝑅𝑅 = � ℎ𝑘𝑘
𝑁𝑁

𝑘𝑘=𝑞𝑞
 

(17) 

 
The sum of exit flow minus the sum of entry flow on the left of a middle link 𝑝𝑝𝑝𝑝 is always equal to the sum of entry 
flow minus the sum of exit flow on the right of the same middle link 𝑝𝑝𝑝𝑝. This phenomenon is stated in the following 
proposition. 
 
Proposition 8: Left and Right Balance (shorter version):  

∆𝑞𝑞𝑞𝑞= ∆𝑝𝑝𝑝𝑝 (18) 
 
Proof: 
Based on Proposition 7, we set 
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∆𝑞𝑞𝑞𝑞= 𝑓𝑓𝐿𝐿𝐿𝐿 − 𝑓𝑓𝑧𝑧𝑧𝑧 
∆𝑝𝑝𝑝𝑝= 𝑓𝑓𝑧𝑧𝑧𝑧 − 𝑓𝑓𝑅𝑅𝑅𝑅 (19) 

 
QED. 
 
Theorem 1 below provides us with the constraint relationship between the two link flows of the same consecutive 
stations, 𝑓𝑓𝑝𝑝𝑝𝑝 and 𝑓𝑓𝑞𝑞𝑞𝑞. If one flow is known then we can find the other flow. This theorem establishes a direct relationship 
between flows in consecutive middle links, providing necessary conditions to ensure consistent transit flow. 
 
Theorem 1: Middle Link Constraint: Suppose we have link 𝑝𝑝𝑝𝑝 is a middle link. Let  

∆𝑞𝑞𝑞𝑞= � ℎ𝑘𝑘
𝑝𝑝

𝑘𝑘=1
−� 𝑔𝑔𝑘𝑘

𝑝𝑝

𝑘𝑘=1
 (20) 

 
Then 
 𝑓𝑓𝑝𝑝𝑝𝑝 = 𝑓𝑓𝑞𝑞𝑞𝑞 − ∆𝑞𝑞𝑞𝑞= 𝑓𝑓𝑞𝑞𝑞𝑞 − ∆𝑝𝑝𝑝𝑝 (21) 
 
 
Proof: 
At super node 𝐿𝐿, the flow balance equation is 

 𝑓𝑓𝑧𝑧𝑧𝑧 + 𝑓𝑓𝑞𝑞𝑞𝑞 = 𝑓𝑓𝐿𝐿𝐿𝐿 + 𝑓𝑓𝑝𝑝𝑝𝑝 
 𝑓𝑓𝑝𝑝𝑝𝑝 = 𝑓𝑓𝑞𝑞𝑞𝑞 + 𝑓𝑓𝑧𝑧𝑧𝑧 − 𝑓𝑓𝐿𝐿𝐿𝐿 
 𝑓𝑓𝑝𝑝𝑝𝑝 = 𝑓𝑓𝑞𝑞𝑞𝑞 − (𝑓𝑓𝐿𝐿𝐿𝐿 − 𝑓𝑓𝑧𝑧𝑧𝑧) 
 𝑓𝑓𝑝𝑝𝑝𝑝 = 𝑓𝑓𝑞𝑞𝑞𝑞 − ∆𝑞𝑞𝑞𝑞 (22) 
 
Note that 
 𝑓𝑓𝑧𝑧𝑧𝑧 = ∑ 𝑔𝑔𝑘𝑘

𝑝𝑝
𝑘𝑘=1  

 𝑓𝑓𝐿𝐿𝐿𝐿 = ∑ ℎ𝑘𝑘
𝑝𝑝
𝑘𝑘=1  

 ∆𝑞𝑞𝑞𝑞= 𝑓𝑓𝐿𝐿𝐿𝐿 − 𝑓𝑓𝑧𝑧𝑧𝑧 = ∑ ℎ𝑘𝑘
𝑝𝑝
𝑘𝑘=1 − ∑ 𝑔𝑔𝑘𝑘

𝑝𝑝
𝑘𝑘=1  (23) 

 
QED. 
 
The middle link constraints (Theorem 1) give us clue on which is larger between 𝑓𝑓𝑝𝑝𝑝𝑝 and 𝑓𝑓𝑞𝑞𝑞𝑞 in the following 
corollary. Corollaries derived from these propositions introduce practical boundaries for middle link flows, assisting 
real-world estimations. 
 
Corollary 1 
 If ∆𝑝𝑝𝑝𝑝= ∆𝑞𝑞𝑞𝑞> 0 then 𝑓𝑓𝑝𝑝𝑝𝑝 < 𝑓𝑓𝑞𝑞𝑞𝑞 
 If ∆𝑝𝑝𝑝𝑝= ∆𝑞𝑞𝑞𝑞< 0 then 𝑓𝑓𝑝𝑝𝑝𝑝 > 𝑓𝑓𝑞𝑞𝑞𝑞 
 If ∆𝑝𝑝𝑝𝑝= ∆𝑞𝑞𝑞𝑞= 0 then 𝑓𝑓𝑝𝑝𝑝𝑝 = 𝑓𝑓𝑞𝑞𝑞𝑞 (24) 
 
The proof is straightforward consequence of the middle link constraint (Theorem 1 ) that make the flow non-negative. 
 
Our goal is to provide transit flow estimation. Theorem 1 provides us with middle link constraint. Note, however, 
using this constraint alone, both link flow can go from zero to infinity. Thus, we need to set up the boundary of the 
estimation. Variable 𝑓𝑓𝑝𝑝𝑝𝑝∆  should be read as “f-pq-up” and 𝑓𝑓𝑝𝑝𝑝𝑝∇  as “f-pq-down”. Observe the Definition 6 mirrors 
Principle 2. 
 
Definition 6 

 𝑓𝑓𝑝𝑝𝑝𝑝∆ = max{𝑓𝑓𝑧𝑧𝑧𝑧,𝑓𝑓𝑅𝑅𝑅𝑅} 
 𝑓𝑓𝑞𝑞𝑞𝑞∆ = max{𝑓𝑓𝐿𝐿𝐿𝐿,𝑓𝑓𝑧𝑧𝑧𝑧} 
 𝑓𝑓𝑝𝑝𝑝𝑝∇ = min{𝑓𝑓𝑧𝑧𝑧𝑧,𝑓𝑓𝑅𝑅𝑅𝑅} 
 𝑓𝑓𝑞𝑞𝑞𝑞∇ = min{𝑓𝑓𝐿𝐿𝐿𝐿,𝑓𝑓𝑧𝑧𝑧𝑧} (25) 
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Corollary 2 
Four Equivalences 

 𝑓𝑓𝑝𝑝𝑝𝑝∆ = 𝑓𝑓𝑧𝑧𝑧𝑧 iff 𝑓𝑓𝑝𝑝𝑝𝑝∇ = 𝑓𝑓𝑅𝑅𝑅𝑅 
 𝑓𝑓𝑝𝑝𝑝𝑝∆ = 𝑓𝑓𝑅𝑅𝑅𝑅 iff 𝑓𝑓𝑝𝑝𝑝𝑝∇ = 𝑓𝑓𝑧𝑧𝑧𝑧 
 𝑓𝑓𝑞𝑞𝑞𝑞∆ = 𝑓𝑓𝐿𝐿𝐿𝐿 iff 𝑓𝑓𝑞𝑞𝑞𝑞∇ = 𝑓𝑓𝑧𝑧𝑧𝑧 
 𝑓𝑓𝑞𝑞𝑞𝑞∆ = 𝑓𝑓𝑧𝑧𝑧𝑧 iff 𝑓𝑓𝑞𝑞𝑞𝑞∇ = 𝑓𝑓𝐿𝐿𝐿𝐿 (26) 
 
Proof: 
These are direct consequences of the Definition 6 and Principle 1 because two variables cannot become both 
maximum and minimum at the same time unless they are equal. QED. 
 
Suppose a node has only two inflows and two outflows. If we maximize the sum of one inflow and one outflow, then 
the sum of the remaining inflow and outflow must be minimum to make it balance. The following lemma stated this 
principle in a formula. 
 
Lemma 1: Min-Max Balance 
 𝑓𝑓𝑝𝑝𝑝𝑝∆ + 𝑓𝑓𝑞𝑞𝑞𝑞∇ = 𝑓𝑓𝑝𝑝𝑝𝑝∇ + 𝑓𝑓𝑞𝑞𝑞𝑞∆  (27) 
 
Proof: 
Consider inflows and outflows in the cloud node z: 

 max{𝑓𝑓𝑧𝑧𝑧𝑧,𝑓𝑓𝑅𝑅𝑅𝑅} + min{𝑓𝑓𝐿𝐿𝐿𝐿,𝑓𝑓𝑧𝑧𝑧𝑧} = min{𝑓𝑓𝑧𝑧𝑧𝑧 ,𝑓𝑓𝑅𝑅𝑅𝑅} + max{𝑓𝑓𝐿𝐿𝐿𝐿,𝑓𝑓𝑧𝑧𝑧𝑧} = ∑ ℎ𝑘𝑘𝑁𝑁
𝑘𝑘=1 = ∑ 𝑔𝑔𝑘𝑘𝑁𝑁

𝑘𝑘=1  (28) 
 
In cloud node 𝑧𝑧, there are two inflows and two outflows. If the sum of one inflow and outflow is maximum, then the 
sum of the remaining inflow and outflow must be minimum to make it balance. If we use the notations in Principle 
2, this is exactly the same as 𝑋𝑋 + 𝑄𝑄 = 𝑃𝑃 + 𝑌𝑌. 
 
Corollary 3 
 𝑓𝑓𝑝𝑝𝑝𝑝∆ − 𝑓𝑓𝑝𝑝𝑝𝑝∇ = 𝑓𝑓𝑞𝑞𝑞𝑞∆ − 𝑓𝑓𝑞𝑞𝑞𝑞∇  (29) 
 
Proof: 
Rearranging the result of Lemma 1, we have 

 𝑓𝑓𝑞𝑞𝑞𝑞∇ − 𝑓𝑓𝑝𝑝𝑝𝑝∇ = 𝑓𝑓𝑞𝑞𝑞𝑞∆ − 𝑓𝑓𝑝𝑝𝑝𝑝∆  (30) 
 
Multiply both side by -1 we have the result of Corollary 3 
QED. 
 
Corollary 4 
 𝑓𝑓𝑞𝑞𝑞𝑞∆ = 𝑓𝑓𝑝𝑝𝑝𝑝∆  iff 𝑓𝑓𝑞𝑞𝑞𝑞∇ = 𝑓𝑓𝑝𝑝𝑝𝑝∇  (31) 
 
Proof: 
Based on the proof of Corollary 3, we have 

 𝑓𝑓𝑞𝑞𝑞𝑞∇ − 𝑓𝑓𝑝𝑝𝑝𝑝∇ = 𝑓𝑓𝑞𝑞𝑞𝑞∆ − 𝑓𝑓𝑝𝑝𝑝𝑝∆  (32) 

 If 𝑓𝑓𝑞𝑞𝑞𝑞∆ = 𝑓𝑓𝑝𝑝𝑝𝑝∆  then 𝑓𝑓𝑞𝑞𝑞𝑞∇ = 𝑓𝑓𝑝𝑝𝑝𝑝∇  (33) 
 
QED 
 
The following statement is a very special case where they are equal. 
 
Corollary 5 
 𝑓𝑓𝑞𝑞𝑞𝑞∆ = 𝑓𝑓𝑝𝑝𝑝𝑝∆  ↔ 𝑓𝑓𝑞𝑞𝑞𝑞∇ = 𝑓𝑓𝑝𝑝𝑝𝑝∇ ↔  𝑓𝑓𝑧𝑧𝑧𝑧 = 𝑓𝑓𝑅𝑅𝑅𝑅 = 𝑓𝑓𝐿𝐿𝐿𝐿 = 𝑓𝑓𝑧𝑧𝑧𝑧 (34) 
 
Proof: 
By definition, 𝑓𝑓𝑝𝑝𝑝𝑝∆ = max{𝑓𝑓𝑧𝑧𝑧𝑧,𝑓𝑓𝑅𝑅𝑅𝑅} and 𝑓𝑓𝑞𝑞𝑞𝑞∆ = max{𝑓𝑓𝐿𝐿𝐿𝐿,𝑓𝑓𝑧𝑧𝑧𝑧}. Based on Principle 1 they cannot become maximum 
unless they are equal. Similar arguments go for the second equivalence. Another way to prove is to use of Case 0 of 
Principle 2 by setting 𝑋𝑋 = 𝑌𝑌. 
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QED. 
 
Corollary 6 
 𝑓𝑓𝑞𝑞𝑞𝑞∇ − 𝑓𝑓𝑝𝑝𝑝𝑝∇ = 𝑓𝑓𝑞𝑞𝑞𝑞∆ − 𝑓𝑓𝑝𝑝𝑝𝑝∆  
 𝑓𝑓𝑝𝑝𝑝𝑝∆ − 𝑓𝑓𝑝𝑝𝑝𝑝∇ = 𝑓𝑓𝑞𝑞𝑞𝑞∆ − 𝑓𝑓𝑞𝑞𝑞𝑞∇  (35) 
 
Proof: 
These are simple rearrangements of Lemma 1. QED 
 
The following theorem shows that ∆𝑞𝑞𝑞𝑞= ∆𝑝𝑝𝑝𝑝 is the invariant. 
Theorem 2 
 𝑓𝑓𝑞𝑞𝑞𝑞∇ − 𝑓𝑓𝑝𝑝𝑝𝑝∇ = ∆𝑞𝑞𝑞𝑞 
 𝑓𝑓𝑞𝑞𝑞𝑞∆ − 𝑓𝑓𝑝𝑝𝑝𝑝∆ = ∆𝑞𝑞𝑞𝑞 (36) 
 
Proof: 
Lemma 1 stated that 𝑓𝑓𝑝𝑝𝑝𝑝∆ + 𝑓𝑓𝑞𝑞𝑞𝑞∇ = 𝑓𝑓𝑝𝑝𝑝𝑝∇ + 𝑓𝑓𝑞𝑞𝑞𝑞∆ . We can rearranged it into Corollary 6 𝑓𝑓𝑞𝑞𝑞𝑞∇ − 𝑓𝑓𝑝𝑝𝑝𝑝∇ = 𝑓𝑓𝑞𝑞𝑞𝑞∆ − 𝑓𝑓𝑝𝑝𝑝𝑝∆ , which is 
equivalent to left and right balance in Proposition 8. Thus, we only need to prove that 𝑓𝑓𝑞𝑞𝑞𝑞∇ − 𝑓𝑓𝑝𝑝𝑝𝑝∇ = ∆𝑞𝑞𝑞𝑞 to prove the 
second equation because the first equation is exactly equal. Based on the proof of Principle 2, we have only two valid 
cases for the inequality: 
Case 1: 𝑓𝑓𝑝𝑝𝑝𝑝∆ = 𝑓𝑓𝑧𝑧𝑧𝑧 > 𝑓𝑓𝑅𝑅𝑅𝑅 and 𝑓𝑓𝑞𝑞𝑞𝑞∆ = 𝑓𝑓𝐿𝐿𝐿𝐿 > 𝑓𝑓𝑧𝑧𝑧𝑧  

 ∆𝑞𝑞𝑞𝑞= 𝑓𝑓𝐿𝐿𝐿𝐿 − 𝑓𝑓𝑧𝑧𝑧𝑧 = 𝑓𝑓𝑞𝑞𝑞𝑞∆ − 𝑓𝑓𝑝𝑝𝑝𝑝∆  (37) 
 
Case 2: 𝑓𝑓𝑝𝑝𝑝𝑝∆ = 𝑓𝑓𝑅𝑅𝑅𝑅 > 𝑓𝑓𝑧𝑧𝑧𝑧  and 𝑓𝑓𝑞𝑞𝑞𝑞∆ = 𝑓𝑓𝑧𝑧𝑧𝑧 > 𝑓𝑓𝐿𝐿𝐿𝐿 

 ∆𝑝𝑝𝑝𝑝= 𝑓𝑓𝑧𝑧𝑧𝑧 − 𝑓𝑓𝑅𝑅𝑅𝑅 = 𝑓𝑓𝑞𝑞𝑞𝑞∆ − 𝑓𝑓𝑝𝑝𝑝𝑝∆  (38) 
QED. 
 
In practice, we suggest the following boundary. 
 
Corollary 7 
The minimum middle link flow is �𝑓𝑓𝑞𝑞𝑞𝑞∇ ,𝑓𝑓𝑝𝑝𝑝𝑝∇ � and the maximum middle link flow is �𝑓𝑓𝑞𝑞𝑞𝑞∆ ,𝑓𝑓𝑝𝑝𝑝𝑝∆ � 
Proof: 
Theorem 2 give us guarantee that the minimum and the maximum middle link flow pair satisfied the middle link 
constraint. 
QED. 
 
Corollary 8 gives us a hint that we can test correctness of the computation by forming ideal flow matrix which is 
non-negative irreducible and premagic. 
 
Corollary 8 
Transit Flow estimation is valid if and only if it can form the ideal flow matrix. 
Proof: 
Forming ideal flow matrix from the estimation is done by adding one cloud node at the end. The flow to the cloud 
node would be equal to the exit flows and the entries from the cloud node would be equal to the entry flows. Since 
ideal flow is irreducible and premagic, the balance equation in each station and the cloud node is guaranteed. 
QED. 
 
Derivation of Special Properties 
 
In this section, we derive special properties that only hold true under certain conditions. They give us hints for 
interpretation of the formulas and clues on why we select certain variables to be used in Definition 5 and Definition 
6 that eventually lead to more general theory of transit flow estimation. Special properties provide additional insights 
under specific scenarios, clearly defined by conditions 1, 2, and 3 in earlier section. Condition 1 is used to give the 
interpretation of the maximum middle link flow that the maximum in here means without returning back to the 
previous link as derived in Proposition 9.  
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Proposition 9: Middle Link Maximum Flow: the maximum flow of a middle link 𝑝𝑝𝑝𝑝 without turning back flow is 
equal to the sum of exit flow from 𝑞𝑞 to the end station. 

 𝑓𝑓𝑝𝑝𝑝𝑝# = 𝑓𝑓𝑅𝑅𝑅𝑅 = ∑ ℎ𝑘𝑘𝑁𝑁
𝑘𝑘=𝑞𝑞  

 𝑓𝑓𝑞𝑞𝑞𝑞# = 𝑓𝑓𝐿𝐿𝐿𝐿 = ∑ ℎ𝑘𝑘
𝑝𝑝
𝑘𝑘=1  (39) 

 
Proof: 
If 𝑓𝑓𝑝𝑝𝑝𝑝 > ∑ ℎ𝑘𝑘𝑁𝑁

𝑘𝑘=𝑞𝑞  it means there is an excess flow inside 𝑓𝑓𝑝𝑝𝑝𝑝 that will turn back as part of 𝑓𝑓𝑞𝑞𝑞𝑞. However, Condition 1 
states that turning back flow is not allowed and therefore 𝑓𝑓𝑝𝑝𝑝𝑝 = ∑ ℎ𝑘𝑘𝑁𝑁

𝑘𝑘=𝑞𝑞  is the maximum flow in link 𝑝𝑝𝑝𝑝 without 
turning back flow. With similar argument, we know that if 𝑓𝑓𝑞𝑞𝑞𝑞 > ∑ ℎ𝑘𝑘

𝑝𝑝
𝑘𝑘=1  there will be an excess flow inside 𝑓𝑓𝑞𝑞𝑞𝑞 that 

will turn back as part of 𝑓𝑓𝑝𝑝𝑝𝑝. Since we do not allow these excess back flow, then 𝑓𝑓𝑞𝑞𝑞𝑞 = ∑ ℎ𝑘𝑘
𝑝𝑝
𝑘𝑘=1  is the maximum flow 

in link 𝑞𝑞𝑞𝑞 with no turn back flow. QED 
Without immediate return flows, the maximum feasible flow on a middle link is the sum of exit flows from a specific 
station onward. 
 
Proposition 10: No Alighting Passenger Scenario: Assuming there is no passenger going down in any station from 
start up to station p and among those station there is no turning back passengers either, then the remaining total 
number of passengers is equal to 𝑓𝑓𝑧𝑧𝑧𝑧. Similarly, the way back, if no passenger going down in any station from start 
up to station q and among those station there is no turning back passengers either, then the remaining total number 
of passengers is equal to 𝑓𝑓𝑧𝑧𝑧𝑧. 
 
Proof: 
Let all stations from the start station up to station 𝑝𝑝 denoted by subscript 𝑧𝑧𝑧𝑧, then the implication of Condition 1 and 
Condition 2 is 
 𝑓𝑓𝑝𝑝𝑝𝑝∗ = 𝑓𝑓𝑧𝑧𝑧𝑧 = ∑ 𝑔𝑔𝑘𝑘

𝑝𝑝
𝑘𝑘=1  (40) 

 𝑓𝑓𝑞𝑞𝑞𝑞∗ = 𝑓𝑓𝑧𝑧𝑧𝑧 = ∑ 𝑔𝑔𝑘𝑘𝑁𝑁
𝑘𝑘=𝑞𝑞  (41) 

 
This is the accumulation of all entry flows from the start station up to middle station 𝑝𝑝 or 𝑞𝑞, depending on the context. 
Since in any station there is no turning back passenger, then the above formulas are the only possibility. 
QED. 
If no passengers alight from the start station up to a particular station, the flow is a simple cumulative total of entry 
flows. 
 
Proposition 11: Complete Alighting Scenario: Assuming there is all passenger going down in any station from start 
up to a middle station and among those station there is no turning back passengers either, then the remaining total 
number of passengers is equal to 
 𝑓𝑓𝑝𝑝𝑝𝑝𝑏𝑏 = ∑ 𝑔𝑔𝑘𝑘

𝑝𝑝
𝑘𝑘=1 − ∑ ℎ𝑘𝑘

𝑝𝑝
𝑘𝑘=2  (42) 

 𝑓𝑓𝑞𝑞𝑞𝑞𝑏𝑏 = ∑ 𝑔𝑔𝑘𝑘𝑁𝑁
𝑘𝑘=𝑞𝑞 − ∑ ℎ𝑘𝑘𝑁𝑁−1

𝑘𝑘=𝑞𝑞  (43) 
 
Proof: 
Axiom 3 prohibits the passing through passengers within one station, thus passengers come from start station cannot 
go out in the same station. When all passengers go out of the next stations as stated as Condition 3 and turning back 
passengers are prohibited by Condition 1, the only possibility for remaining passengers are given by the above 
formulas. QED 
 
Conversely, if all passengers alight at intermediate stations without returning, the transit flow is the cumulative sum 
of exit flows. Note that 𝑓𝑓𝑝𝑝𝑝𝑝𝑏𝑏 ,𝑓𝑓𝑞𝑞𝑞𝑞𝑏𝑏  are undefined for the start station and  𝑓𝑓𝑝𝑝𝑝𝑝𝑏𝑏  can go beyond the boundary of �𝑓𝑓𝑝𝑝𝑝𝑝∇ ,𝑓𝑓𝑝𝑝𝑝𝑝∆ � 
and similarly 𝑓𝑓𝑞𝑞𝑞𝑞𝑏𝑏  can go beyond the boundary of �𝑓𝑓𝑞𝑞𝑞𝑞∇ ,𝑓𝑓𝑞𝑞𝑞𝑞∆ �. The point that the flow can go beyond our expected 
boundary give us clue that the boundary �𝑓𝑓𝑞𝑞𝑞𝑞∇ ,𝑓𝑓𝑞𝑞𝑞𝑞∆ � is not the same as �𝑓𝑓𝑞𝑞𝑞𝑞min,𝑓𝑓𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚� because the theoretical boundary 
of 𝑓𝑓𝑞𝑞𝑞𝑞min = 0 and 𝑓𝑓𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 = ∞. 
Proposition 10 and Proposition 11 provide us with the extreme cases. Note that if we use these two extreme cases in 
our transit flow estimation, we should still make sure that the middle link constraint is (Theorem 1) still being hold. 
The following statement must be satisfied if we want to use other 𝑓𝑓𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ≠ 𝑓𝑓𝑝𝑝𝑝𝑝∆  and 𝑓𝑓𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ≠ 𝑓𝑓𝑝𝑝𝑝𝑝∇ . 
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Corollary 9 and 10 establish constraints for realistic estimations between identified extremes, ensuring alignment 
with the middle link constraints. 
 
Corollary 9 
 𝑓𝑓𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ≥ ∆𝑞𝑞𝑞𝑞= ∆𝑝𝑝𝑝𝑝 (44) 
 
Proof: 
This constraint must be satisfied such that the middle link constraint is (Theorem 1) still being hold. QED 
 
In general, if we want to use other 𝑓𝑓𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ≠ 𝑓𝑓𝑝𝑝𝑝𝑝∆  and 𝑓𝑓𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 ≠ 𝑓𝑓𝑝𝑝𝑝𝑝∇  then we can use the middle flow estimate between 
the given two extreme flows. 
 
Corollary 10 
 𝑓𝑓𝑝𝑝𝑝𝑝 = 1

2�𝑓𝑓𝑝𝑝𝑝𝑝
𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 + ∆𝑞𝑞𝑞𝑞� → 𝑓𝑓𝑞𝑞𝑞𝑞 = 1

2�𝑓𝑓𝑝𝑝𝑝𝑝
𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 − ∆𝑞𝑞𝑞𝑞� (45) 

 𝑓𝑓𝑝𝑝𝑝𝑝 = 1
2�𝑓𝑓𝑝𝑝𝑝𝑝

𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 − ∆𝑞𝑞𝑞𝑞� → 𝑓𝑓𝑞𝑞𝑞𝑞 = 1
2�𝑓𝑓𝑝𝑝𝑝𝑝

𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 + ∆𝑞𝑞𝑞𝑞� (46) 
 
Proof: 
The middle flow estimate is equal to 12�𝑓𝑓𝑝𝑝𝑝𝑝

𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚�. To satisfy the middle link constraint (Theorem 1) we set 12∆𝑞𝑞𝑞𝑞 
above and below the middle flow. QED 
 
Error Distribution across Stations 
 
When we use real world data (as shown in the appendix below), inconsistencies often arise due to temporal 
measurement discrepancies—passengers may still be traveling during data collection intervals. Thus, daily aggregate 
entry and exit flows often differ slightly. We face the problem that many of the data may not satisfy our assumption 
that the sum of entry flow must be exactly the same as the sum of exit flow over all stations as stated in Axiom 1. 
This kind of small error in measurement is common because of the travel time delay in transportation. The same 
passengers need some time to be transported into the destination while the data collection is based on the regular 
hourly interval. Thus, some of these passengers are still in the journey. The error of one-day flow must be much 
smaller than hourly flow because all passengers that enter must go out of the stations. 
 
To handle this practical issue, we propose a method to distribute errors proportionally across entry and exit flows, 
ensuring compliance with the fundamental flow conservation axiom. Formally, given observed entry and exit flows 
at each station, errors are calculated as deviations from their averages. These deviations are then proportionally 
adjusted, ensuring that adjusted entry and exit flows satisfy the balance conditions precisely. In this section, we will 
explain how the error is distributed over the entry and exit data to make the data satisfy Axiom 1. 
 
Let subscript 𝑖𝑖 represents entry-flow and subscript 𝑗𝑗 represents exit-flow. Suppose 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 are the entry-flow and exit-
flow respectively at station 𝑖𝑖, 𝑗𝑗. (i.e. 𝑥𝑥𝑖𝑖 = 𝑔𝑔𝑖𝑖 , 𝑥𝑥𝑗𝑗 = ℎ𝑗𝑗) The average is given as 

 𝑥̅𝑥 = 1
2
�∑ 𝑥𝑥𝑖𝑖𝑖𝑖 +∑ 𝑥𝑥𝑗𝑗𝑗𝑗 � (47) 

 
The error is computed as 
 𝑒𝑒𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥 = 1

2
�∑ 𝑥𝑥𝑖𝑖𝑖𝑖 + ∑ 𝑥𝑥𝑗𝑗𝑗𝑗 � (48) 

 
Percentage of error is defined as 
 𝑒𝑒𝑖𝑖% = 100 𝑒𝑒𝑖𝑖

𝑥̅𝑥
 (49) 

 
The change of distribution becomes 
 ∆𝑥𝑥𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑥𝑥𝑖𝑖

∑ 𝑥𝑥𝑖𝑖𝑖𝑖
= 𝑥𝑥𝑖𝑖

2
�1 +

∑ 𝑥𝑥𝑗𝑗𝑗𝑗
∑ 𝑥𝑥𝑖𝑖𝑖𝑖

� (50) 
 
The estimated values of exit flow and entry flow are  

 𝑥𝑥�𝑖𝑖 = 𝑥𝑥𝑖𝑖 − ∆𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖
2
�1 −

∑ 𝑥𝑥𝑗𝑗𝑗𝑗
∑ 𝑥𝑥𝑖𝑖𝑖𝑖

� (51) 



Teknomo, K. 

       
Vol. 27, No. 1, March 2025: pp. 95-112 

107 

With the above formulations, we can provide the estimate of the real-world data that satisfy Axiom 1. 
 
CONCLUSIONS 
 
The following conclusions can be deduced from the results and analysis. This paper established a rigorous axiomatic 
theory tailored explicitly for transit flow estimation using the Ideal Flow Network approach. The primary outcomes 
of this theoretical framework include clearly defined constraints, such as the starting and ending station constraints, 
middle link constraints, and precise definitions of minimum and maximum middle link flows. These findings ensure 
accurate and theoretically justified transit flow estimation, overcoming significant limitations inherent in traditional 
Origin-Destination methods. Based on ideal flow network on a single two-way transit line, we have the following 
important properties. 
1. The flow of between the start station and the immediate next station is equal to the entry flow of the start station 

because the outflow of the start station is equal to the entry flow of the start station (start station constraint). 
2. The flow of between the end station and the immediate previous station is equal to the exit flow of the end station 

because the inflow of the end station is equal to the exit flow of the end station (end station constraint) 
3. The sum of exit flow minus the sum of entry flow on the left of a middle link is always equal to the sum of entry 

flow minus the sum of exit flow on the right of the same middle link (left and right balance). If the sum of entry 
and exit passengers on the left of a middle link is called ∆𝑞𝑞𝑞𝑞 and the sum of exit and entry passengers on the right 
of the same middle link is called ∆𝑝𝑝𝑝𝑝, then ∆𝑞𝑞𝑞𝑞= ∆𝑝𝑝𝑝𝑝. 

4. Furthermore, for any middle link 𝑝𝑝𝑝𝑝 and 𝑞𝑞𝑞𝑞, 𝑓𝑓𝑝𝑝𝑝𝑝 = 𝑓𝑓𝑞𝑞𝑞𝑞 − ∆𝑞𝑞𝑞𝑞= 𝑓𝑓𝑞𝑞𝑞𝑞 − ∆𝑝𝑝𝑝𝑝 (middle link constraint). 
5. The maximum flow of a middle link 𝑝𝑝𝑝𝑝 without turning back flow is equal to the sum of exit flow from 𝑞𝑞 to the 

end station.  
6. The suggested reasonable low and high estimates of the middle link transit flows are �𝑓𝑓𝑝𝑝𝑝𝑝∇ ,𝑓𝑓𝑞𝑞𝑞𝑞∇ �, �𝑓𝑓𝑝𝑝𝑝𝑝∆ ,𝑓𝑓𝑞𝑞𝑞𝑞∆ �, 

respectively. 
7. The correctness of the transit flow estimation can be tested by checking if the matrix form ideal flow matrix, 

which is non-negative, irreducible and premagic. 
 
Future research could address several open problems. First, expanding the theory to consider multiple interacting 
transit lines would increase practical applicability. Second, developing robust methods for handling dynamic transit 
conditions, such as varying passenger behaviour patterns and irregular train operations, would further enhance 
applicability. Third, investigating methods to incorporate passenger behaviour models into the axiomatic framework 
could provide more realistic flow estimations. 
 
Practically, transportation agencies are recommended to implement these axiomatic principles to enhance the 
accuracy of transit flow data, which can significantly improve operational decisions and service reliability. 
Continuous calibration with real-time passenger data and further validation through extensive empirical studies are 
recommended to refine and validate this theoretical approach. 
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APPENDIX 
 
Illustrative Examples 
These three sections of appendices clearly illustrate the practicality and mathematical rigor of the theory, making it 
applicable for transit system management and providing guidance for future empirical validation. 
 
Three Stations Computational Problem 
To illustrate the complexity and challenges of transit flow estimation, consider a simple scenario involving three 
stations connected by a transit line. The given data includes passenger entries and exits at each station. The objective 
is to determine the internal link flows accurately. We have only one cloud node 𝑧𝑧 but we do not draw the cloud node 
to avoid clutter in drawing. 
 

 

𝐅𝐅 =

↗ 𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑧𝑧 𝑠𝑠𝑠𝑠𝑠𝑠
𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑧𝑧

�

0 𝑓𝑓𝑎𝑎𝑎𝑎
𝑓𝑓𝑏𝑏𝑏𝑏 0

0 𝑔𝑔𝑎𝑎
𝑓𝑓𝑏𝑏𝑏𝑏 𝑔𝑔𝑏𝑏

0 𝑓𝑓𝑐𝑐𝑐𝑐
ℎ𝑎𝑎 ℎ𝑏𝑏

0 𝑔𝑔𝑐𝑐
ℎ𝑐𝑐 0

�

𝜋𝜋𝑎𝑎
𝜋𝜋𝑏𝑏
𝜋𝜋𝑐𝑐
𝜋𝜋𝑧𝑧

𝑠𝑠𝑠𝑠𝑠𝑠 𝜋𝜋𝑎𝑎 𝜋𝜋𝑏𝑏 𝜋𝜋𝑐𝑐 𝜋𝜋𝑧𝑧 𝜅𝜅

 

 
Given passenger counts at each station, the transit flow matrix must satisfy balance equations as established by the 
axioms. We will show using a counter example that can be easily derived from Axiom 3. Suppose direct passing-
through is prohibited, it would reduce the problem’s complexity significantly. The equations for the three-station 
problem clearly outline eight unknown variables matched with eight linear equations, illustrating the initially 
unsolvable nature of the problem without applying the constraints. To resolve this, the entry and exit flows at start 
and end stations are explicitly matched with their adjacent link flows. This step significantly reduces complexity, 
enabling direct resolution of the transit flow problem. Specifically, we are given the following numbers from the 
station data: 𝑔𝑔𝑎𝑎 ,𝑔𝑔𝑏𝑏 ,𝑔𝑔𝑐𝑐 ,ℎ𝑎𝑎 ,ℎ𝑏𝑏 ,ℎ𝑐𝑐 
 
What we really want to know are the following 𝑓𝑓𝑎𝑎𝑎𝑎,𝑓𝑓𝑏𝑏𝑏𝑏,𝑓𝑓𝑏𝑏𝑏𝑏,𝑓𝑓𝑐𝑐𝑐𝑐. All the rests 𝜋𝜋𝑖𝑖 = {𝜋𝜋𝑎𝑎,𝜋𝜋𝑏𝑏 ,𝜋𝜋𝑐𝑐 ,𝜋𝜋𝑧𝑧} are useful for the 
computation and should be derived from the computed values. Because of Axiom 1, we can be sure that the flow 
matrix is premagic and the irreducibility is automatically satisfied when we added the cloud node. In this problem, 
we have 8 unknown (𝑓𝑓𝑎𝑎𝑎𝑎,𝑓𝑓𝑏𝑏𝑏𝑏,𝑓𝑓𝑏𝑏𝑏𝑏,𝑓𝑓𝑐𝑐𝑐𝑐,𝜋𝜋𝑎𝑎,𝜋𝜋𝑏𝑏 ,𝜋𝜋𝑐𝑐 ,𝜋𝜋𝑧𝑧) and 8 equations: 

 𝑓𝑓𝑎𝑎𝑎𝑎 + 𝑔𝑔𝑎𝑎 = 𝜋𝜋𝑎𝑎 
 𝑓𝑓𝑏𝑏𝑏𝑏 + 𝑓𝑓𝑏𝑏𝑏𝑏 + 𝑔𝑔𝑏𝑏 = 𝜋𝜋𝑏𝑏 
 𝑓𝑓𝑐𝑐𝑐𝑐 + 𝑔𝑔𝑐𝑐 = 𝜋𝜋𝑐𝑐 
 ℎ𝑎𝑎 + ℎ𝑏𝑏 + ℎ𝑐𝑐 = 𝜋𝜋𝑧𝑧 
 𝑓𝑓𝑏𝑏𝑏𝑏 + ℎ𝑎𝑎 = 𝜋𝜋𝑎𝑎 
 𝑓𝑓𝑎𝑎𝑎𝑎 + 𝑓𝑓𝑐𝑐𝑐𝑐 + ℎ𝑏𝑏 = 𝜋𝜋𝑏𝑏 
 𝑓𝑓𝑏𝑏𝑏𝑏 + ℎ𝑐𝑐 = 𝜋𝜋𝑐𝑐 
 𝑔𝑔𝑎𝑎 + 𝑔𝑔𝑏𝑏 + 𝑔𝑔𝑐𝑐 = 𝜋𝜋𝑧𝑧 (52) 
 
Note that the only requirement from the given data is total passengers out of all stations must be exactly the same as 
the sum of passengers in to all stations. While this assumption is incorrect dynamically in short term, since Ideal 
Flow Network is about equilibrium in the long run, the average of boarding is exactly equal to alighting in each 
station is probably sill acceptable. This will lead to 

 𝑔𝑔𝑎𝑎 + 𝑔𝑔𝑏𝑏 + 𝑔𝑔𝑐𝑐 = 𝜋𝜋𝑧𝑧 = ℎ𝑎𝑎 + ℎ𝑏𝑏 + ℎ𝑐𝑐 (53) 
 
Now we rearrange the 8 equations above such that the unknown variables are on the left-hand side and the known 
values are on the right-hand side. 
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 𝑓𝑓𝑎𝑎𝑎𝑎 − 𝜋𝜋𝑎𝑎 = −𝑔𝑔𝑎𝑎 
 𝑓𝑓𝑏𝑏𝑏𝑏 + 𝑓𝑓𝑏𝑏𝑏𝑏 − 𝜋𝜋𝑏𝑏 = −𝑔𝑔𝑏𝑏 
 𝑓𝑓𝑐𝑐𝑐𝑐 − 𝜋𝜋𝑐𝑐 = −𝑔𝑔𝑐𝑐 
 𝑓𝑓𝑏𝑏𝑏𝑏 − 𝜋𝜋𝑎𝑎 = −ℎ𝑎𝑎 
 𝑓𝑓𝑎𝑎𝑎𝑎 + 𝑓𝑓𝑐𝑐𝑐𝑐 − 𝜋𝜋𝑏𝑏 = −ℎ𝑏𝑏 
 𝑓𝑓𝑏𝑏𝑏𝑏 − 𝜋𝜋𝑐𝑐 = −ℎ𝑐𝑐 
 𝜋𝜋𝑧𝑧 = ℎ𝑎𝑎 + ℎ𝑏𝑏 + ℎ𝑐𝑐 
 𝜋𝜋𝑧𝑧 = 𝑔𝑔𝑎𝑎 + 𝑔𝑔𝑏𝑏 + 𝑔𝑔𝑐𝑐 (54) 
 
The resulting solution is clearly expressed in a structured matrix form. Explicit solutions are provided based on 
clearly defined balance equations. Each variable is distinctly associated with entry and exit flows at each station. 
Each row in matrix B represents each equation, each column is to indicate the unknown variable. The right-hand side 
vector consists of constants from the given data. 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
0
0
0
1
0
0
0

0
1
0
1
0
0
0
0

0
1
0
0
0
1
0
0

0
0
1
0
1
0
0
0

−1
0
0
−1
0
0
0
0

0
−1
0
0
−1
0
0
0

0
0
−1
0
0
−1
0
0

0
0
0
0
0
0
1
1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑓𝑓𝑎𝑎𝑎𝑎
𝑓𝑓𝑏𝑏𝑏𝑏
𝑓𝑓𝑏𝑏𝑏𝑏
𝑓𝑓𝑐𝑐𝑐𝑐
𝜋𝜋𝑎𝑎
𝜋𝜋𝑏𝑏
𝜋𝜋𝑐𝑐
𝜋𝜋𝑧𝑧 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑔𝑔𝑎𝑎
−𝑔𝑔𝑏𝑏
−𝑔𝑔𝑐𝑐
−ℎ𝑎𝑎
−ℎ𝑏𝑏
−ℎ𝑐𝑐

ℎ𝑎𝑎 + ℎ𝑏𝑏 + ℎ𝑐𝑐
𝑔𝑔𝑎𝑎 + 𝑔𝑔𝑏𝑏 + 𝑔𝑔𝑐𝑐⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (55) 

 
In matrix form 
 𝐁𝐁𝐁𝐁 = 𝐜𝐜 (56) 
 
Unfortunately, the rank of matrix 𝐁𝐁 is 6, not full rank. Thus, matrix 𝐁𝐁 has no inverse. Both left inverse and right 
inverse also do not exist. Thus, we have proven by counter example that without Axiom 3 and Condition 1, this 
problem is unsolvable. 
 
Solution of the Three Station Problem 
To give the solution of three station problem, we can use Axiom 3. Using Axiom 3, additional constraints simplify 
the mathematical model: 
• Outflow from the start station precisely equals its entry flow. 
• Inflow to the end station matches its exit flow. 
 
This simplification allows a direct, systematic solution to the three-station problem. The provided equations neatly 
align with the axiomatic constraints, clearly demonstrating their necessity for achieving a solvable and practical 
transit flow estimation. Because we do not allow passing-through within the station, any outflow from the start station 
would be practically determined by the entry of the start station. Similarly, any inflow to the end station would be 
fully determined by the exit flow of the end station. This means Axiom 3 provided us with additional two constraints: 
Start station constraints: 
 𝑓𝑓𝑎𝑎𝑎𝑎 = 𝑓𝑓𝑧𝑧𝑧𝑧 = ℎ𝑎𝑎 
 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑧𝑧𝑧𝑧 = ℎ𝑐𝑐 (57) 
 
End station constraints: 
 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑎𝑎𝑎𝑎 = 𝑔𝑔𝑎𝑎 
 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑔𝑔𝑐𝑐 (58) 
 
The solution is given in the following flow matrix 

 𝐅𝐅 =

↗ 𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑧𝑧 𝑠𝑠𝑠𝑠𝑠𝑠
𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑧𝑧

�

0 ℎ𝑎𝑎
𝑔𝑔𝑎𝑎 0

0 𝑔𝑔𝑎𝑎
𝑔𝑔𝑐𝑐 𝑔𝑔𝑏𝑏

0 ℎ𝑐𝑐
ℎ𝑎𝑎 ℎ𝑏𝑏

0 𝑔𝑔𝑐𝑐
ℎ𝑐𝑐 0

�

𝜋𝜋𝑎𝑎
𝜋𝜋𝑏𝑏
𝜋𝜋𝑐𝑐
𝜋𝜋𝑧𝑧

𝑠𝑠𝑠𝑠𝑠𝑠 𝜋𝜋𝑎𝑎 𝜋𝜋𝑏𝑏 𝜋𝜋𝑐𝑐 𝜋𝜋𝑧𝑧 𝜅𝜅

 (59) 
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Where, 
 𝜅𝜅 = 2ℎ𝑎𝑎 + ℎ𝑏𝑏 + 2ℎ𝑐𝑐 + 2𝑔𝑔𝑎𝑎 + 𝑔𝑔𝑏𝑏 + 2𝑔𝑔𝑐𝑐 
 𝑓𝑓𝑎𝑎𝑎𝑎 + 𝑓𝑓𝑏𝑏𝑏𝑏 + 𝑓𝑓𝑏𝑏𝑏𝑏 + 𝑓𝑓𝑐𝑐𝑐𝑐 = ℎ𝑎𝑎 + ℎ𝑐𝑐 + 𝑔𝑔𝑎𝑎 + 𝑔𝑔𝑐𝑐 (60) 
 
While these three stations scenarios can be easily solved based on the three axioms alone, larger number of stations 
requires just one more additional Condition 1. 
 
Four Stations Problem 
Extending to four stations further illustrates the theory’s practical application. Here, the balance equations become 
slightly more complex but remain manageable due to clearly defined constraints and conditions. Through systematic 
simplifications using the established axioms and conditions (particularly  Condition 1, prohibiting immediate return 
flows), the four-station problem is resolved similarly. Explicitly defined constraints reduce the complexity of 
computations, providing a clear, rigorous solution. 
 
The final computed matrix clearly presents the transit flows, showcasing the practical utility and mathematical 
robustness of the axiomatic framework. 

 

𝐅𝐅 =

↗ 𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑 𝑧𝑧 𝑠𝑠𝑠𝑠𝑠𝑠
𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑
𝑧𝑧 ⎣

⎢
⎢
⎢
⎡ 0
𝑓𝑓𝑏𝑏𝑏𝑏
0
0
ℎ𝑎𝑎

𝑓𝑓𝑎𝑎𝑎𝑎
0
𝑓𝑓𝑐𝑐𝑐𝑐
0
ℎ𝑏𝑏

0
𝑓𝑓𝑏𝑏𝑏𝑏
0
𝑓𝑓𝑑𝑑𝑑𝑑
ℎ𝑐𝑐

0
0
𝑓𝑓𝑐𝑐𝑐𝑐
0
ℎ𝑑𝑑

𝑔𝑔𝑎𝑎
𝑔𝑔𝑏𝑏
𝑔𝑔𝑐𝑐
𝑔𝑔𝑑𝑑
0 ⎦
⎥
⎥
⎥
⎤

𝜋𝜋𝑎𝑎
𝜋𝜋𝑏𝑏
𝜋𝜋𝑐𝑐
𝜋𝜋𝑑𝑑
𝜋𝜋𝑧𝑧

𝑠𝑠𝑠𝑠𝑠𝑠 𝜋𝜋𝑎𝑎 𝜋𝜋𝑏𝑏 𝜋𝜋𝑐𝑐 𝜋𝜋𝑑𝑑 𝜋𝜋𝑧𝑧 𝜅𝜅

 

 
The node equations are 
 𝑓𝑓𝑎𝑎𝑎𝑎 + 𝑔𝑔𝑎𝑎 = 𝜋𝜋𝑎𝑎 = 𝑓𝑓𝑏𝑏𝑏𝑏 + ℎ𝑎𝑎 
 𝑓𝑓𝑏𝑏𝑏𝑏 + 𝑓𝑓𝑏𝑏𝑏𝑏 + 𝑔𝑔𝑏𝑏 = 𝜋𝜋𝑏𝑏 = 𝑓𝑓𝑎𝑎𝑎𝑎 + 𝑓𝑓𝑐𝑐𝑐𝑐 + ℎ𝑏𝑏 
 𝑓𝑓𝑐𝑐𝑐𝑐 + 𝑓𝑓𝑐𝑐𝑐𝑐+𝑔𝑔𝑐𝑐 = 𝜋𝜋𝑐𝑐 = 𝑓𝑓𝑏𝑏𝑏𝑏 + ℎ𝑐𝑐 
 𝑓𝑓𝑑𝑑𝑑𝑑 + 𝑔𝑔𝑑𝑑 = 𝜋𝜋𝑑𝑑 = 𝑓𝑓𝑐𝑐𝑐𝑐 + ℎ𝑑𝑑 (61) 
 
Start station constraints: 
 𝑓𝑓𝑎𝑎𝑎𝑎 = 𝑓𝑓𝑧𝑧𝑧𝑧 = ℎ𝑎𝑎 
 𝑓𝑓𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑧𝑧𝑧𝑧 = ℎ𝑑𝑑 (62) 
 
End station constraints: 
 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑎𝑎𝑎𝑎 = 𝑔𝑔𝑎𝑎 
 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑑𝑑𝑑𝑑 = 𝑔𝑔𝑑𝑑 (63) 
 
The flow matrix now has only two unknowns: 𝑓𝑓𝑏𝑏𝑏𝑏 ,𝑓𝑓𝑐𝑐𝑐𝑐 

 𝐅𝐅 =

↗ 𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑 𝑧𝑧 𝑠𝑠𝑠𝑠𝑠𝑠
𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑
𝑧𝑧 ⎣

⎢
⎢
⎢
⎡ 0
𝑔𝑔𝑎𝑎
0
0
ℎ𝑎𝑎

ℎ𝑎𝑎
0
𝑓𝑓𝑐𝑐𝑐𝑐
0
ℎ𝑏𝑏

0
𝑓𝑓𝑏𝑏𝑏𝑏
0
ℎ𝑑𝑑
ℎ𝑐𝑐

0
0
𝑔𝑔𝑑𝑑
0
ℎ𝑑𝑑

𝑔𝑔𝑎𝑎
𝑔𝑔𝑏𝑏
𝑔𝑔𝑐𝑐
𝑔𝑔𝑑𝑑
0 ⎦
⎥
⎥
⎥
⎤

𝜋𝜋𝑎𝑎
𝜋𝜋𝑏𝑏
𝜋𝜋𝑐𝑐
𝜋𝜋𝑑𝑑
𝜋𝜋𝑧𝑧

𝑠𝑠𝑠𝑠𝑠𝑠 𝜋𝜋𝑎𝑎 𝜋𝜋𝑏𝑏 𝜋𝜋𝑐𝑐 𝜋𝜋𝑑𝑑 𝜋𝜋𝑧𝑧 𝜅𝜅

 (64) 

 
Now we put the start station constraints and end station constraints to the node equations 

 ℎ𝑎𝑎 + 𝑔𝑔𝑎𝑎 = 𝜋𝜋𝑎𝑎 = 𝑔𝑔𝑎𝑎 + ℎ𝑎𝑎 
 𝑔𝑔𝑎𝑎 + 𝑓𝑓𝑏𝑏𝑏𝑏 + 𝑔𝑔𝑏𝑏 = 𝜋𝜋𝑏𝑏 = ℎ𝑎𝑎 + 𝑓𝑓𝑐𝑐𝑐𝑐 + ℎ𝑏𝑏 
 𝑓𝑓𝑐𝑐𝑐𝑐 + 𝑔𝑔𝑑𝑑+𝑔𝑔𝑐𝑐 = 𝜋𝜋𝑐𝑐 = 𝑓𝑓𝑏𝑏𝑏𝑏 + ℎ𝑑𝑑 + ℎ𝑐𝑐 
 ℎ𝑑𝑑 + 𝑔𝑔𝑑𝑑 = 𝜋𝜋𝑑𝑑 = 𝑔𝑔𝑑𝑑 + ℎ𝑑𝑑 (65) 
 
Thus, we have two equations and two unknowns 
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 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑐𝑐𝑐𝑐 − 𝑔𝑔𝑎𝑎 − 𝑔𝑔𝑏𝑏 + ℎ𝑎𝑎 + ℎ𝑏𝑏 
 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑐𝑐𝑐𝑐 − ℎ𝑐𝑐 − ℎ𝑑𝑑 + 𝑔𝑔𝑑𝑑+𝑔𝑔𝑐𝑐 (66) 
 
This gives us very interesting constraint: the sum of entry and exit passengers on the left is exactly equal to the sum 
of entry and exit passengers on the right of the link 𝑏𝑏 ↔ 𝑐𝑐. Actually, this middle link constraint happens in any middle 
stations. Now we will use Condition 1 that there is no flow turning back (such as from b->c->b again) in any station 
(or we shall assume maximum of turning back flow in any station) to solve the transit flow estimation problem for 
any number of station. Without this assumption, the number of link flow can have range from zero up to infinity. 
Based on Condition 1, we have the maximum flow in the middle link would be 

 𝑓𝑓𝑏𝑏𝑏𝑏 = ℎ𝑐𝑐 + ℎ𝑑𝑑 
 𝑓𝑓𝑐𝑐𝑐𝑐 = ℎ𝑎𝑎 + ℎ𝑏𝑏 (67) 
 
The middle link flow may be lower than that the above value (up to zero) but any excess of that maximum value 
would mean there is turning back flow. Now the final flow matrix becomes 

 𝐅𝐅 =

↗   𝑎𝑎        𝑏𝑏          𝑐𝑐       𝑑𝑑    𝑧𝑧  𝑠𝑠𝑠𝑠𝑠𝑠
𝑎𝑎
𝑏𝑏
𝑐𝑐
𝑑𝑑
𝑧𝑧 ⎣

⎢
⎢
⎢
⎡ 0
𝑔𝑔𝑎𝑎
0
0
ℎ𝑎𝑎

ℎ𝑎𝑎
0

ℎ𝑎𝑎 + ℎ𝑏𝑏
0
ℎ𝑏𝑏

0
ℎ𝑐𝑐 + ℎ𝑑𝑑

0
ℎ𝑑𝑑
ℎ𝑐𝑐

0
0
𝑔𝑔𝑑𝑑
0
ℎ𝑑𝑑

𝑔𝑔𝑎𝑎
𝑔𝑔𝑏𝑏
𝑔𝑔𝑐𝑐
𝑔𝑔𝑑𝑑
0 ⎦
⎥
⎥
⎥
⎤

𝜋𝜋𝑎𝑎
𝜋𝜋𝑏𝑏
𝜋𝜋𝑐𝑐
𝜋𝜋𝑑𝑑
𝜋𝜋𝑧𝑧

𝑠𝑠𝑠𝑠𝑠𝑠 𝜋𝜋𝑎𝑎     𝜋𝜋𝑏𝑏          𝜋𝜋𝑐𝑐      𝜋𝜋𝑑𝑑 𝜋𝜋𝑧𝑧 𝜅𝜅

 (68) 

 
It should be noted that the flow matrix is not the same as an origin-destination (OD) matrix. To access the OD flow, 
we must get the flow (using k-path premagic matrix, which we shall discuss in another paper) from 𝑧𝑧 → 𝑂𝑂 → 𝑝𝑝𝑝𝑝𝑝𝑝ℎ →
𝐷𝐷 → 𝑧𝑧. As numerical example of four stations problem, we are given the entry flow and exit flow of each station. 
Then the link flow can be computed as the equations above. 
 
Note that  
 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑐𝑐𝑐𝑐 − 𝑔𝑔𝑎𝑎 − 𝑔𝑔𝑏𝑏 + ℎ𝑎𝑎 + ℎ𝑏𝑏 = 𝑓𝑓𝑐𝑐𝑐𝑐 − 275− 125 + 500 + 150 = 𝑓𝑓𝑐𝑐𝑐𝑐 + 250 
 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑐𝑐𝑐𝑐 − ℎ𝑐𝑐 − ℎ𝑑𝑑 + 𝑔𝑔𝑑𝑑+𝑔𝑔𝑐𝑐 = 𝑓𝑓𝑐𝑐𝑐𝑐 − 250 − 100 + 400 + 200 = 𝑓𝑓𝑐𝑐𝑐𝑐 + 250 (69) 
 
Observe the middle link constraint 

 ∆𝑐𝑐𝑐𝑐= −𝑔𝑔𝑎𝑎 − 𝑔𝑔𝑏𝑏 + ℎ𝑎𝑎 + ℎ𝑏𝑏 = −ℎ𝑐𝑐 − ℎ𝑑𝑑 + 𝑔𝑔𝑑𝑑+𝑔𝑔𝑐𝑐 (70) 

 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑐𝑐𝑐𝑐 − ∆𝑐𝑐𝑐𝑐 (71) 
 

 
 
If 𝑓𝑓𝑏𝑏𝑏𝑏 > ℎ𝑐𝑐 + ℎ𝑑𝑑 it means there is an excess flow inside 𝑓𝑓𝑏𝑏𝑏𝑏 that will turn back as part of 𝑓𝑓𝑐𝑐𝑐𝑐. However, Condition 1 
states that turning back flow is not allowed and therefore 𝑓𝑓𝑏𝑏𝑏𝑏∆ = ℎ𝑐𝑐 + ℎ𝑑𝑑 is the maximum flow in link 𝑏𝑏𝑏𝑏 without 
turning back flow. With similar argument, we know that if 𝑓𝑓𝑐𝑐𝑐𝑐 > ℎ𝑎𝑎 + ℎ𝑏𝑏 there will be an excess flow inside 𝑓𝑓𝑐𝑐𝑐𝑐 that 
will turn back as part of 𝑓𝑓𝑏𝑏𝑏𝑏. Since we do not allow these excess back flows, then 𝑓𝑓𝑐𝑐𝑐𝑐∆ = ℎ𝑎𝑎 + ℎ𝑏𝑏 is the maximum 
flow in link 𝑐𝑐𝑐𝑐. 
 
The middle link constraint gives us 
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 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑐𝑐𝑐𝑐 − ∆𝑐𝑐𝑐𝑐= 𝑓𝑓𝑐𝑐𝑐𝑐 − 250 (72) 
 
We set 𝑓𝑓𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑏𝑏𝑏𝑏∇ = 350, it would give us 𝑓𝑓𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑐𝑐𝑐𝑐∇ = 600. 
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