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INTRODUCTION

Transit flow estimation between stations is crucial for transit operations management and planning of transit systems.
Accurate knowledge of transit flows directly impacts service quality, passenger comfort, and overall system
reliability. Unlike direct measurements, transit flows between stations are predominantly inferred from fare collection
data. An inaccurate understanding of transit flows can lead to overcrowding, negatively affecting passenger
satisfaction and potentially undermining the structural and operational integrity of transit systems. A practical
illustration of such challenges occurred with Metro Manila's MRT3 system in 2017 [1], demonstrating the necessity
for reliable transit flow estimations.

Transit flow estimation might initially seem analogous to Origin-Destination (OD) matrix estimation in trip
distribution analysis. However, these two concepts differ fundamentally. The transit link flow refers to the passengers
currently onboard as the train traverses between stations, whereas OD flow focuses on passengers entering at an
origin station and alighting at a destination station.

Traditional OD estimation methods typically rely on cost functions and heuristic approaches [2], such as the gravity
model [3] or linear programming techniques [4], to estimate passenger distributions across networks. These methods
assume passenger distributions based on trip costs or other heuristics without mathematical validation specific to
transit systems. Although widely adopted, these approaches lack conclusive mathematical justification specifically
for transit flows. The direct applicability and conditions for validity of these assumptions within transit scenarios
remain ambiguous. Consequently, there is a pressing need for a theoretically justified methodology explicitly
addressing transit flow estimation.

Note : Discussion is expected before July, 1512025, and will be published in the “Civil Engineering Dimension”, volume 27,
number 2, September 2025.

N ... . : 1410-9530 print / 1979-570X online N ,
ﬁj&igmn P?—ﬂ‘?é‘t‘:ﬁh &ﬂrmﬁwawn Submission ID trn:oid:::1:3269931241


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ﬂzurl‘litinAxigﬁpfdﬂ%ﬂgfqrngﬁgﬁm Flow Estimation Submission ID trn:oid:::1:3269931241

In response to these limitations, this paper proposes a rigorous axiomatic theory for transit flow estimation specifically
tailored to transit lines. The approach presented is based on an Ideal Flow Network (IFN) [5], which provides a
mathematically justified framework for evaluating transit flows within single transit lines with two-way connections
between consecutive stations. We shall bound our space to include a single transit line of any number of stations N >
2 with two-way links between any two consecutive stations.

The axiomatic approach is preferable due to an integrated assertiveness, which give us solid theoretical foundation.
Through the series of deductions into propositions and theorem, we show the conditions and constraints of the nature.
Through rigorous axiomatic development, this theory establishes clear conditions and constraints that guide practical
transit flow estimation methods. Thus, our contribution fills a significant theoretical gap by offering clarity, rigor,
and practical guidelines for transit flow estimation. The numerical examples are provided in the Appendix below.

Terminologies and General Definitions

In this paper, we focus on a single transit line operating in two directions with a minimum of two stations. To maintain
clarity, several terms are explicitly defined:

Definition 1

Transit link flow fpq refers to the number of passengers within trains traversing a link pg between two consecutive
stations. The term node represents a station and link represents directional line segment connecting two consecutive
stations. The flow is the number of passengers in a link. As our convention, the flow has range from zero or positive
infinity. Negative flow is not allowed by this convention. /nflow denotes passengers entering a station. Outflow
indicates passengers exiting the station. Start station is the first station in the transit line. Since we have two
directions, we use the convention that the most left station would be the start station when the train move from left
to right and the rightest station would be the start station when the train moves from right to left. End station is the
final station in the transit line, depending on the direction of the train’s movement. Middle station, if exist, is a station
between the start and the end station. Middle link is a link between two consecutive middle stations.

External environment is represented by a “cloud node” or station z, which symbolizes everything external to the
transit system. Entry flow of a station, denoted as gy, is the number of passengers inflow to station k from the external
environment (i.e. from outside of the station, excluding those who are already onboard the trains). Exit flow of a
station hy, is the number of passengers leaving a station k toward the external environment (i.e. including those who
came out of the trains).

In a network theory terms, a sink node only has inflows while a source node only emanates flow without receiving
any. A network is strongly connected if there is a directed path between every pair of nodes. A component is a sub-
network that is strongly connected within itself. Specific components such as sink component and source component
indicate isolated part of network with restricted directional flows.

Through these definitions, we set the foundational terminology necessary for clear and precise mathematical analysis
in subsequent sections.

Derivation of Transit Flow Estimation

In this section, we derive our main proposed method of estimation of transit flow based on Ideal Flow Network (IFN)

[6].

Axioms for Transit Flow Estimation
To develop a foundation for transit flow estimation, we introduce three fundamental axioms:
L] o Axiom 1: Flow conservation: In each station, the total of inflow is equal to the total of outflow.
Axiom 1 is the principle ensuring continuity and consistency in passenger flows within the network. This axiom is
known as Kirchhoff Law, originated in electricity circuits [7].

Axiom 2: Single External Environment: the external environment is represented by a single cloud node.

The transit network interacts with a single external environment, represented by one cloud node. This axiom ensures
network connectivity and irreducibility of the network matrix. The direct consequences of Axiom 2 is in Proposition
1 that the network is strongly connected and in Proposition 2 that the pattern matrix is irreducible.
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Axiom 3: No Immediate passing-through passengers: at any station, passenger who goes into the station will not
immediately goes out of the same station.

Passengers entering a station cannot exit immediately from the same station. This axiom provides realistic constraints
by eliminating immediate passenger re-boarding at the same station, thus simplifying the estimation model. The
immediate consequences of Axiom 3 is in Proposition 5 and Proposition 6 to give us start station constraint and end
station constraint.

These three axioms form the foundation of our theoretical framework and lead directly to crucial constraints and
conditions essential for accurate transit flow estimation.

Conditions

To further specify scenarios, certain practical conditions are introduced as optional assumptions that simplify analysis
under specific circumstances. While the mathematical proof is important to establish the theory, the conditions give
the interpretation of the formulas needed for the applications. The following conditions are useful to derive the special
properties, which are not in the general theory of transit flow estimation. These conditions shall serve as optional
postulates that should be hold true only in order to deduce those special properties in later section below.

Condition 1: No turning-back flow: if at any station, passenger who come from link ij will not immediately come
back to link ji.

Passengers entering a station via a particular link cannot immediately return on the same link. This avoids unrealistic
immediate reversals of travel direction.

Condition 2: No passenger alighting until station p: if no passenger was alighting from start station up to this
station p.

In certain scenarios, no passengers disembark from the start station up to a designated station p. This condition
simplifies flow calculations for specific cases.

Condition 3: Complete Alighting up to station p: if all passengers who board the transit from previous stations up
to this station alighting by reaching this station.

All passengers who board trains from preceding stations alight by reaching a designated station g, providing another
scenario-based simplification for specialized transit flow analysis.

These three conditions simplify and clarify specific scenarios, ensuring precise estimation in targeted cases without
generalizing excessively.

Principles
The following general mathematical principles support our theoretical derivations:

Principle 1: Min-Max Exclusivity: Suppose we are maximizing and minimizing only based on the two variables. If
one of the variables is equal to the maximum value, then the other must be the minimum value. The maximum value
is equal to the minimum value if and only if the two variables are equal.

Proof:
Let X = max(4, B) and P = min (4, B).
Suppose A # B:

X=4A e P=B
X=B o P=A 1)
Suppose A = B:

A=BoX=P )

QED
When maximizing and minimizing two variables simultaneously, if one reaches its maximum, the other must reach
its minimum, unless both variables are equal.

Principle 2: Min-Max Balance: Suppose we are maximizing and minimizing only based on four variables in balance.
The four variables represent two inflows and two outflows of a node. If the sum of one inflow and outflow is maximum,
then the sum of the remaining inflow and outflow must be minimum to make it balance.

Civil Engineering Dimension
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X = max(4, B),
Y = max(C, D),
P = min(4, B), 3)
Q = min(C, D),
B+C=A+D

Then the following relationship holds
X+Q=P+Y 4)

Proof:

There are only five possible cases:

Case0: X =A=B

Because B+ C =A+D,thenX =A=B=PeoY=(C=D=(Q

X+Q=P+Y ®)

Casel: X=A>BandY=C>D

Y=CeQ=D (6)

Because B+ C = A + D, then
P+Y=X+Q (7

Case2: X=B>AandY=D>C

Y=DeoQ=C (8)

Because B+ C = A + D, then
X+Q=P+Y )

Case3: X=A>BandY=D>C

We will prove that this case is invalid using contradiction.

Since A > B, we can write A = B + e, where e > 0.

Since D > C, we can write D = C + r, where r > 0.

The balance equation dictatesthat B+ C =A+D=(B+e)+ (C+r)=B+C+ (e +7r).

However, this contradicts the previous statements that e > 0 and r > 0.

Thus, case 3 is invalid. The balance equation would only valid if e = r = 0, which the same is as case 0.

Case4: X =B >AandY=C>D

We will prove that this case is also invalid using contradiction.

Since A < B, we can write A = B — e, where e > 0.

Since D < C, we can write D = C — r, where r > 0.

The balance equation dictates thatB+C =A+D =B —e)+(C—r)=B+C—(e+7).
However, this contradicts the previous statements that e > 0 and r > 0.

Thus, case 4 is invalid.

Out of all five possible cases, the three valid cases showed the given relationship.
QED.

If two inflows and two outflows at a node are balanced, maximizing one inflow-outflow pair necessitates minimizing
the complementary pair. This balance is essential for maintaining flow equilibrium across nodes.

These three principles provide foundational logic essential for deriving constraints and interpreting flow conditions
clearly and rigorously.
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General Theory of Transit Flow Estimation

Networks can be classified based on connectivity: separate, weakly connected, or strongly connected. Our axiomatic
framework ensures a strongly connected network by introducing the single external environment (cloud node). The
following proposition guarantees that the network we have is strongly connected based on Axiom 2. Based on the
following proposition, we can always convert a weakly connected network into a strongly connected network by
adding a cloud node and a set of dummy links.

Proposition 1: Strongly Connected networks: if a single cloud node is added to weakly connected network, then the
network is irreducible.

Proof:

A weakly connected network is exhaustively contained either a sink node, a source node, a sink component or a

source component. The following technique can be used to make a weakly connected network into a strongly

connected network:

e If a sink node exists, a dummy link with equal capacity of the sink node value would be directed from sink to a
cloud node.

e Ifasource node exists, a dummy link with equal capacity of the source node value would be directed from a cloud
node to the source node.

e If a sink component exists, dummy links from a// nodes in the sink component would be directed to the cloud
node. The capacity of the dummy link would be set to be equal to each node value it is connected to.

e [f a source component exists, dummy links to a// nodes in the sink component would be directed from the cloud
node. The capacity of the dummy link would be set to be equal to each node value it is connected to.

Since we have addressed exhaustively all possible subsets of weakly connected component using a single cloud node,
thus it proves the proposition. QED

Incorporating a single external environment transforms weakly connected networks into strongly connected
networks, ensuring comprehensive interconnectivity.

o Definition 2: Reducible and Irreducible: A nonnegative matrix A is said to be reducible if there is a permutation

matrix P such that it can be decomposed into submatrices with at least one zero submatrix in the off diagonal (block
lower or upper triangular matrix).

A A (10)
T 11 12
PAPT = [ 0 Azz]

© 1/ no such permutation matrix exists, matrix A is called irreducible.

o Definition 3: Premagic: A square nonnegative matrix A = [ai]-] is called premagic if the sum of elements in each of

its rows equals the sum of elements in the corresponding column.

al-j= aji,i=1,...,n
= = (11)

In matrix notation,
Aj = ATj (12)

o Proposition 2: Irreducibility of Strongly Connected Networks: Strongly connected network has irreducible adjacency

matrix.

Proof:
The mathematical proof that a matrix is irreducible if and only if its directed graph is connected can be found in [&].
QED

Strong connectivity guarantees that the network’s adjacency matrix is irreducible, a key property in transit flow
estimation.
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L) Definition 4: Ideal flow matrix is defined as non-negative irreducible premagic matrix [6]. The corresponding
L] directed graph of the ideal flow matrix is called ideal flow network.

The following proposition stated that the first two axioms lead to ideal flow network.
L o Proposition 3: Ideal flow network: A network that satisfied Axiom 1 and Axiom 2 is an ideal flow network.
Proof:
Based on Proposition 1, Axiom 2 leads to strongly connected network, which has irreducible adjacency matrix as
stated in Proposition 2. A matrix that satisfied Axiom 1 is a premagic matrix. By Definition 4, we have an ideal flow

network which adjacency matrix is irreducible premagic. QED

Figure 1 will be helpful in understanding the notations in the next propositions.

g1 82 Ep 8q EnN-1 8N

l f12 l qu l f(N-1)N

h, h, hp hq hn-1 hn

Figure 1. Transit Line of N Stations

Proposition 4: Conservation of Entry and Exit Flow: The sum of all entry flows is equal to the sum of all exit flow.

N N
= h
k=1gk zk:l * (13)

Proof.

L o Axiom 2 stated that we have only a single cloud node. The sum of all entry flows is equal the sum of outflow of the
cloud node. The sum of all exit flow is equal to the sum of inflow of the cloud node. Since Axiom 1 said the flow in
cloud node is also conversed, then the proposition is proved. QED.

Total entry flows across all stations equal total exit flows, maintaining flow conservation throughout the network.

Proposition 5: Starting Station Constraint: the flow of between the start station and the immediate next station is
equal to the entry flow of the start station.

Proof:

Due to flow conservation of Axiom 1, from the start station 1, the entry flow g; can only be directed to either as exit
flow h,or link flow f;,. By Axiom 3, immediate passing through flow from the entry g, directly to the exit in the
same station hqis not allowed, thus, the only possibility is to makef;, = g;. With similar argument for the start
station N, we have fy y—1 = gy. QED

The flow from the starting station to the next immediate station equals the entry flow at the start station, directly from
flow conservation and Axiom 3. Similarly, the flow into the final station from its preceding station equals the exit
flow from the final station as stated in the following proposition.

Proposition 6: End Station Constraint: the flow of between the end station and the immediate previous station is
equal to the exit flow of the end station.

Proof:

Due to flow conservation of Axiom 1, the only possible inflow to the end station 1 comes from either g; or link
flow f5,. By Axiom 3, immediate passing through flow from the entry flow g, directly to the exit flow h4is not
allowed, thus, the only possibility is to make f,; = h;. With similar argument for the end station N, we have fy_; y =
hy. QED

ivil Engineering Dimension
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Proposition 7: Left and Right Balance: Suppose we have link pq or link qp, the sum of all exit flow minus the sum
of all entry flow on the left side of this link would be exactly equal to the sum of all entry flow minus the sum of all
exit flow in all the stations of the right side of this middle link.

p p N N
=), k=) G=) b
Zk:l F 7 LT T LI T Ly (14)

Proof:
We can rearrange

P N p N
zk=1hk + zk:qhk = Zk:lgk + zk=q9k (15)
N N
zk=1hk B zk=1gk (16)
QED

The total exit flow minus entry flow on one side of a middle link equals the entry flow minus exit flow on the opposite
side, ensuring balance and continuity across middle links.

In the following propositions, it is useful to visualize the transit line as cluster of super nodes. Each super node is a
component. To cluster into two components, we combine all the nodes on the left of link pq as a super node L and
we combine all the nodes on the right of link pq as a super node R. Thus, we have a strongly connected network of
three nodes including the cloud node z.

e L e & gq aR en

ICHDN I fo Sy G l
© ) ® @ © ®
=TT« e ]
hy h, hy by g v

Definition 5
p
fio=) M
k=1
p
for = k—1gk
N (17)
for = 2 )3
k=q

N
frz=) I
k=q

The sum of exit flow minus the sum of entry flow on the left of a middle link pq is always equal to the sum of entry
flow minus the sum of exit flow on the right of the same middle link pq. This phenomenon is stated in the following
proposition.

Proposition 8: Left and Right Balance (shorter version):

Agp= Bpq (18)

Proof:
Based on Proposition 7, we set

e Civil Engineering Dimension
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quz fiz — i3
quz sz _fRz (19)

QED.

Theorem 1 below provides us with the constraint relationship between the two link flows of the same consecutive
stations, f,q and fg,,. If one flow is known then we can find the other flow. This theorem establishes a direct relationship
between flows in consecutive middle links, providing necessary conditions to ensure consistent transit flow.

Theorem 1: Middle Link Constraint: Suppose we have link pq is a middle link. Let

A zp h b
W= Loper * T L " (20)

Then
foa = Jap = Bap= fap — Bpq (21

Proof:
At super node L, the flow balance equation is

fa + fqp = fiz + qu
fpg = fgp + [ _£Lz

qu = fqp = (fi: — fo0)

foa = Jfap — Aap (22)
Note that
sz = Zz=1 Ik
sz = Zgzl hk
qu: sz - sz = Zgzl hk - Zgzl Ik (23)
QED.

The middle link constraints (Theorem 1) give us clue on which is larger between f,, and f,,, in the following

corollary. Corollaries derived from these propositions introduce practical boundaries for middle link flows, assisting
real-world estimations.

Corollary 1

IfApg= Agp> 0 then f,, < fid
If Apg= Agp< 0 then fog > fap

If Apg= Agp= 0 then fq = fop (24)
The proof'is straightforward consequence of the middle link constraint (Theorem 1 ) that make the flow non-negative.

Our goal is to provide transit flow estimation. Theorem 1 provides us with middle link constraint. Note, however,
using this constraint alone, both link flow can go from zero to infinity. Thus, we need to set up the boundary of the
estimation. Variable prq should be read as “f-pq-up” and fpvq as “f-pg-down”. Observe the Definition 6 mirrors
Principle 2.

Definition 6
prq = maX{sz:fRz}

qu;) = max{szrng}
foq = min{fyy, fr.}
fqvp = min{sz' sz} (25)

ivil Engineering Dimension
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Corollary 2
Four Equivalences
®0 fog = fuu 17 /3 = fra
prq = fRz .ifffpvvq = fuL
fqp = fLz lfffqp = fzr
qup = f2r ifffqvp = fiz (26)
Proof:

These are direct consequences of the Definition 6 and Principle 1 because two variables cannot become both
maximum and minimum at the same time unless they are equal. QED.

Suppose a node has only two inflows and two outflows. If we maximize the sum of one inflow and one outflow, then
the sum of the remaining inflow and outflow must be minimum to make it balance. The following lemma stated this
principle in a formula.

Lemma 1: Min-Max Balance

‘ o prq + fap = fpvq + qup (27)
Proof:
Consider inflows and outflows in the cloud node z:

‘ e max{fy, frz} + min{fy,, fzr} = min{fy;, fg,} + max{fi,, fr} = 11¥=1 hy = 211¥=1 ) (28)

@ @ 1n cloud node z, there are two inflows and two outflows. [f the sum of one inflow/and outflow is'maximum, then the
sum of the remaining inflow and outflow must be minimum to make it balance. If we use the notations in Principle
2, this is exactly the same as X + Q = P + Y.

Corollary 3
foa = foa = fip — fav (29)
Proof:
Rearranging the result of Lemma 7, we have
fap = foa = fap — foq (30)
Multiply both side by -1 we have the result of Corollary 3
QED.
Corollary 4
qup = prq ifffq% = fzxz GD
Proof:
Based on the proof of Corollary 3, we have
®0 fao — i = 1 - (32)
I fap = fpa then fap = fog (33)
QED

The following statement is a very special case where they are equal.

Corollary 5
qup = prq S fq‘; = fpvq © fa=Irz= 11 = fer (34)

Proof:

By definition, fi, = max{fyy, frz} and fi, = max{f,, f,z}. Based on Principle 1 they cannot become maximum
unless they are equal. Similar arguments go for the second equivalence. Another way to prove is to use of Case 0 of
Principle 2 by setting X =Y.
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QED.
Corollary 6

fq}) - fpvq = fq% - prq

fou — foa = fap — fab (35)
Proof:

These are simple rearrangements of Lemma /. QED

The following theorem shows that Agy,= A, is the invariant.

Theorem 2

i - S =gy

fav — Tpa = Bap (36)
Proof:
Lemma / stated that prq + fap = fp\zz + qup. We can rearranged it into Corollary 6 fqvp_ — zxz = fEAp — prq, which is

equivalent to left and right balance in Proposition 8. Thus, we only need to prove that fqvp - fpvq = Ay, to prove the

second equation because the first equation is exactly equal. Based on the proof of Principle 2, we have only two valid
cases for the inequality:

Case 1: fify = f,1, > freand 3, = f1, > for

Dgp= frz = for = fap = fu (37)

Case 2: prq = frz > [z and qup =fRr > fiz

Dpq= for = frz = fip — fou (38)
QED.

In practice, we suggest the following boundary.

Corollary 7

The minimum middle link flow is { fqvp, fpvq} and the maximum middle link flow is { qup, prq}

Proof:

Theorem 2 give us guarantee that the minimum and the maximum middle link flow pair satisfied the middle link

constraint.
QED.

Corollary 8 gives us a hint that we can test correctness of the computation by forming ideal flow matrix which is
non-negative irreducible and premagic.

Corollary 8

Transit Flow estimation is valid if and only if it can form the ideal flow matrix.

Proof:

Forming ideal flow matrix from the estimation is done by adding one cloud node at the end. The flow to the cloud
node would be equal to the exit flows and the entries from the cloud node would be gqual to the entry flows. Since
ideal flow is irreducible and premagic, the balance equation in each station and the cloud node is guaranteed.

QED.

Derivation of Special Properties

In this section, we derive special properties that only hold true under certain conditions. They give us hints for
interpretation of the formulas and clues on why we select certain variables to be used in Definition 5 and Definition
6 that eventually lead to more general theory of transit flow estimation. Special properties provide additional insights
under specific scenarios, clearly defined by conditions 1, 2, and 3 in earlier section. Condition 1 is used to give the
interpretation of the maximum middle link flow that the maximum in here means without returning back to the
previous link as derived in Proposition 9.
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Proposition 9: Middle Link Maximum Flow: the maximum flow of a middle link pq without turning back flow is
equal to the sum of exit flow from q to the end station.

fpﬁ] = fRz = Zﬁ:q hk
fao = fiz = Zheer Pk (39)

Proof:

If froq > E’kV:q hy it means there is an excess flow inside f,,, that will turn back as part of f,,,. However, Condition 1
states that turning back flow is not allowed and therefore f,,, = Zﬁ:q hy is the maximum flow in link pg without
turning back flow. With similar argument, we know that if f,,, > Z£=1 hy there will be an excess flow inside fg,, that
will turn back as part of f,,. Since we do not allow these excess back flow, then fg,, = 22:1 hy is the maximum flow
in link gp with no turn back flow. QED

Without immediate return flows, the maximum feasible flow on a middle link is the sum of exit flows from a specific
station onward.

Proposition 10: No Alighting Passenger Scenario: Assuming there is no passenger going down in any station from
start up to station p and among those station there is no turning back passengers either, then the remaining total
number of passengers is equal to f,;. Similarly, the way back, if no passenger going down in any station from start
up to station q and among those station there is no turning back passengers either, then the remaining total number
of passengers is equal to f,g.

Proof:
Let all stations from the start station up to station p denoted by subscript zL, then the implication of Condition 1 and
Condition 2 is

fp*q = sz = Zi:l Ik (40)
fq*p = sz = legzqgk 41)

This is the accumulation of all entry flows from the start station up to middle station p or q, depending on the context.
Since in any station there is no turning back passenger, then the above formulas are the only possibility.

QED.

If no passengers alight from the start station up to a particular station, the flow is a simple cumulative total of entry
flows.

Proposition 11: Complete Alighting Scenario: Assuming there is all passenger going down in any station from start
up to a middle station and among those station there is no turning back passengers either, then the remaining total
number of passengers is equal to

fpbq = Z£=1 Ik — Z£=2 hk (42)
fdp = Zh=q 9k — Lk=q hx (43)

Proof:
Axiom 3 prohibits the passing through passengers within one station, thus passengers come from start station cannot
go out in the same station. When all passengers go out of the next stations as stated as Condition 3 and turning back

passengers are prohibited by Condition 1, the only possibility for remaining passengers are given by the above
formulas. QED

Conversely, if all passengers alight at intermediate stations without returning, the transit flow is the cumulative sum
e of exit flows. Note that fpbq, fq’;, are undefined for the start station and fpbq can go beyond the boundary of [ fp\Zz' prq]
e and similarly fq’;, can go beyond the boundary of [fqvp, qup]. The point t.hat the flow can go beyond our expected
e boundgry give us clue that the boundary [ fqvp, qup] is not the same as [ fap'™ qr{,‘ax] because the theoretical boundary

of fgp'™ = 0 and fp%* = co.

Proposition 10 and Proposition 11 provide us with the extreme cases. Note that if we use these two extreme cases in

our transit flow estimation, we should still make sure that the middle link constraint is (Theorem 1) still being hold.

The following statement must be satisfied if we want to use other fyn® # f,% and fi'™ # f,7..
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Corollary 9 and 10 establish constraints for realistic estimations between identified extremes, ensuring alignment
with the middle link constraints.

Corollary 9 .
pa. —oa = Aqp=Lpq (44)

Proof:
This constraint must be satisfied such that the middle link constraint is (Theorem 1) still being hold. QED

In general, if we want to use other £, # f.% and fp’gi" # fpn then we can use the middle flow estimate between
the given two extreme flows.

Corollary 10
foa = ;(Fia® — foq. " + Bap) = fap = 5(Bpa™ = foa" — Bap) (43)

foa = (g —foa " — Bap) = fap = s(Foq™ = Foq. " + Bap) (46)

Proof:

® @ The middle flow estimate is equal to %( = fp"(}i"). To satisfy the middle link constraint (Theorem 1) we set 3Aq,

+0

L]

L]

above and below the middle flow. QED
Error Distribution across Stations

When we use real world data (as shown in the appendix below), inconsistencies often arise due to temporal
measurement discrepancies—passengers may still be traveling during data collection intervals. Thus, daily aggregate
entry and exit flows often differ slightly. We face the problem that many of the data may not satisfy our assumption
that the sum of entry flow must be exactly the same as the sum of exit flow over all stations as stated in Axiom 1.
This kind of small error in measurement is common because of the travel time delay in transportation. The same
passengers need some time to be transported into the destination while the data collection is based on the regular
hourly interval. Thus, some of these passengers are still in the journey. The error of one-day flow must be much
smaller than hourly flow because all passengers that enter must go out of the stations.

To handle this practical issue, we propose a method to distribute errors proportionally across entry and exit flows,
ensuring compliance with the fundamental flow conservation axiom. Formally, given observed entry and exit flows
at each station, errors are calculated as deviations from their averages. These deviations are then proportionally
adjusted, ensuring that adjusted entry and exit flows satisfy the balance conditions precisely. In this section, we will
explain how the error is distributed over the entry and exit data to make the data satisfy Axiom 1.

Let subscript i represents entry-flow and subscript j represents exit-flow. Suppose x;, x; are the entry-flow and exit-
flow respectively at station i, . (i.e. x; = g;, x; = h;) The average is given as

_ 1
=i +Z%) (47)
The error is computed as
_ 1
e =Xix; — % = (Zixi + ;%) (48)
Percentage of error is defined as
ei% = == (49)
The change of distribution becomes
= et X (g NN
Ax; = Yk 2 (1 u Zixi) (50)

The estimated values of exit flow and entry flow are

~ i Z'X'
xi=xi—Axi=x?(1—ﬁ) (51)
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With the above formulations, we can provide the estimate of the real-world data that satisfy Axiom 1.
CONCLUSIONS

The following conclusions can be deduced from the results and analysis. This paper established a rigorous axiomatic

theory tailored explicitly for transit flow estimation using the Ideal Flow Network approach. The primary outcomes

of this theoretical framework include clearly defined constraints, such as the starting and ending station constraints,
middle link constraints, and precise definitions of minimum and maximum middle link flows. These findings ensure
accurate and theoretically justified transit flow estimation, overcoming significant limitations inherent in traditional

Origin-Destination methods. Based on ideal flow network on a single two-way transit line, we have the following

important properties.

1. The flow of between the start station and the immediate next station is equal to the entry flow of the start station
because the outflow of the start station is equal to the entry flow of the start station (start station constraint).

2. The flow of between the end station and the immediate previous station is equal to the exit flow of the end station
because the inflow of the end station is equal to the exit flow of the end station (end station constraint)

3. The sum of exit flow minus the sum of entry flow on the left of a middle link is always equal to the sum of entry
flow minus the sum of exit flow on the right of the same middle link (left and right balance). If the sum of entry
and exit passengers on the left of a middle link is called A4, and the sum of exit and entry passengers on the right

o of the same middle link is called Apq, then Agp=A,4.
o 4. Furthermore, for any middle link pq and gp, fpq = fgp = Bqp= fqp — Lpq (middle link constraint).

5. The maximum flow of a middle link pg without turning back flow is equal to the sum of exit flow from g to the
end station.

o 6. The suggested reasonable low and high estimates of the middle link transit flows are { fiXp fq%}' { prq, qup},
respectively.

0 7. The correctness of the transit flow estimation can be tested by checking if the matrix form ideal flow matrix,
which is non-negative, irreducible and premagic.

Future research could address several open problems. First, expanding the theory to consider multiple interacting
transit lines would increase practical applicability. Second, developing robust methods for handling dynamic transit
conditions, such as varying passenger behaviour patterns and irregular train operations, would further enhance
applicability. Third, investigating methods to incorporate passenger behaviour models into the axiomatic framework
could provide more realistic flow estimations.

Practically, transportation agencies are recommended to implement these axiomatic principles to enhance the
accuracy of transit flow data, which can significantly improve operational decisions and service reliability.
Continuous calibration with real-time passenger data and further validation through extensive empirical studies are
recommended to refine and validate this theoretical approach.
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APPENDIX

[lustrative Examples
These three sections of appendices clearly illustrate the practicality and mathematical rigor of the theory, making it
applicable for transit system management and providing guidance for future empirical validation.

Three Stations Computational Problem

To illustrate the complexity and challenges of transit flow estimation, consider a simple scenario involving three
stations connected by a transit line. The given data includes passenger entries and exits at each station. The objective
is to determine the internal link flows accurately. We have only one cloud node z but we do not draw the cloud node
to avoid clutter in drawing.

8a gb 8¢

0 fab 0 Ja Ty
fba 0 fbc Ib Ty
0 fcb 0 Ic Te

h, h, h. O Ty
fba l be l sum Tg Tp T T, K
h

h, hy,

®
®
©

Given passenger counts at each station, the transit flow matrix must satisfy balance equations as established by the
axioms. We will show using a counter example that can be easily derived from Axiom 3. Suppose direct passing-
through is prohibited, it would reduce the problem’s complexity significantly. The equations for the three-station
problem clearly outline eight unknown variables matched with eight linear equations, illustrating the initially
unsolvable nature of the problem without applying the constraints. To resolve this, the entry and exit flows at start
and end stations are explicitly matched with their adjacent link flows. This step significantly reduces complexity,
enabling direct resolution of the transit flow problem. Specifically, we are given the following numbers from the
station data: g, gp, 9e» Pas By, e

e What we really want to know are the following fap, foas foc fen- All the rests r; = {m,, mp, w,, 7, } are useful for the
o computation and should be derived from the computed values. Because of Axiom 1, we can be sure that the flow

matrix is premagic and the irreducibility is automatically satisfied when we added the cloud node. In this problem,
we have 8 unknown (f,p, foar focr feb» Ta Tp, e, ;) and 8 equations:

fab + 9d = Ta
foa + foe + 9p = Tp
fer +9c =T¢
hg,+hy, +h, =m,
fra +hq =14
fab + fep + hp =T
foc + he =7,
Gatgp +9c =1, (52)

Note that the only requirement from the given data is total passengers out of all stations must be exactly the same as
the sum of passengers in to all stations. While this assumption is incorrect dynamically in short term, since Ideal
Flow Network is about equilibrium in the long run, the average of boarding is exactly equal to alighting in each
station is probably sill acceptable. This will lead to

ga+gb+gc=nz=ha+hb+hc (53)

Now we rearrange the 8 equations above such that the unknown variables are on the left-hand side and the known
values are on the right-hand side.
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fab — Ta = —Ja
foa + foc — b = —9b
feb —Te = —gc
fra —Ta = —hg
fab + feo —Tp = —hy
foe —Tc = —h¢
n, = ha + hb + hC
Tz =9at9p+ 9c (54)

The resulting solution is clearly expressed in a structured matrix form. Explicit solutions are provided based on
clearly defined balance equations. Each variable is distinctly associated with entry and exit flows at each station.
Each row in matrix B represents each equation, each column is to indicate the unknown variable. The right-hand side
vector consists of constants from the given data.

1000 -1 0 0 Ojfam] [ ~Ye
0110 0 -1 0 0||/fea ~9p
0001 0 0 =1 0|fpe gc
0100 -1 0 0 0 _ ~Na
1001 0 -1 0 o= -n (33)
0010 0 0 -1 0, —h,
0000 0 0 0 1|m| |hy+hy+he
0o o000 o o o ulgl lg,+g,+g.
In matrix form
Bx=c (56)

Unfortunately, the rank of matrix B is 6, not full rank. Thus, matrix B has no inverse. Both left inverse and right
inverse also do not exist. Thus, we have proven by counter example that without Axiom 3 and Condition 1, this
problem is unsolvable.

Solution of the Three Station Problem

To give the solution of three station problem, we can use Axiom 3. Using Axiom 3, additional constraints simplify
the mathematical model:

¢ Outflow from the start station precisely equals its entry flow.

¢ Inflow to the end station matches its exit flow.

This simplification allows a direct, systematic solution to the three-station problem. The provided equations neatly
align with the axiomatic constraints, clearly demonstrating their necessity for achieving a solvable and practical
transit flow estimation. Because we do not allow passing-through within the station, any outflow from the start station
would be practically determined by the entry of the start station. Similarly, any inflow to the end station would be
fully determined by the exit flow of the end station. This means Axiom 3 provided us with additional two constraints:
Start station constraints:

fab = fza = ha

fcb = fzc = hc (57)
End station constraints:

fpa = sz = Ya

foe = Jfez = 9c (58)

The solution is given in the following flow matrix

7 a b ¢ z sum

a 0 hg 0 gq g

_ b Ya 0 de 9p Ty
F=¢ [0 n 0 gl (59)

z ha hb h’C 0 T[Z

sum Tg Tp T T K
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Where,
K =2h, + hy +2h.+ 2g, + gp + 29,
®»0O fab + foa * foc + feo = ha + he + ga + g¢ (60)

While these three stations scenarios can be easily solved based on the three axioms alone, larger number of stations
requires just one more additional Condition 1.

Four Stations Problem

Extending to four stations further illustrates the theory’s practical application. Here, the balance equations become
slightly more complex but remain manageable due to clearly defined constraints and conditions. Through systematic
simplifications using the established axioms and conditions (particularly Condition 1, prohibiting immediate return
flows), the four-station problem is resolved similarly. Explicitly defined constraints reduce the complexity of
computations, providing a clear, rigorous solution.

The final computed matrix clearly presents the transit flows, showcasing the practical utility and mathematical
robustness of the axiomatic framework.

8a 8b gc g4
a b ¢ d z sum
0 fam O 0 g, T,
fora O foe O g Tp
0 feo O fea Ic T
. fo fl 0 0 f dc 0 9a Tq
a l [ l c l ha hb hC hd 0 T,
h, hy h, hy sum Tg Tp T Tg T K

]
<
oh
o
<«
g"
€«
ah
a
N Q0 QN

The node equations are

. f@+gg:”a:fba+ha
L) foa + foe + 9p = T = fap + fen + P
fch + feat9e = e = foc + he
fac+ 94 =7a = fea + ha (61)
Start station constraints:
fab = fza = hq
fac = fza = ha (62)
End station constraints:
fba = faz =Ya
fea = faz = Ga (63)

The flow matrix now has only two unknowns: f3, fzp

7 a b ¢ d z sum
a 0 h, O 0 g, T,
b Ya 0 f bc 0 Ib Ty
F= ¢ 0 f cb 0 94 g. ¢ (64)
d 0 0 hg 0 ga| Ta
4 ha hb hC hd 0 T[Z
sum Tg Tp T Tg Ty K

Now we put the start station constraints and end station constraints to the node equations

he+ ga =Tg=ga+hy
Jat foct 9o =mp =ha+ feop + hy
feo + 9at9c =7c = fpc + hag + he
hg +ga =m7qg =ga+hg (65)

Thus, we have two equations and two unknowns
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'! foe = feb — 9a — 9 + ha + hy
8

L foe = feb — he — ha + gat+9c (66)

This gives us very interesting constraint: the sum of entry and exit passengers on the left is exactly equal to the sum
of entry and exit passengers on the right of the link b < c. Actually, this middle link constraint happens in any middle
stations. Now we will use Condition 1 that there is no flow turning back (such as from b->c->b again) in any station
(or we shall assume maximum of turning back flow in any station) to solve the transit flow estimation problem for
any number of station. Without this assumption, the number of link flow can have range from zero up to infinity.
Based on Condition 1, we have the maximum flow in the middle link would be

foc =he+ hy
feo = hq + hy (67)

The middle link flow may be lower than that the above value (up to zero) but any excess of that maximum value
would mean there is turning back flow. Now the final flow matrix becomes

7 a b c d z sum
a 0 h, 0 0 g, T,
b Ja 0 he+hy 0 g, y/ 23
F= ¢ 0 hg+hy 0 9a 9Gc e (68)
d 0 0 hg 0 Ya g
z hq hy, he hy O T,
sum g Tp T Tg Ty K

It should be noted that the flow matrix is not the same as an origin-destination (OD) matrix. To access the OD flow,
we must get the flow (using k-path premagic matrix, which we shall discuss in another paper) from z - O — path —
D — z. As numerical example of four stations problem, we are given the entry flow and exit flow of each station.
Then the link flow can be computed as the equations above.

Note that
foe = foo — 9a — b + ha + Ay = fop — 275 — 125 + 500 + 150 = £, + 250
foe = fop = he — hg + ga+9c = fop — 250 — 100 + 400 4 200 = f,;, + 250 (69)

Observe the middle link constraint

Acpy=—9ga—9gp + ha + hy = —he —hg + ga+9. (70)
. G foe = fen = el (71)
275 125 200 400

l 275 l 350 l 100
© B
500 l 600 l) 400 l

500 150 250 100

If fyc > h. + h, it means there is an excess flow inside f3,. that will turn back as part of f,.,. However, Condition 1
states that turning back flow is not allowed and therefore fi. = h. + hg is the maximum flow in link bc without
turning back flow. With similar argument, we know that if f_;, > h, + h;, there will be an excess flow inside f,;, that
will turn back as part of f;.. Since we do not allow these excess back flows, then f, = h, + h;, is the maximum
flow in link cb.

The middle link constraint gives us
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.e foe = feo = Aen= fen — 250 (72)

We set fi,c = f. = 350, it would give us f, = £, = 600.
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