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Abstract: We propose a Random Integer Ideal Flow Network (IFN) Signature Algorithm that 
generates integral flow assignments in strongly connected directed graphs under uncertainty. 
Existing models often fail to incorporate the inherent randomness and integer constraints present 
in systems like social networks. Unlike traditional approaches that enforce integrality through 
large scaling factors, our method distributes integer coefficients across multiple canonical cycles, 
ensuring precise balance where the sum of inflows exactly equals the sum of outflows at each node. 
We introduce two pseudocode algorithms that uphold flow conservation while maintaining 
network irreducibility, ensuring autonomy through strong connectivity. Theoretical contributions 
include the decomposition of IFNs into canonical cycles and the construction of network signatures, 
string-based representations that allow efficient performance evaluation through direct string 
manipulation. These signatures enable quick validation of key network properties such as total 
flow, balanced link flows, and structural irreducibility. To demonstrate practical applications, we 
apply our algorithm to modeling family power dynamics, illustrating how IFN can create minimal 
yet resilient networks that balance autonomy with accountability. This framework lays the 
foundation for future advancements in predictive modeling and network optimization. To ensure 
reproducibility, we provide an open-source Python implementation on GitHub. 
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Introduction 

 

Modelling the flow of resources, information, or decision-making across networks is a fundamental task in 

disciplines ranging from operations research to data science. Traditional models of network flow typically focus 

on optimizing connections, minimizing costs, or enhancing efficiency. Classical approaches, including shortest 

paths, minimum-cost flows, and Markov chains, often yield fractional values or require cumbersome 

transformations to approximate integrality. While these models are well-suited for continuous or deterministic 

systems, many real-world networks are discrete, stochastic, and structurally complex—requiring methods that 

can incorporate randomness, maintain flow balance, and enforce integer constraints. 

 

These limitations are particularly evident in applications such as social network analysis, where interactions 

are dynamic and inherently discrete. In the realm of network optimization, one of the most pressing challenges 

is ensuring that flow assignments are conserved (i.e., the flow entering any node is equal to the flow leaving that 

node) and integer-based. Many practical industrial engineering applications—ranging from logistics networks 

and supply chain management to decision-making systems—require that the flows be modeled with integer 

values, as fractional flow assignments do not make sense in these contexts. A key challenge is modelling directed 

graphs that maintain strong connectivity and balanced flow conservation, while ensuring integer-based flow 

assignments, essential in systems where flows cannot be fractional. Existing models often produce fractional 

flows or require rigid transformations, failing to fully capture the discrete and random nature of many real-

world systems.  

 

This research introduces a flexible method for modeling complex, dynamic networks with discrete, uncertain 

flow assignments, referred to as the network signature, which produces an Ideal Flow Network [1]. An Ideal 
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Flow Network represents a steady-state, relative flow distribution that conserves flow across all nodes in a 

strongly connected graph [2]. While the Ideal Flow Network (IFN) framework addresses the flow conservation 

and strong connectivity requirements, generating integer-based IFNs from stochastic processes is a non-trivial 

task. Converting fractional IFNs into realistic integer-based representations, especially in large networks, is not 

robust. Traditional IFN models from stochastic matrix and Markov Chain [3] can sometimes fail to get integer 

IFN due to large value of Least Common Multiple (LCM) of the scaling of fractional IFN. Generated Ideal Flow 

Network (IFN) may not be precisely obtained Integer IFN. To overcome this, we introduce in this paper, a 

randomization-based approach that distributes integer flow values across multiple canonical cycles, with a 

tunable random pivot mechanism to ensure balanced coefficient allocation while preserving flow conservation 

and network irreducibility. 

 

The latest paper Signature of Ideal Flow [1] provides a mathematical guarantee that we could make an integer 

IFN using IFN Signature.  Unlike existing IFN approaches focusing on the application to transportation [2] or 

machine learning ( [4], [5]), the proposed method centers on flow-preserving canonical cycles. This highlights 

the novelty of our approach, addressing theoretical gaps left by traditional IFN methods that focused on the 

applications. 

 

The objective of this research is to introduce a new approach namely Random Integer Ideal Flow Network (IFN) 

Signature Algorithm, a novel approach for generating integer-valued flow distributions in directed graphs under 

uncertainty. Building on Teknomo's Ideal Flow Network framework [1], as well as earlier work on stochastic 

matrices and steady-state Markov models [2][3], we address the challenge of generating integer flows without 

relying on large scaling factors derived from least common multiples. The random IFN signature algorithm 

introduces controlled randomization within the structural constraints of IFNs to address these limitations. The 

resulting network signatures—string-based representations of flow paths— ensure both irreducibility (strong 

connectivity) and balance in flow assignments, while also allowing for the inclusion of random variability—an 

essential feature for modeling complex systems.  

 

The need for random integer IFN signatures is rooted in the principles of systems thinking and network theory. 

In complex systems, such as social systems, there are often multiple interdependent factors that influence the 

flow of resources, decisions, or information. These systems need to be strongly connected to ensure that no node 

(or agent) operates in isolation and that feedback mechanisms are in place for correction and adaptation. The 

random integer IFN signature is inspired by network theory and corporate governance best practices, where 

the goal is to create minimal yet robust networks that balance autonomy with accountability. The random 

integer signature ensures that the flow within the network is discrete, balanced, and efficient, while also 

incorporating elements of feedback loops and checks and balances. This approach is essential for avoiding 

problems such as single-point failures and ensuring that no single node can dominate or bypass the feedback 

mechanisms. The random network signatures enable analytical validation and efficient testing of properties 

like total flow, link values, and structural integrity. 

 

This paper presents a key contribution to introduce novel algorithms that generate randomized IFN signatures 

while ensuring balance integer flow values and strong connectivity. Our approach provides a mathematical 

guarantee that we could make an integer IFN, incorporates randomness to better simulate real-world 

uncertainties in discrete integrated network systems. By incorporating randomness into integer flow systems 

while preserving their structural properties, this study addresses a critical gap in current modeling techniques. 

The Random Integer IFN Signature framework offers new possibilities for predictive modeling, robustness 

analysis, and network optimization in complex, uncertain environments. 

 

Literature Review 
 

Network flow theory provides the foundational understanding for Ideal Flow Networks (IFNs) and their 

applications. Ahuja et al. [6] offer a foundational treatment of network flow algorithms and optimization 

techniques. Core concepts such as elementary cycles [7] and strongly connected components (SCCs) via Tarjan's 

algorithm [8] are fundamental in analyzing network structure and connectivity. Recent developments, including 

the parallel SCC detection method by Hong et al. [9] and incremental algorithms by Bernstein et al. [10] and Ji 

et al. [11], enhance scalability for sparse and large-scale graphs. Structural decompositions, such as those by 

Mizera et al. [12] and Zhang et al. [13] [14], further support cycle detection and flow analysis in complex systems. 

Applications span from conventional problems, such as the Gate Assignment Problem [15], to unconventional 

domains like Social Network Analysis [16]. While SCCs help assess graph connectivity, IFNs extend these 
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principles by ensuring balanced inflow and outflow at each node, which is crucial for modeling stable dynamic 

networks. 

 

Ideal Flow Networks (IFNs), introduced by Teknomo [17] focus on strong connectivity and flow conservation in 

directed graphs. Building on Markov chains [3], IFNs provide a framework where total flow at each node is 

conserved, making them ideal for steady-state systems like transportation and resource distribution. The 

network signature approach [1] for IFNs extends this idea to flow systems, providing a string-based canonical 

representation that encodes flow information. Network signatures, which are string to represent networks 

through canonical cycles and can be manipulated for testing irreducibility, node centrality, and flow distribution. 

The concept of premagic matrices is also closely related, representing networks where row and column sums 

are equal, a property shared by the adjacency matrices of IFNs  [18]. 

 

The challenge of ensuring integer flows in network models is a significant one, particularly in applications where 

fractional flows are not physically meaningful. Much research in network flow optimization focuses on finding 

maximum flows or minimum cost flows, and while some algorithms naturally yield integer solutions for integer 

capacities (e.g., Ford-Fulkerson [19]), this is not always guaranteed or easily extended to more complex dynamic 

or stochastic settings (Ahuja et al., [6]). The need for integer solutions is highlighted in problems like integer 

equal flow where non-trivial integer flow may not exist or is NP-hard to find optimally without specific 

constraints (Hochbaum, [20]). This underscores the value of methods that can directly generate or guarantee 

integer flows in network structures. The complexity of finding integer solutions in network flow problems, even 

with fractional supplies, further motivates research into methods that can directly produce integer flows while 

maintaining network properties. 

 

Beyond classical network theory, recent research has advanced the modeling of discrete and stochastic systems. 

Van der Hofstad [22] and Peter [23] explore random graphs and their probabilistic dynamics, offering insights 

into flow resilience. Studies like Dobson et al. [20] and Weber & Jouffe [24] model cascading failures and 

reliability using stochastic frameworks. Adaptive systems work by Surana et al. [25] and Pagani & Aiello [26] 

illustrates the role of randomization in industrial and organizational networks. Collectively, these works 

demonstrate the necessity of integrating stochastic processes into network modeling—a central theme in this 

paper. 

 

The integration of randomness into network models is crucial for capturing the inherent uncertainty and 

dynamic nature of many real-world systems. Prior models of randomized network flows, such as those by Boneh 

et al. [27] and Deaconu and Spridon [21], introduce randomness but lack guarantees for structural integrity like 

strong connectivity and balance. While studies by Deaconu and Spridon [21] explore randomized approaches in 

network coding or graph generation for testing algorithms, they often do not impose strict flow conservation or 

strong connectivity constraints in the manner required by IFNs. This research advances those efforts by 

developing a Random Integer IFN Signature Algorithm that generates randomized flow matrices while 

maintaining core IFN properties, offering greater applicability to dynamic and uncertain systems. While 

previous studies have explored canonical forms in control theory ( [28]; [29]), few have applied these concepts to 

flow networks. Our work bridges this gap by creating network signatures specific to IFNs, enabling both 

theoretical simplification and practical flow analysis. 

 
Methods 

 

Definitions and Notations 

 

The following are the definition of terminologies and their notations used throughout this paper. The 

definitions are mainly based on the paper of Teknomo (2024) [1]. 

 

An Ideal Flow Network (IFN) is a directed graph 𝐹 = (𝑉, 𝐸, 𝜔) with non-negative edge weights where premagic 

and strongly connected properties are hold. The weighted adjacency matrix of an ideal flow network 𝐹 is called 

an ideal flow matrix 𝐅. A directed graph 𝐹 is strongly connected if for every pair of nodes 𝑢, 𝑣 ∈ 𝑉, there exists a 

directed path from 𝑢 to 𝑣. The premagic property means flow conservation where the total inflow is exactly 

equal to the total outflow at every node. A matrix is irreducible if it is not similar via a permutation to a block 

lower triangular matrix. If no such permutation matrix exists, then the matrix is called irreducible. A network 

is strongly connected if and only if the adjacency matrix is irreducible. 
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A cycle in a network 𝐹 = (𝑉, 𝐸, 𝜔) is defined as a directed sequence of nodes, which returns to the starting node 

and that does not visit any node more than once, except for the first and last node, which are the same. Let 𝒸 =
𝑣1𝑣2 ⋯ 𝑣𝑘𝑣1 be a cyclic string of simple cycle. The canonical cycle form 𝒸̂  is the lexicographically minimal string 

among all rotation or reversal of 𝒸 after truncated to omit the final redundant node. While it is not required, we 

canonize the cycle for simplicity and standardization of communication. A canonical cycle is a unique string 

representation of a directed cycle, constructed by rotating the cycle's node sequence such that it starts with the 

lexicographically smallest node name, preserving the original traversal direction. The cycle is written as a node 

sequence with no repetition of the first node.  

 

An assignment operation of a cycle 𝒸̂𝑖 to a network is the same as adding links with 𝛼𝑖 unit of flow to each link 

in the cycle. If the link does not exist, the network is expanded by adding the link and nodes. If the link exists, 

only the flow is added. 

 

A network signature is string representation of an ideal flow network (IFN) as a linear combination of terms 

∑ 𝛼𝑖𝒸̂𝑖𝑖 . Each term 𝑖 consists of a coefficient 𝛼𝑖 and a canonical cycle 𝒸̂𝑖. The coefficient 𝛼𝑖 ∈ ℤ+ is a positive 

integer representing the number of times the cycle 𝒸̂𝑖 is repeated to assign the flow. The total flow in the network 

is denoted as 𝜅. Subscript 𝑖 represents the term, 𝛼𝑖 is the coefficient of a term, 𝒸̂𝑖 indicates the cycle string. A 

pivot is a joint or overlapping node or node sequence exists between any two terms in a signature.  

 

Table 1 summarizes the notations we use in this paper. 

 
Table 1. Table of main variables 

 

𝐹 = (𝑉, 𝐸, 𝜔) Ideal Flow Network with nodes set 𝑉, link set 𝐸 and flow set 𝜔 

𝐅 Ideal flow matrix 

∑𝛼𝑖𝒸̂𝑖
𝑖

 Ideal flow network signature is a linear combination of terms 𝛼𝑖𝒸̂𝑖 

𝒸̂ Canonical Cycle a unique string representation of a directed cycle 

𝒸 Simple cycle is a node sequence in the network 

𝛼𝑖 ∈ ℤ+ Coefficient of term 𝑖 in a signature 

𝜅 Total flow in the network 

𝑘 Number of terms in a signature 

 

Axioms 

 

The following are the axioms or the assumptions. 

1. We assume only dealing with integer IFN. Therefore, the coefficients and total flow are integers. 

2. While it is not required, we also assume the node names are standardized using the Phase-Based Prefix-

Suffix Naming Scheme for simplicity and standard of communication.  

a. Phase 1 (Indices 1-26): Single lowercase letters (𝑎 − 𝑧). 

b. Phase 2 (Indices 27-52): Uppercase prefix followed by one lowercase letter (𝐴𝑎 − 𝐴𝑧). 

c. Phase 3 (Indices 53-728): Next, uppercase prefix followed by two lowercase letters (𝐵𝑎𝑎 − 𝐵𝑧𝑧). 

d. Subsequent Phases: Increment the uppercase prefix and increase the suffix length by one 

lowercase letter each phase (e.g.𝐶𝑎𝑎𝑎, 𝐷𝑎𝑏𝑐𝑑, 𝐸𝑎𝑏𝑐𝑑𝑒). 

Note that this simple naming convention would produce unique one-to-one correspondence between node 

names and positive integers indices up to extremely large numbers (26 + ∑ 26𝑖26
𝑖=1 = 6.40 × 1036). The node 

names in a cycle contain no repetition (no internal cycle inside the cycle). 

3. The node names in a cycle can be permuted as long as it satisfies the irreducibility condition of a signature. 

To guarantee the signature is irreducible, we have to satisfy these irreducibility conditions: 

a. The total nodes in a signature must equal the design number of nodes 𝑛. 

b. At least a pivot (i.e., a joint or overlapping node or node sequence) exists between any two terms in 

a signature. This satisfactory condition does not require (not necessarily) a pivot between each of 

the two terms in a signature.  

 

Random IFN Signature Algorithms 

 

Based on the definitions and axioms above, we can now develop the IFN signature algorithms. To develop the 

algorithms of finding IFN signature, we are using the following knowledge:  
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1. One of the most straightforward ways to satisfy the first irreducibility conditions is to create a minimum 

irreducible matrix where we generate the first 𝑛 nodes sequentially as our first term cycle 𝑐1. For 

example, if 𝑛 = 3, we have `abc`, and when 𝑛 = 6, we have `abcdef`. Using a cycle to create the 

minimum irreducible 𝑐1, we are guaranteed total nodes in a signature equal to the design number of 

nodes 𝑛. 

2. We can randomly permute the nodes in the minimum irreducible cycle if necessary. The permuted 

minimum irreducible cycle still contains n nodes.  

3. To satisfy total flow 𝜅 that is not divisible by the number of nodes 𝑛, we need to generate at least another 

term with cycle length 𝑚 < 𝑛 nodes. 

4. Knowing the cycle length 𝑚, we can select the first 𝑚 nodes and then randomly permute the node 

sequence. As long as the permuted cycle can satisfy the second irreducibility conditions, it can be used 

as the next term cycle. 

 

Based on the above knowledge, we now present our first algorithm to find random IFN signature, which we 

called as the Max 2-Terms Signature Algorithm because the maximum number of terms we can get is only two. 

 

Algorithm-1:  Max 2-Terms IFN Signature 

Input: Total flow 𝜅 ≥ 𝑛 and total number of nodes 𝑛 

Output: random IFN signature of either one or two terms. 

Procedures: 

1. Generate a random minimum irreducible cycle as the first term cycle 𝑐1 so as |𝑐1| = 𝑛. 

2. Compute the coefficient of the first term using the floor function. 

𝛼1 = ⌊
𝜅

𝑛
⌋ 

3. Get the remainder of flow 
𝑟 = 𝜅 − 𝑛 ∙ 𝛼1 

We know that 0 ≤
𝑟

𝑛
< 1. 

4. If the remainder 𝑟 is zero, we have only one term signature, which is 𝛼1𝑐1. 

5. If the remainder r is positive, we have two signature terms: 𝛼1𝑐1 + 𝑐2. We can set 𝑐2 as any node 

permutation from the list of 𝑛 nodes that creates 𝑐1 such that the number of elements in |𝑐2| = 𝑟. The 

second term coefficient is one because 
𝑟

𝑛
< 1.  

 

Algorithm-1 runs in linear time complexity. The cycle consists of 𝑛 elements, and generating a random 

irreducible cycle typically takes 𝑂(𝑛) time. A division and floor function operation both take 𝑂(1) time. Getting 

the remainder involves a multiplication and subtraction, both of which are 𝑂(1)  operations. In conditionally 

determining the second term signature, if 𝑟 =  0, the algorithm terminates, contributing 𝑂(1)  time. If 𝑟 >  0, 

generating 𝑐2 requires choosing a permutation from 𝑛 elements, specifically a subset of size 𝑟. If we assume an 

efficient selection and ordering method, this step would take 𝑂(𝑟), which is at most 𝑂(𝑛) in the worst case. 

 

Examples 1-3 in the Appendix show how the Max 2-Terms Signature Algorithm above works. 

 

When the total flow is large, the signature based on the Max 2-Terms Algorithm would have characteristics as 

follows: 

1. Large first coefficient 𝛼1 

2. The first cycle is always a random permutation of minimum irreducible cycle.  

3. If the second term exists, the second coefficient 𝛼2 = 1 and the second cycle would have a length of the 

remainder. 

 

For real-world applications, the Max 2-Terms Signature Algorithm results are rather restrictive because it has 

only two terms and because the first term coefficient is sometimes too significant for a sizeable total flow. Often, 

in the applications of IFN signature, we want the coefficients to be more distributed among the terms. We want 

to deal with more than just one or two entities. The following algorithm would have more terms and more 

distributed coefficients. 

 

In the second algorithm below, which is more general than the Max 2-Terms Signature Algorithm, we set  𝛼1 =
1 such that the flow represented by the coefficient would be more distributed in other terms. The model also has 
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a dynamic parameter ρ that influences the number of terms. When the model parameter ρ = 0, the algorithm 

behaves almost similarly to the Max 2-Terms Signature Algorithm for many cases. 

 

Algorithm 2: Random IFN Signature 

Input: Total flow 𝜅 ≥ 𝑛 and total number of nodes 𝑛 

Model Parameter: initial 0 ≤ ρ ≤ 𝑛 − 1, ρ ∈ ℤ (integer, zero or positive up to the number of nodes minus 

one) 

Output: random IFN signature. 

Procedures: 

1. Generate a random minimum irreducible cycle as our first term cycle 𝑐1 so as |𝑐1| = 𝑛. 

2. Set the coefficient of the first term 𝛼1 = 1 

3. Get the first remainder of the flow 
𝑟1 = 𝜅 − 𝑛 

4. Set 𝑚1 = 𝑛 

5. Loop over the following steps to get the next term 𝑖 ≥ 2 until the remainder is zero. 

a. Set 𝑚i = 𝑚i−1 − ρ ≥ 1.  

b. If 𝑚i < 1 then set 𝑚i = 1 

c. Generate cycle 𝑐𝑖 from a random node permutation such that |𝑐𝑖| = 𝑚i. 

d. Compute the coefficient of the term using the floor function. 

𝛼𝑖 = ⌊
𝑟𝑖−1

𝑚i

⌋ 

e. If 𝛼𝑖 = 0, then set ρ = ρ + 1,  𝑚i =  𝑚i − 1, generate cycle 𝑐𝑖, and compute the term's coefficient 

again. This is the same as going back to the beginning of the loop of the same index 𝑖 as long 

as 𝑚i ≥ 1. (It is not possible to get 𝛼𝑖 = 0 when 𝑚i = 1 unless 𝑟𝑖−1 = 0. Thus, the algorithm is 

guaranteed to stop.) 

f. Get the remainder of the flow 

𝑟i = 𝜅 − 𝑛 − ∑ 𝑚i ∙ 𝛼i

𝑖

𝑗=2

 

g. Add signature with new term 𝛼𝑖𝑐𝑖. 

h. If the remainder 𝑟i is zero, stop the loop.  
 

Example 4 to Example 8 in the Appendix demonstrate the steps-by-steps random integer IFN algorithm above. 

 

Algorithm-2 runs in quadratic time. The loop length depends on how quickly 𝑚i reduces to 1. In the worst case, 

if 𝑟i =1, 𝑚i reduces very slowly, leading to 𝑂(𝑛) iterations. Each iteration requires cycle generation 𝑂(𝑛) in the 

worst case. Combining everything, the worst-case complexity is quadratic 𝑂(𝑛2). If parameter ρ is large, the 

loop runs significantly fewer times, making the complexity closer to linear 𝑂(𝑛). 
 

Application to obtain Total Flow from Signature 

 

Given the random IFN signature, we can now apply it to compute the total flow in the network merely based 

on string analysis. Let |𝒸̂𝑖| indicates the number of nodes in the cycle then we have the following formula:  

 

𝜅 = ∑𝛼𝑖 ∙ |𝒸̂𝑖|

𝑘

𝑖=1

 
(1) 

 

The total flow from the cycle signature is simply the sum of the product between the coefficient and cycle length 

for all terms. Cycle length is the number of links in the cycles. Notation 𝛼𝑖 indicates the coefficient of the term, 

which is the number of repetitions in the assignment of the cycle. Notation 𝒸̂𝑖 is the canonical cycle, |𝒸̂𝑖| indicates 

the length of the canonical cycle, which is the number of nodes in the node sequence, and upper bound index 𝑘 

is the number of terms in the signature. To make it into simple steps, we introduce the following algorithm to 

get the total flow in the network from string manipulation of the network signature. Given a signature, we want 

to find the total flow in the ideal flow network (IFN) composed by the signature. 
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Algorithm 3: Total Network Flow from Signature 

Input: IFN signature 

Output: Total flow 𝜅 

Procedures: 

1. Separate the signature into terms. 

2. Do the following for each term: 

a. Separate each term into coefficient and cycle. 

b. Count the number of nodes in each term. If the number of nodes is less than 26, then the number of 

nodes is the same as the number of letters in the cycle. 

c. Multiply the number of nodes in each term with its coefficient. 

d. Sum all the product of coefficient and the number of nodes in each term. This sum is the total flow 

in the network. 

 

Example 9 to Example 11 in the Appendix illustrate the steps to compute the total flow from network signature. 

 

Algorithm-3 runs in linear time of the number of terms. Each term contributes 𝑂(1) operations, and since we 

iterate over all 𝑘 terms, the worst-case complexity is 𝑂(𝑘). 
 

Results and Discussions 
 

The introduction of the random integer IFN signature algorithm represents an advancement in network flow 

analysis. The random integer IFN signature algorithm improves upon traditional network flow models by 

generating discrete, balanced flow distributions in dynamic and uncertain systems.  

 

The Max 2-Terms Signature Algorithm, while effective in smaller systems, is limited by its use of only two terms 

and the disproportionately large coefficient of the first term. This often results in unrealistic flow distributions, 

particularly when systems require more balanced coefficients across multiple terms. To address this limitation, 

we introduce a more flexible algorithm with multiple terms and more evenly distributed coefficients. This 

extension is particularly useful in applications where flow is shared across more than one or two entities, 

allowing for a more realistic representation of complex systems. To address these issues, we introduce more 

flexibility in our second algorithm, allowing multiple terms and randomized flow distributions. In the second 

algorithm, we incorporate a dynamic parameter ρ that controls the number of terms and influences the 

distribution of flow coefficients. This ensures balanced flow while maintaining strong connectivity, making it 

ideal for dynamic systems like social networks and economies. By incorporating random pivots between cycles, 

the algorithm simulates variability in influence and resource distribution, ensuring more realistic results. 

 

By utilizing string manipulation of the network signature, we can efficiently compute the total flow in the 

network. The process involves extracting terms from the signature and performing simple operations on each 

term. Specifically, for each term, we isolate the coefficient 𝛼𝑖 and the cycle, then count the number of nodes in 

the cycle. The total flow is obtained by multiplying the coefficient of each term by the number of nodes in the 

corresponding cycle and summing these products across all terms. This approach allows for the calculation of 

the total network flow based purely on string analysis, which simplifies the process and avoids the need for 

complex graph traversal algorithms. The algorithm runs in linear time over the number of terms in the 

signature, ensuring efficient computation even for large networks. 

 

Use Case: Modeling Power Dynamics in Social Networks 

 

The random IFN signature algorithm is particularly useful for modeling complex social systems, where 

influence flows are dynamic and can change over time due to various external factors. Social networks, 

especially family systems, exhibit fluctuating power structures based on relationships, behaviors, and external 

events. The algorithm helps simulate how these power dynamics evolve by representing relationships as a flow 

network where influence is distributed among individuals. This variability can be modeled using the signature, 

enabling us to predict how small changes in influence affect the entire system. The ability to dynamically adjust 

influence flows is crucial for understanding power shifts in social interactions. A practical application of this 

algorithm is in modeling family dynamics, where power structures evolve as relationships change. For instance, 

as shown in Figure 1, we have a family scenario where the mother influences the father and daughter, and the 

daughter influences the son, the introduction of a new member, such as a house cleaner, in Scenario-2, can alter 

the flow of influence.  
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In scenario-1, the Mother may have influence over the Father and Daughter, and the Daughter may influence 

the Son. This structure can be modeled using the Ideal Flow Network (IFN) signature that produce the 

minimum number of cycles where all coefficients are set to one, which is also called as Premier Network 

signature as shown in Figure 2. The influence each member has can be quantified and distributed in a way that 

reflects both direct and indirect relationships. By applying the IFN algorithms, we can simulate how this new 

node affects the network, redistributing power among the family members. Initially, we observe the power 

distribution, where each node (family member) has a certain level of influence based on the flow of power. The 

Mother, for example, might have a higher flow due to her influence over both the Father and Daughter. This is 

represented by a combination of coefficients and canonical cycles within the IFN model. 

 

In Scenario-2, suppose a new house cleaner enters the family system. The cleaner forms a relationship with the 

Daughter, which shifts the influence network. The Mother, who had direct influence over the Daughter, might 

now see a shift in influence due to the new relationship, with the House Cleaner possibly gaining power. By 

applying the random IFN signature algorithm, we can simulate this change and predict how the network’s 

power structure adjusts. In this updated Scenario 2, the House Cleaner might gain more influence than the 

Father, shifting the power dynamic. The model allows us to visualize this redistribution of influence and identify 

which nodes (family members) hold the most power, as well as how new relationships or changes in influence 

strength impact the overall system. In this case, in scenario-2, the house cleaner, initially a weaker node, can 

gain influence through relationships with key members, such as the daughter, changing the power balance. The 

algorithm allows us to predict whether the cleaner’s influence will become dominant or remain balanced within 

the family structure. 

 

This is the key advantage of the IFN modeling — it not only models the current state of the system but also 

predicts the effects of future changes in the network structure. In the family example, we have demonstrated 

how adding a new node (e.g., the house cleaner) or changing the influence strength of an individual (e.g., the 

Father’s increased influence) can impact the overall power structure. The random IFN signature algorithm 

enables the simulation of these scenarios in a structured, repeatable way. By testing various changes and 

observing the resulting flow distribution, we can gain insights into how small changes in a system might cascade 

to affect larger system-wide dynamics. 

 

Thus, we have demonstrated how the random IFN signature algorithm can be used to simulate changes in 

influence and predict how structural changes affect the balance of power. The ability to simulate how influence 

flows through these networks and to test different power structures is crucial for understanding social dynamics 

and decision-making. Power structures often exhibit feedback loops, where actions taken by one agent affect the 

behavior of others, leading to changes in the flow of influence, resources, or decision-making power. 

 

The examples above are based on the Premier Network (as denoted by asterisk in the flow matrix), which models 

network structure without considering the strength of influence. In contrast, the Cardinal Network incorporates 

the strength of influence, making it more suitable for analyzing scenarios where the influence between nodes 

varies. The video lecture [30] on Power Dynamic based on Network Signature would explain these two types of 

integer IFNs into more detail. 

 

By modeling the dynamics of social influence and feedback within power structures, we can use either the 

Premier IFN (when influence strength is unknown) or the Cardinal Network (when influence strength is 

known) to predict how structural changes or shifts in influence will affect power distribution. This ability makes 

IFNs particularly valuable in predictive analytics, as they help assess the consequences of network changes, 

which can inform better decision-making in areas like corporate governance, political systems, or family 

dynamics. 
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Figure 1. Example of family social network scenarios based on IFN signatures 
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= 𝑎𝑑𝑐𝑏 +  𝑏𝑑𝑐 +  𝑏𝑒𝑑𝑐 +  𝑑𝑒 

Figure 2. The Premier Network associated with the IFN signature in example family social network 

scenarios. The power of each agent is on the sum of rows which is equal to the sum of columns 

The integer ideal flow network (such as Premier Network and Cardinal Network) could be used to simulate the 

effects of new policies, changes in leadership, or shifting societal norms on a network's structure. By analyzing 

the flow of power (node flow) and strength of influence (link flow), decision-makers could identify which 

adjustments are necessary to promote equity and balance in the system.  The concept of feedback loops, which 

is basically form a strongly connected network (i.e. the matrix is irreducible) is crucial here, as it ensures that 

no single node (or person) can dominate the system without being subject to correction or influence from others. 

This is the essence of a robust, self-regulating system, where the power dynamics are continuously adjusted to 

maintain equilibrium. 

 

In any social network—be it a family, an organization, or a political system—we can pinpoint two special types 

of nodes: sink nodes, which have very little influence, and source nodes, which exert unchecked power.  

Identifying these nodes helps us spot where the network is either unbalanced (for example, a dictatorial 

structure) or redundant (a powerless sink).  In IFN modeling, our first step is to remove both sinks and sources 

by building a strongly connected, or irreducible, network.  Once we have that irreducible matrix, we can compute 

the ideal flow matrix from its signature. Once we have created irreducible matrix, we can compute the ideal 

flow matrix via its signature.  

 

Through the use of IFNs, we can simulate power shifts, understand the structural relationships between agents, 

and predict how changes in influence strength or network structure could affect the system's overall stability 

and fairness. The algorithm allows for testing multiple random scenarios. In these cases, the algorithm does not 

just provide a static flow distribution, but also allows us to test how changes in network structure (adding new 

relationships or changing existing ones) affect the balance of influence and power dynamics. 
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Further, by analyzing power dynamics using IFNs, we can explore feedback loops in social networks where one 

individual’s actions influence others, leading to self-regulating behaviors. This feature is critical for 

understanding how changes in leadership, relationships, or societal norms impact the stability and equity of 

power structures. By observing the redistribution of influence following structural changes, we can gain insights 

into the adaptive nature of networks, making IFNs a valuable tool in both predictive analytics and strategic 

planning in various domains, from corporate governance to political systems. 

 

Further Potential Applications 

 

The IFN signature can also be applied to explore predictive scenarios in organizational systems and social 

networks. By simulating changes in network structure or influence parameters, it helps predict the effects of 

structural changes or shifts in influence strength, which is particularly valuable in understanding power 

redistribution. This ability makes IFNs a powerful tool for real-world system modeling, including corporate 

governance or political systems, where identifying key agents and ensuring balanced decision-making is 

essential for optimizing performance. 

 

In industrial engineering, the IFN signature can be applied to complex problems like job-shop scheduling, a 

well-known NP-hard problem in production scheduling. By transforming the scheduling problem into a network 

flow model, the algorithm can help minimize processing costs and improve efficiency. Additionally, in 

organizational settings, the IFN model can simulate leadership changes, shifts in team dynamics, or the 

introduction of new agents to assess how these factors redistribute power and influence. This flexibility makes 

the IFN signature algorithm valuable for strategic planning, organizational design, and decision-making under 

uncertainty. 

 

Conclusions 
 

The introduction of random integer IFN signatures represents a significant advancement in network flow 

modeling by offering a flexible, discrete, and dynamic approach. This paper presents a new framework for 

random network signatures using canonical cycles, enabling simple operations to derive important metrics like 

total flow, balance link flows, and irreducibility. The network signature provides a string-based representation 

of the integer Ideal Flow Matrix (IFN) and its directed graph, facilitating deeper insights into flow and structure. 

 

Our algorithms extend previous frameworks by incorporating randomized flow assignments while maintaining 

balance and connectivity. This flexibility makes them ideal for modeling complex systems where flow is dynamic 

and uncertain. The algorithm’s application to social networks and other real-world systems highlights its 

potential for system optimization and predictive modeling. By simulating systems where flow values and 

balance are essential, it offers valuable tools for optimization and analysis.  

 

Future research can explore its applications in economics, political systems, and resource allocation, where 

understanding power dynamics is critical for effective decision-making and system stability. 
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Resources 
 
The playground to connect the IFN signature, the ideal flow matrix, and the ideal flow network can be seen in 

https://people.revoledu.com/kardi/tutorial/IFN/CompositionDecomposition.html. The Python code to generate random 

signature is available as an open source at https://github.com/teknomo/IdealFlowNetwork, and can be accessed via 

https://pypi.org/project/IdealFlowNetwork/. Microsoft Excel Add-In of Ideal Flow Network for Windows OS is also available 

in Revoledu.com upon request. 

 

 

 

 

https://people.revoledu.com/kardi/tutorial/IFN/CompositionDecomposition.html
https://github.com/teknomo/IdealFlowNetwork
https://pypi.org/project/IdealFlowNetwork/
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Appendix 
 

Example 1: 𝑛 = 3, 𝜅 = 15 

The first term has cycle length |𝑐1| = 𝑛 = 3  

𝑐1 = 𝑎𝑏𝑐 

The coefficient of the first term is 

𝛼1 = ⌊
𝜅

𝑛
⌋ = ⌊

15

3
⌋ = 5 

The remainder 
𝑟 = 𝜅 − 𝑛 ∙ 𝛼1 = 15 − 3 ∙ 5 = 0 

 

Since the remainder is zero, we have signature 𝛼1𝑐1 = 5𝑎𝑏𝑐. 

 

Example 2: 𝑛 = 5, 𝜅 = 37 

The first term has cycle length |𝑐1| = 𝑛 = 5; we can use the standard 𝑐1 = 𝑎𝑏𝑐𝑑𝑒, or we can also use a random 

permutation of it, such as 
𝑐1 = 𝑎𝑑𝑏𝑐𝑒 

The coefficient of the first term is 

𝛼1 = ⌊
𝜅

𝑛
⌋ = ⌊

37

5
⌋ = 7 

The remainder 
𝑟 = 𝜅 − 𝑛 ∙ 𝛼1 = 37 − 5 ∙ 7 = 2 

 

Since the remainder is positive, we have our first term in the signature 𝛼1𝑐1 = 7𝑎𝑏𝑐𝑑𝑒. The second term has a 

coefficient of one, and cycle length 𝑟 = 2. Thus, choosing any random node permutation of length two 𝑐2 = 𝑏𝑑, 

we have generated the signature 𝛼1𝑐1 + 𝑐2 = 7𝑎𝑏𝑐𝑑𝑒 + 𝑏𝑑. 

 

Example 3: 𝑛 = 4, 𝜅 = 101 

The first term has cycle length |𝑐1| = 𝑛 = 4 

𝑐1 = 𝑎𝑏𝑐𝑑 

The coefficient of the first term is 

𝛼1 = ⌊
𝜅

𝑛
⌋ = ⌊

101

4
⌋ = 25 

The remainder 
𝑟 = 𝜅 − 𝑛 ∙ 𝛼1 = 101 − 4 ∙ 25 = 1 
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Since the remainder is positive, we have our first term in the signature 𝛼1𝑐1 = 25𝑎𝑏𝑐𝑑. The second term has a 

coefficient of one, and cycle length 𝑟 = 1. Thus, choosing any random node permutation of length one 𝑐2 = 𝑏, 

we have generated the signature 𝛼1𝑐1 + 𝑐2 = 25𝑎𝑏𝑐𝑑 + 𝑏. Notice that a single node in a cycle, such as  𝑐2 = 𝑏, 

represents a self-loop. 
 

Example 4: 𝑛 = 3, 𝜅 = 15, ρ = 1 

The first term has cycle length |𝑐1| = 𝑛 = 3  

𝑐1 = 𝑎𝑏𝑐 

Our first term is 𝛼1𝑐1 = 𝑎𝑏𝑐 

Our first remainder is 
𝑟1 = 𝜅 − 𝑛 = 15 − 3 = 12 

Set 𝑚1 = 𝑛 = 3 

We enter the loop from index 𝑖 = 2. 
We set 𝑚i = 𝑚i−1 − ρ. That is 𝑚2 = 𝑚1 − 1 = 3 − 1 = 2 

We generate a random cycle of length 𝑚2 = 2, 𝑐2 = 𝑏𝑐, for the second term. We must ensure the second cycle 

contains a pivot to any existing cycles in the updated signature. Otherwise, we need to regenerate the random 

cycle. The pivot is bc, so we can accept this cycle.  

The coefficient of the second term is 

𝛼2 = ⌊
𝑟𝑖−1

𝑚i

⌋ = ⌊
𝑟1
𝑚2

⌋ = ⌊
12

2
⌋ = 6 

Our second term is 𝛼2𝑐2 = 6𝑏𝑐. 

Our updated signature becomes 𝑎𝑏𝑐 + 6𝑏𝑐. 

Our second remainder is 
𝑟2 = 𝜅 − 𝑛 − 𝑚2 ∙ 𝛼2 = 15 − 3 − 2 ∙ 6 = 0 

Since the remainder is zero, we stop the loop and report the update signature 𝑎𝑏𝑐 + 6𝑏𝑐. 

 

Example 5: 𝑛 = 5, 𝜅 = 37, ρ = 1 

The first term has cycle length |𝑐1| = 𝑛 = 5. Let us use random permutation such that 

𝑐1 = 𝑎𝑑𝑏𝑐𝑒 

Our first term is 𝛼1𝑐1 = 𝑎𝑑𝑏𝑐𝑒 

Our first remainder is 
𝑟1 = 𝜅 − 𝑛 = 37 − 5 = 32 

Set 𝑚1 = 𝑛 = 5 

We enter the loop from index 𝑖 = 2. 
We set 𝑚i = 𝑚i−1 − ρ. That is 𝑚2 = 𝑚1 − 1 = 5 − 1 = 4 

For the second term 𝑐2 = 𝑏𝑑𝑐𝑎, we generate a random cycle of length 𝑚2 = 4. We must ensure the second 

cycle contains a pivot to any existing cycles in the updated signature. Otherwise, we need to regenerate the 

random cycle. The pivot is node a, so we can accept this cycle. 

 

The coefficient of the second term is 

𝛼2 = ⌊
𝑟𝑖−1

𝑚i

⌋ = ⌊
𝑟1
𝑚2

⌋ = ⌊
32

4
⌋ = 8 

Our second term is 𝛼2𝑐2 = 8𝑏𝑑𝑐𝑎 

Our updated signature becomes 𝑎𝑑𝑏𝑐𝑒 + 8𝑏𝑑𝑐𝑎 

Our second remainder is 
𝑟2 = 𝜅 − 𝑛 − 𝑚2 ∙ 𝛼2 = 37 − 5 − 4 ∙ 8 = 0 

Since the remainder is zero, we stop the loop and report the update signature 𝑎𝑑𝑏𝑐𝑒 + 8𝑏𝑑𝑐𝑎. 

 

Example 6: 𝑛 = 5, 𝜅 = 37, ρ = 0 

The first term has cycle length |𝑐1| = 𝑛 = 5. Let us use random permutation such that 

𝑐1 = 𝑎𝑏𝑑𝑒𝑐 

Our first term is 𝛼1𝑐1 = 𝑎𝑏𝑑𝑒𝑐 

Our first remainder is 
𝑟1 = 𝜅 − 𝑛 = 37 − 5 = 32 

Set 𝑚1 = 𝑛 = 5 

We enter the loop from index 𝑖 = 2. 
We set 𝑚i = 𝑚i−1 − ρ. That is 𝑚2 = 𝑚1 − 0 = 5 − 0 = 5 
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For the second term 𝑐2 = 𝑏𝑑𝑐𝑎𝑒, we generate a random cycle of length 𝑚2 = 5. We must ensure the second 

cycle contains a pivot to any existing cycles in the updated signature. Otherwise, we need to regenerate the 

random cycle. The pivots are links bd and ca, thus we can accept this cycle. 

The coefficient of the second term is 

𝛼2 = ⌊
𝑟𝑖−1

𝑚i

⌋ = ⌊
𝑟1
𝑚2

⌋ = ⌊
32

5
⌋ = 6 

Our second term is 𝛼2𝑐2 = 6𝑏𝑐𝑑𝑎𝑒 

Our update signature becomes 𝑎𝑏𝑑𝑒𝑐 + 6𝑏𝑐𝑑𝑎𝑒 

Our second remainder is 
𝑟2 = 𝜅 − 𝑛 − 𝑚2 ∙ 𝛼2 = 37 − 5 − 5 ∙ 6 = 2 

 

We loop over, and now the index 𝑖 = 3. 

We set 𝑚3 = 𝑚2 − ρ = 𝑚2 − 0 = 5 − 0 = 5 

We generate a random cycle of length 𝑚3 = 5 for the third term 𝑐3 = 𝑎𝑏𝑐𝑑𝑒. We need to ensure the second 

cycle contains a pivot to any existing cycles in the updated signature. The pivot with the first cycle is link ab 

and de, thus we can accept this cycle. 

The coefficient of the third term is 

𝛼3 = ⌊
𝑟2
𝑚3

⌋ = ⌊
2

5
⌋ = 0 

Since 𝛼3 = 0, we need to set ρ = ρ + 1 = 0 + 1 = 1, and go back to the beginning of the loop of index 𝑖 = 3. 

We set 𝑚3 = 𝑚2 − ρ = 𝑚2 − 1 = 5 − 1 = 4 

We generate a random cycle of length 𝑚3 = 4 for the third term 𝑐3 = 𝑎𝑏𝑐𝑑. The pivot with the first cycle is link 

ab, thus we can accept this cycle. 

The coefficient of the third term is 

𝛼3 = ⌊
𝑟2
𝑚3

⌋ = ⌊
2

4
⌋ = 0 

Since 𝛼3 = 0 again, we need to set ρ = ρ + 1 = 1 + 1 = 2, and go back to the beginning of the loop of index 𝑖 =
3. 

We set 𝑚3 = 𝑚2 − ρ = 𝑚2 − 2 = 5 − 2 = 3 

We generate a random cycle of length 𝑚3 = 3 for the third term 𝑐3 = 𝑎𝑏𝑐. The pivot with the first cycle is link 

ab, thus we can accept this cycle. 

The coefficient of the third term is 

𝛼3 = ⌊
𝑟2
𝑚3

⌋ = ⌊
2

3
⌋ = 0 

Since 𝛼3 = 0 again, we need to set ρ = ρ + 1 = 2 + 1 = 3, and go back to the beginning of the loop of index 𝑖 =
3. 

We set 𝑚3 = 𝑚2 − ρ = 𝑚2 − 2 = 5 − 3 = 2. 

We generate a random cycle of length 𝑚3 = 3 for the third term 𝑐3 = 𝑏𝑐. The pivot with the second cycle is 

link bc, thus we can accept this cycle. 

The coefficient of the third term is 

𝛼3 = ⌊
𝑟2
𝑚3

⌋ = ⌊
2

2
⌋ = 1 

 

Our third term is 𝛼3𝑐3 = 𝑏𝑐. 

Our update signature becomes 𝑎𝑏𝑑𝑒𝑐 + 6𝑏𝑐𝑑𝑎𝑒 + 𝑏𝑐 

Our third remainder is 
𝑟3 = 𝜅 − 𝑛 − 𝑚2 ∙ 𝛼2 − 𝑚3 ∙ 𝛼3 = 37 − 5 − 5 ∙ 6 − 2 ∙ 1 = 0 

Since the remainder is zero, we stop the loop and report the update signature 𝑎𝑏𝑑𝑒𝑐 + 6𝑏𝑐𝑑𝑎𝑒 + 𝑏𝑐. 

 

 

Example 7: 𝑛 = 4, 𝜅 = 101, ρ = 3 

The first term has cycle length |𝑐1| = 𝑛 = 4 

𝑐1 = 𝑎𝑏𝑐𝑑 

Our first term is 𝛼1𝑐1 = 𝑎𝑏𝑐𝑑 

Our first remainder is 
𝑟1 = 𝜅 − 𝑛 = 101 − 4 = 97 

Set 𝑚1 = 𝑛 = 4 
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We enter the loop from index 𝑖 = 2. 
We set 𝑚i = 𝑚i−1 − ρ. That is 𝑚2 = 𝑚1 − 1 = 4 − 3 = 1. 

We generate a random cycle of length 𝑚2 = 1 for the second term 𝑐2 = 𝑏. The pivot is node b, thus we can 

accept this cycle. 

The coefficient of the second term is 

𝛼2 = ⌊
𝑟𝑖−1

𝑚i

⌋ = ⌊
𝑟1
𝑚2

⌋ = ⌊
97

1
⌋ = 97 

Our second term is 𝛼2𝑐2 = 97𝑏 

Our update signature becomes 𝑎𝑏𝑐𝑑 + 97𝑏 

Our second remainder is 
𝑟2 = 𝜅 − 𝑛 − 𝑚2 ∙ 𝛼2 = 101 − 4 − 1 ∙ 97 = 0 

Since the remainder is zero, we stop the loop and report the update signature 𝑎𝑏𝑐𝑑 + 97𝑏. 

 

Example 8: 𝑛 = 4, 𝜅 = 101, ρ = 2 

The first term has cycle length |𝑐1| = 𝑛 = 4 
𝑐1 = 𝑎𝑏𝑐𝑑 

Our first term is 𝛼1𝑐1 = 𝑎𝑏𝑐𝑑 

Our first remainder is 
𝑟1 = 𝜅 − 𝑛 = 101 − 4 = 97 

Set 𝑚1 = 𝑛 = 4 

We enter the loop from index 𝑖 = 2. 
We set 𝑚i = 𝑚i−1 − ρ. That is 𝑚2 = 𝑚1 − 2 = 4 − 2 = 2. 

We generate a random cycle of length 𝑚2 = 2 for the second term 𝑐2 = 𝑏𝑎. The pivot is node a, thus we can 

accept this cycle. 

The coefficient of the second term is 

𝛼2 = ⌊
𝑟𝑖−1

𝑚i

⌋ = ⌊
𝑟1
𝑚2

⌋ = ⌊
97

2
⌋ = 43 

Our second term is 𝛼2𝑐2 = 43𝑏𝑎 

Our update signature becomes 𝑎𝑏𝑐𝑑 + 43𝑏𝑎 

Our second remainder is 
𝑟2 = 𝜅 − 𝑛 − 𝑚2 ∙ 𝛼2 = 101 − 4 − 2 ∙ 43 = 1 

 

We loop over and now the index 𝑖 = 3. 

We set 𝑚3 = 𝑚2 − ρ = 𝑚2 − 2 = 2 − 2 = 0. We need to set ρ = ρ − 1 = 2 − 1 = 1 and compute again 𝑚3 =
𝑚2 − ρ = 𝑚2 − 1 = 2 − 1 = 1. We generate a random cycle of length 𝑚3 = 1 for the third term 𝑐3 = 𝑎. The 

pivot to the existing term is node a. 

The coefficient of the third term is 

𝛼3 = ⌊
𝑟2
𝑚3

⌋ = ⌊
1

1
⌋ = 1 

Our third term is 𝛼3𝑐3 = 𝑎 

Our update signature becomes 𝑎𝑏𝑐𝑑 + 43𝑏𝑎 + 𝑎 

Our third remainder is 
𝑟3 = 𝜅 − 𝑛 − 𝑚2 ∙ 𝛼2 − 𝑚3 ∙ 𝛼3 = 101 − 4 − 2 ∙ 43 − 1 ∙ 1 = 0 

Since the remainder is zero, we stop the loop and report the update signature 𝑎𝑏𝑐𝑑 + 43𝑏𝑎 + 𝑎. 

 

Example 9: 

We have a signature abc + 2ab. Get the total flow based on string analysis. 

The signature has two terms: abc and 2ab. 

The first term abc contains three nodes (a, b, c) and the coefficient is 1.  Multiply the coefficient and the 

number of nodes; we have 3 * 1 = 3. 

The second term, 2ab, contains two nodes (a, b), and the coefficient is 2. Multiply 2 * 2 = 4. 

We sum the product of the coefficient and the number of nodes. We have 3 * 1 + 2 * 2 = 3 + 4 = 7. 

Thus, the sum of flow in the network is 7. 

 

We can also test by composing the signature, and we will get the ideal flow matrix, which has total flow of 7. 
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𝐅 =

↗ 𝑎 𝑏 𝑐 Σ
𝑎
𝑏
𝑐

[
− 3 −
2 − 1
1 − −

]
3
3
1

Σ 3 3 1 7

 

Example 10: 

For signature a + abcd + 3b + bd = 3b + a + bcd + abd, which produces  

[

1 1 0 0
0 3 1 1
0 0 0 1
1 1 0 0

] 

 

The total flow from the LHS signature is a + abcd + 3b + bd = 1 + 4 + 3 (1) + 2 = 10. 

The total flow from the RHS signature is 3b + a + bcd + abd = 3(1) + 1 + 3 + 3 = 10. 

 

Example 11: 

Composition of cycle network signature of 6abcd + 8acd + 10ad + 7bc produces ideal flow matrix: 

[

0 6 8 10
0 0 13 0
0 7 0 14
24 0 0 0

] 

 

Signature 6abcd + 8acd + 10ad + 7bc has total flow of 6(4) + 8(3) + 10(2) + 7(2) = 24 + 24 + 20 + 14 = 82. 

 
 


