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Machine Learning-Based Fake Account Detection System:
Instagram Case Study

Yulia!®@, Hendy Gunawan', Gregorius Satia Budhi'*®, and Kartika Gunadi Kartawidjaja!

Informatics Department, Petra Christian University, Surabaya 60236, Indonesia

Abstract

People often create fake social media accounts to express themselves anonymously. However, these fake accounts can harm the
reputation of individuals and businesses, resulting in fewer genuine likes and followers. Instagram, a top-rated social media
platform often used for business and political engagement, suffers from the negative impacts of these accounts. This highlights
the urgent need for a dependable system to identify whether Instagram accounts are genuine. This study investigated several
machine learning models for developing a fake account detection system. Single models, such as support vector machines, naive
Bayes, logistic regression, multilayer perceptron, and ensemble models based on bootstrap aggregating techniques and boosting,
were trained and tested. The training and testing processes were conducted using a 10-fold cross-validation to prevent
overfitting. The test results indicated that the adaptive and gradient boosting models achieved the best accuracy and an F1 score
of more than 92%, with precision surpassing 93%.

Index Terms: Fake account detection, Machine learning, Single and ensemble models, Social media
. INTRODUCTION distorts the influencer’s genuine value and influence, resulting

in business owners potentially overpaying for their endorse-
Many individuals endeavor to increase their follower count ments [5]. The creation of fake accounts under false identities

for various reasons, such as seeking fame or earning trust can be detrimental to the reputations of individuals and busi-
from others based on a large follower count [1]. Consequently, nesses, leading to a decrease in genuine likes and followers
individuals create fake accounts to inflate their follower [1].
counts and use platforms for malicious activities, such as Instagram is one of the most active social media platforms
fraud and cyberbullying [2,3]. Furthermore, individuals create worldwide [2,5]. It is used to share images and creative work
fake accounts to express themselves, exploit social media, and for communication [1]. Over time, Instagram's role in social
engage in other online activities without revealing their true media has evolved. In addition to being a communication
identities to others [4]. medium, Instagram is used for business and political purposes.
Fake accounts pose problems for business owners who use Many celebrities have recently created Instagram accounts to
influencers to promote their products. The influencers are paid develop their businesses and fan bases [6]. All types of fake
using endorsements. The total number of influencer followers accounts adversely affect social media benefits. This under-
determines the endorsement process. It is crucial to recognize scores the critical need for a reliable system to detect whether
that this number can be artificially inflated by up to 78% by an Instagram account is fake. Real accounts are those in which
using fictitious followers (fake accounts). Such manipulation the account owners utilize their real identity to make them
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easily recognizable. This includes full names, short names,
biographies, and profile pictures [7]. Such a system could pro-
vide comfort and security to Instagram users through social
media interactions, particularly on Instagram.

A previous study by Albayati and Altamimi in 2019 [§]
aimed to address this issue by utilizing data mining techniques
to detect fake profiles on Facebook. The study proposed three
supervised learning algorithms (k-nearest neighbor (K-NN)
[9], support vector machines (SVMs) [10], and decision tree
(DT)) [11] and two unsupervised learning algorithms, k-means
[12] and k-medoids [13]. The study reported that the DT,
SVMs, and K-NN with k =3 achieved accuracies of 97.76%,
95.72%., and 91.45%, respectively. The unsupervised learning
algorithms, k-means and k-medoids, achieved accuracies of
67.31% and 67.01%, respectively. In this study, the supervised
learning algorithms outperformed the unsupervised learning
algorithms. This study did not utilize cross-validation (CV).

In 2020, Sheikhi [1] conducted a study to identify the most
efficient method for detecting fake accounts on Instagram.
Various algorithms were employed in this study, including the
Hoeftding tree [14], random forest (RF) [15], SVMs, naive
Bayes (NB) [16], multilayer perceptron (MLP) [17], and bag-
ging predictors (BP) [18]. The study reported that BP achieved
the highest accuracy of 98.45%, followed by RF, NB, and
SVMs with accuracies of 97.2, 94.58, and 68.68%, respec-
tively. This experiment was conducted using a 10-fold CV.
The results of the study indicated that the BP method can
accurately detect fake accounts.

In 2020, Purba et al. [5], conducted a study on classifying
fake Instagram users. This study aimed to classify fake users
using supervised learning algorithms such as RF, MLP, logis-
tic regression (LR) [19], NB, and DT. Experiments were con-
ducted using 2-classes (fake or authentic users) and 4-classes
(authentic users, active-fake users, inactive-fake users, and
spammers) classifications. In the 2-class classification, the RF
achieved the highest accuracy of 90.1%. In the 4-class classifi-
cation, the RF achieved the highest accuracy of 91.8%. This
experiment was conducted using a 10-fold CV.

Based on the outlined problem background, the research
questions were as follows: Q1: To identify which machine
learning algorithms are most suitable for detecting fake
accounts on Instagram, as measured by accuracy, precision,
recall, and Fl-score; Q2: What are the criteria for determining
fake accounts on Instagram? An additional question was as
follows: Q3: What if machine learning experiences overfit-
ting?

This study examined the efficacy of single-model machine
learning (ML), such as SVMs, NB, LR, and MLP, and ensem-
ble models based on bootstrap aggregation techniques (RF and
BP) and boosting techniques, such as Adaptive Boosting (AB)
and Gradient Boosting (GB) to identify the most suitable

Machine Learning-Based Fake Account Detection System: Instagram Case Study

model for detecting fake accounts on Instagram. The perfor-
mance of each algorithm was evaluated using metrics such as
accuracy, recall, precision, and Fl-score. We evaluated the
performance of the ML models using k-fold CV. This analysis
aimed to ascertain the stable performance of each tested algo-
rithm.

Il. SYSTEM MODEL AND METHODS

A. Comparison Framework to Identify the Best
Model

We designed a comparison framework to identify the best
Instagram fake account detection model. Our previous studies

Transformation Preprocessin, el
14 £ — account /4— Start
Step Step
dataset i
Finish
Calculate accuracy,
precision, recall, F1,
training and testing :
e Train and Apply
— the chosen
Calculate accuracy, model on fake
Split dataset CV with precision, recall, F1, L account
to be n-fold model-2 training and testing detection
times system
T t
Calculate accuracy, Derara
CV with precision, recall, F1, el
L s the best
model-m training and testing
i model
times

N-Fold Cross Validation

Fig. 1. Design of comparison framework.

inspired this framework [20,21]. The design is illustrated in
Fig. 1.

1) Dataset

The dataset used in this study was obtained from the web-
site kaggle.com, which was created by Bakhshandeh!. The
dataset comprised 696 records, with 348 records labelled as
fake or spammer accounts and 348 records labelled as genuine
accounts, and consisted of 12 attributes. Although small, this
well-balanced and carefully labeled dataset was ideal for our
purposes. Furthermore, it exceeds the 10-times rule, which
recommends at least 10 examples for each feature in every
class [22].

2) Preprocessing Step

Preprocessing is a crucial step in data analysis and ML as it
prepares raw data for further processing and analysis. In this
study, the dataset underwent several preprocessing steps to
ensure its quality and suitability for training the ML models.
The preprocessing steps are as follows.

1) https://www.kaggle.com/datasets/free4everl/instagram-fake-spammer-genuine-accounts

http://jicce.org
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(1) All missing values were identified, removed, or imputed
using appropriate methods to ensure completeness,
integrity, and data quality [23].

(2) A new attribute was added to the dataset to represent
the ratio of followers to followings. According to arti-
cles on social media [24,25], this ratio indicates
accounts’ level of engagement. A higher ratio indicates
that the accounts are of better quality.

(3) The numerical data in the dataset were grouped into cat-
egories. This grouping simplified the analysis and made
it easier to understand for specific ML algorithms [23].

(4) The final step was to change the dataset from comma-
separated values (CSV) to a dataframe format. This
change makes it easier to analyze data using tools and
libraries designed for data processing [26].

3) Transformation Step

Data transformation is crucial for modifying data by altering
their formats within a dataset. This step ensures that the data
are suitable for subsequent classification processes. The data
transformations performed at this stage can be categorized into
form and value transformations. The detailed data transforma-
tion process is outlined as follows.

(1) Value Transformation: This process involves modifying
the dataset to add new data attributes derived from cal-
culations based on existing attributes. The value trans-
formation performed in this study included adding the
followers/followings ratio attributes. This transforma-
tion aims to determine how frequently an account fol-
lows other accounts and is followed in return. A higher
value ratio indicates a higher quality account. This ratio
is expressed in (1):

num of followers )

Followers_Followmgs_Ratlo = m

(2) Form Transformation: This process involves modifying
numerical and categorical attributes. This simplifies the
data analysis process and facilitates a better understand-
ing of the various ML algorithms [23]. The applications
of each attribute are listed in Table 1.

4) Training and Testing of the Model

The initial stage of this process involves dividing the dataset
into training and testing sets. Subsequently, the training data
were processed using four methods. After training the data, an
ML model was obtained from the trained data. Subsequently,
the model was tested using the testing data, and its perfor-
mance was evaluated using a confusion matrix with metrics
such as accuracy, recall, precision, and Fl-score. A 10-fold
CV was performed. After all the models were trained, overfit-
ting tests were performed on each method. To detect fake
accounts, we investigated four single ML models, the SVMs
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Table 1. Data transform from numerical to categorical

ical
No. Attribute Rule ryertes
Value
.- DL < 50 Low
| Descnp(tll)oLn)Length 50 <DL < 100 Middle
DL > 100 High
UL<0.3 Low
5 Userne;;njeL;ength 03<UL<06 Middle
UL >0.6 High
FL<0.3 Low
3 Fullnagl:i )Length 03<FL<0.6 Middle
FL>0.6 High
FW <4 Low
4 FullnaEan\;ev ;Vords 4<FW<8 Middle
FW >8 High
P <50 Low
5 Post (P) 50<P <100 Middle
P> 100 High
Fle < 300 Low
6 Followers (Fle) Fle > 300 High
, , Fli <500 Low
7 Following (Fli) Fli > 500 High
FFR < 0.5 Very Bad
< <
Fle-Fli Ratio 03=FrR=<1 oad
8 (FFR) G oo
2<FFR<10 Good
FFR > 10 Very Good

linear kernel [27], NB [28], LR [19], and MLP [29,30], and
four ensemble models, BP [18], RF [15], AB [31], and GB
[32].

B. Design System

The best model found using the analysis presented in Sec-
tion 2 was then trained using all the records in the dataset and
applied to the fake account detection system. The design of
this system is illustrated in Fig. 2.

The proposed system is straightforward. First, the user can
insert a suspected username. The system runs a scrapping
module to gather the metadata of the suspected username from
Instagram. The metadata are then transformed into features, as
listed in Table 1. Subsequently, the system detects whether the
account is fake. The system shows the account details if the
suspected account is the genuine account. If detected as fake,
it runs a warning in addition to showing the account details.
Although this design is technically feasible, individuals inter-
ested in its implementation should consider the equipment that
will be used. It must be sufficiently robust to handle large
amounts of data. Additionally, it is essential to be mindful of
Instagram users’ privacy.



Transform the
account metadata
Detect the suspected
account using the

chosen model
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Scrapping account Input fake
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Fig. 2. Design of Fake Account Detection System.
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lll. RESULTS

The experiments were conducted to determine which model
among the proposed models was the most suitable for achiev-
ing high classification performance.

A. Performance Measures

We investigated model candidates using 10-fold CV in the
first experimental group. The process involved repeating the
iteration 10 times for training and testing. In each iteration,
one subset was excluded from testing, whereas the remaining
subsets were used for training. The purpose of using a 10-fold
CV for testing each model was to perform 10 iterations to
avoid overfitting. Additionally, CV was used to estimate the
performance of the model in ML using data that had not been
previously reported. Table 2 presents the results of the study.

Table 2. Result of 10-fold cross-validation test

Measurement (%)

Acc Pre Rec F1 Train Test

SVMs 90.7 92.7 88.1 90.3 1.196 0.598
NB 83.6 76.8 96.3 85.4 1.562 1.562

Time (ms)
Model

LR 91.7 91.8 91.5 91.5 24.029  4.032
MLP 91.9 92.7 91.7 92 788.035  6.001
RF 91.7 92.9 90.5 91.6 37.503 1.795
AB 92.5 93.9 90.5 92.1 13.851 1.561
BP 90.7 91.4 90.1 90.4 50.962 5.96
GB 92.4 93.2 91.5 923 89.007  5.006

The results in Table 2 indicate that AB and GB have the
best accuracies of 92.5% and 92.4%, respectively. For preci-
sion, AB achieved the best results (94%), whereas that of GB
was slightly lower (93.2%). Furthermore, NB achieved the
best recall but the worst accuracy and precision. This means
that NB can detect the first class (fake) better than the other
models. However, because its precision was low (76.8%),
many mistakes were made when detecting the second class
(genuine). This causes inconvenience to Instagram users
because NB detects many genuine accounts as fake.

Machine Learning-Based Fake Account Detection System: Instagram Case Study

B. Underfitting or Overfitting Test

To analyze the performance of ML models, we must evalu-
ate whether the models are overfitting or underfitting. Overfit-
ting is a condition in which the trained model performs
extremely well on the training data and does not fit well with
the testing data. Therefore, when the error rates are low for the
training dataset and high for the testing dataset, overfitting
occurs [33]. Underfitting occurs when the trained model per-
forms poorly on the training and testing data. Technically,
underfitting occurs when the error rates are high for both the
training and testing data [33]. An over- or underfitting model
cannot be considered a good fit. Each model's mean squared
error (MSE) was examined when tested with both training and
testing data to determine whether the model candidates were
over- or underfitting. Table 3 presents the results of the study.

Table 3. over- and under-fitting tests on model candidates

Model MSE Score
Train Data Test Data Difference

SVMs 0.089 0.101 0.012
NB 0.163 0.145 -0.018
LR 0.07 0.101 0.031
MLP 0.065 0.072 0.007
RF 0.046 0.087 0.041
AB 0.069 0.087 0.018
BP 0.054 0.072 0.018
GB 0.059 0.029 -0.03

Table 3 shows that all model candidates” MSE scores of
testing with both training and testing data are low. Nearly all
of them are below 0.01, except for the MSE of NB and the
MSE of SVMs testing data, which are slightly higher. This
implies that all model candidates did not suffer from underfit-
ting because they all fit well to the problem. Furthermore, the
difference in MSE scores between training and testing data is
minimal (below 0.05). Therefore, we can conclude that none
of the model candidates experience overfitting and that they
can learn the data to determine the patterns accurately.

C. Criteria for Fake Account Detection

By determining the criteria for identifying fake accounts on
Instagram, we tested and analyzed the importance of features
using the AB model. The AB was selected because it demon-
strated superior performance among the tested model candi-
dates. Feature Importance (FI) is a technique that calculates
the scores for all model input features. A higher score indi-
cates that a feature significantly affects the model in predict-
ing a specific variable. The feature importance in AB is
illustrated in Fig. 3.
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Fig. 3. Feature importance scores of AB input features.

In Fig. 3, we can observe that the three features with the
highest scores are description length, number of posts (#post),
and ratio, with a score of 0.16, followed by the number of fol-
lowers (#followers) with a feature importance score of 0.12.
Using these feature importance scores, we conducted a set of
experiments to test the impact of FI scores on AB perfor-
mance. Several tests were conducted using input features with
feature importance scores >0.05, >0.06, >0.08, >0.12, and all
features. The performance comparison results are shown in
Fig. 4.

AB performance comparison on reducing input features
based onthe Feature Importance Scores

95
93
91
89
87
85
83
81
79
77
75

All Features Fl Score >0.05 Fl Score >0.06 Fl Score >0.08 Fl Score >0.012

==@==/Accuracy e=@==Precision e==@==Recall e=@=F1-Score

Fig. 4. comparison of AB performance on reducing input features based on
the feature importance scores.

As shown in Fig. 4, the more features included, the better
the performance of the AB model. However, the best recall
results were obtained when we used input features with FI
scores greater than 0.08. This indicates that using all the fea-
tures provides the best performance for this problem, except

for recall. Therefore, if we focus on creating a model that can
correctly detect fake and genuine accounts, we can train the
model using all the features and attributes. However, we
assume that the focus is on maximizing the model’s ability to
detect fake accounts, undermining a few misdetected genuine
accounts. In this case, we can train with features having fea-
ture importance scores greater than 0.08. The AB model
trained using input features with an FI score >0.08 achieves
the highest recall. The highest recall is the highest ratio of cor-
rectly predicted positive observations to all positive observa-
tions. In this case, the model with this configuration will
detect fake accounts more successfully than other models.

D. Testing on Other Datasets

In the final experiment, we tested our best models (AB and
GB) on two public datasets created by Jafari® and Purba’).
Jafari’s dataset comprises 785 records, with 692 records
labeled as fake and 93 records labeled as genuine. Purba’s
dataset comprises two parts, 2-class and 4-class. This dataset
was used in Purba’s research [5]. The 2-class part comprises
65326 records, 32866 of which are fake account records, and
the rest are genuine accounts. The 4-class part of Purba’s data-
set comprises 43307 records, with real, active-fake, inactive-
fake, and spammer-fake accounts for 10441, 12054, 10549,
and 10263, respectively. The results of these experiments are
presented in Table 4.

Table 4. Results of 10-fold CV test on other datasets

Measurement (%)

Dataset Model
Acc Pre Rec F1
) GB 94 96 97 97
Jafari’s
AB 94 96 97 96
GB 88 92 82 87
Purba’s AB 8 85 85 85
(2-class)
Purba et al.’s RF [5] 90 90 90 90
. GB 90 90 90 90
Purba’s
(4-class) AB 64 61 64 60

Purba et al.’s RF [5] 92 92 92 92

As listed in Table 4, the performances of our best models
were fairly good, and we used parameters that were optimized
for Bakhshandeh’s dataset. However, the AB did not perform
well when applied to Purba’s 4-class dataset. For the heavily
imbalanced Jafari dataset, AB and GB performed better than
when applied to the Bakhshandeh dataset (Table 2). We assume
that this is because the total number of fake accounts is con-
siderably higher than that of real accounts in Jafari’s dataset.

2) https://www kaggle.com/datasets/rezaunderfit/instagram-fake-and-real-accounts-dataset

3) https://www.kaggle.com/datasets/krpurba/fakeauthentic-user-instagram
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Therefore, these models can be easily generalized and used to
detect fake accounts. For Purba’s dataset, the performances of
AB and GB were worse than the best results of Purba et al.
[5], although they are generally satisfactory. All performance
measurements were above 80% except for AB, which per-
formed poorly on Purba’s 4-class dataset. However, the preci-
sion of the GB on Purba’s 2-class dataset was better than that
of Purba’s RF. This means that the GB model demonstrates a
higher confidence level in predicting the positive class (fake
accounts), but it may potentially disregard some actual posi-
tive cases.

IV. DISCUSSION AND CONCLUSIONS

Individuals create fake accounts to express themselves on
social media, without revealing their identities. However, cre-
ating fake accounts can harm the reputation of individuals and
businesses, thereby decreasing genuine likes and followers.
Based on the test results of the model candidates for detecting
fake accounts, AB and GB exhibited the superior perfor-
mances, with an accuracy greater than 92%, a precision greater
than 93%, a recall greater than 90%, and an Fl-score greater
than 92%. These facts indicate that among the model candi-
dates tested, boosting ensemble models, such as AB and GB,
outperform other candidates; therefore, boosting techniques
are more suitable for fake account detection. However, to
detect fake accounts accurately and disregard genuine accounts,
naive Bayes is the best because it has a recall of 96%. When
the input features were tested for AB, all input features pro-
vided the best accuracy and precision, but using input features
with an importance score >0.08 provided the best recall. The
GB model performed well on the two other Instagram data-
sets. This indicates that fake Instagram accounts can be
detected effectively.
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