Cek Plagiarism Modular SoC
Paper

by Indar Sugiarto

Submission date: 14-Sep-2025 11:50PM (UTC+0700)
Submission ID: 2750414735

File name: Modular_design_SoC.pdf (3.53M)

Word count: 10508

Character count: 54824



Microprocessors and Microsystems 60 (2018) 53-64

ELSEVIER

Contents lists available at ScienceDirect

Microprocessors and Microsystems

HAREWARE
DESIGN

journal homepage: www.elsevier.com/locate/micpro

Modular design of a factor-graph-based inference engine on a )
System-On-Chip (SoC) i
Indar Sugiarto™*", Jérg Conradt*
“ Department of Electrical Engineering, Petra Christian University, Indonesia
" School of Computer Science, The University of Manchester, United Kingdom
© Neuroscientific System Theory, Technische Universitit Miinchen, Germany
ARTICLE INFO ABSTRACT

rds: Factor graphs are probabilistic graphical frameworks for modeling complex and dynamic systems. They can be

Keywor
Discrete factor graph used in a broad range of application domains, from machine learning and robotics, to signal processing and
Population cading digital communications. One important aspect that makes a factor graph very useful and very promising to be
System-on-Chip . applied widely is its inference mechanism that is suitable for performing a complex model-based reasoning.
Re-configurable computing However, its features have not fully explored and factor graphs are still used mainly as modeling tools that run
on standard computers. Whereas in real applications such as robotics, one needs a practical implmmmﬁ!:f
such a framework. In this paper, we describe the development of a factor-graph-based inference engine that
on a System-on-Chip (SoC). Running natively on a low level hardware, our factor graph engine delivers highest
performance for realtime applications. We designed the embedded architecture so that it conveys important
aspects such as modularity, scalability, flexibility and platform-friendly k. The d archil
has customizable levels of parallelism as well as re-configurable modules that are extensible to accommodate
large networks. We optimized the design to achieve high efficiency in terms of clock latency and resources
consumption. We have tested our design on Xilinx Zyng-7000 SoCs and the implementation result demonstrates
that the proposed framework can potentially be extended into a massively distributed probabilistic computing

engine.

1. Introduction

Probabilistic graphical models (PGMs) can be viewed as a unifica-
tion of graph theory with probability theory into a new formalism for
multivariate statistical modeling [1]. It provides a convenient way of
integrating perception and action as well as leaming and planning
which are basic requirements for almost all artificial intelligence (AL)
manifestations. This formalism can be characterized as a graph of re-
lations between the involved state variables (i.e., the inferred data) and
the observations (i.e., the evidence) [2.3]. In control systems and ro-
botics, PGMs are best suited for higher level control algorithms, al-
though it offers a convenient method for multi-level integration, from
low-level control to high-level rule-based planning in the domain of
relational statistics [4-6].

The graph in PGMs may be directed (e.g., a Bayesian or Belief
network), or undirected (i.e., generally known as a Markov random
field). Directed graphs are useful for expressing causal relationships
between random variables, whereas undirected graphs are better suited
to express soft constraints between random variables [7]. In robotics,

* Corresponding author
E-mail addresses: indi@petra.acid (L Sugiarto), conradt@tum.de (J. Conradt).

https://doi.org/10.1016 /].micpro.2018.04.002
Received 8 March 2016; Received in revised form 6 April 2018; Accepted 11 April 2018
Available online 12 April 2018

0141-9331/ © 2018 Elsevier B.V. All rights reserved.

for example, it is common to use a computer vision technique as a
means of gaining information about the state of the world, and to use
some form of Kalman filters to infer its own internal states to trigger the
robot motion. In this scenario, the undirected graph is the right model
for handling the vision processing, whereas the directed graph is the
right one for modeling the robot motion through some paths or tra-
jectories.

There is an increasing trend in this decade to merge/combine both
directed and undirected graphs into one unified formality. One of the
emerging models resulting from such a unification is called the factor
graph model. In general, a factor graph represents function’s factor-
izations of several random variables [8]. In its original form, it is an
undirected graphical model, but in its inference, it behaves in the same
way as a directed model. Because of this inheritance aspect, for a factor
graph that has an underlying functionality originating from a Bayesian
network, it is usually possible to use an inference mechanism such as
belief propagation (BP).

Factor graphs have attracted the attention of many researchers and
engineers in recent years because of the wide variety of algorithms that




I Sugiarto, J. Conrade

have been developed in Al, signal processing, and digital communica-
tions, can be expressed using factor graphs. These developments can be
derived as specific instances of the BP algorithm running on factor
graphs, including the forward/backward algorithm, the Viterbi algo-
rithm, the iterative “turbo” decoding algorithm, Pearl’s belief propa-
gation algorithm for Bayesian networks, the Kalman filter, and a certain
fast Fourier transform (FFT) algorithm [8-10].

Unfortunately, to our knowledge, all existing factor-graph-capable
frameworks are developed to run on standard personal computers (PCs)
[11,12]. This, in tum, will conceal the generality of factor graphs. To
extend the applicability of factor graphs and to provide practical tools
for real technical system applications such as in robotics, we propose an
implementation of belief propagation engine for factor graphs on
dedicated hardware. Such hardware will provide a convenient way to
harness parallelism to achieve high performance computation in low
power mode, which is a very important factor that determines the
successful operation of many robotic platforms.

In this paper, we focused on the exploration and development of a
system that works best with exact inference in a discrete form of factor
graphs. We are also aware of the trade-off between fidelity and gran-
ularity, usually expressed as a cost function, that rises naturally almost
in every digital machine involving discrete-event systems and that there
is no single optimal solution that can be applied for every situation
[13,14].

For the demonstration purpose, we use the Zyng-7020 from Xilinx
as our system-on-chip (SoC) platform, which is internally composed of
two tightly coupled sub-systems: the PS (processing system, i.e., mi-
croprocessor core) and the PL (programmable logic, i.e., FPGA fabric).
The PS sub-system consists of two ARM Cortex-9 processors and the PL
sub-system is equivalent to the FPGA Artix-7 from Xilinx. This SoC of-
fers flexibilities because of the fact that their FPGA resources can be
structured and organized to mimic the true parallelism in complex
computations. This attribute is very useful for performing intense
multiplication operations in a factor graph. We can effectively dis-
tribute the computation into concurrent calculations in every slice of
the FPGA in the SoC device. We refer to our factor graph framework on
an SoC as an “embedded factor graph”. To our knowledge, it is still
uncommon to see a factor graph in any embedded systems.

The novelty of this work is the exploration of the implementation of
probabilistic inference using message-passing-based methods for factor
graphs natively in low-level hardware. Such fundamental probabilistic
inference hardware, which takes into account the uncertainty and
randomness into its computational platform, will produce more pow-
erful, flexible and efficient building blocks for a more complex com-
putational intelligence machine. In summary, the major contributions
presented in this paper are as follows:

-

. Implementation of belief propagation for SoC-based factor graphs
that integrates both software-based control and real-time hardware-
based processing.

Introduction to a reconfigurable computing framework for general
PGMs. The factor graph’s core modules in the FPGA part are im-

[

Microprocessors and Microsystems 60 (2018) 53-64

2. Review of factor graphs and related work
2.1. On discrete factor graphs

Factor graphs using belief propagation (BP) are a fascinating topic
of research and some studies have already been conducted to explore
the many potential applications of such methods in specific fields, such
as in communications and signal processing [15], and control systems
[16]. Recently, this probabilistic graphical approach has attracted more
attentions from researchers who work in the field of machine learning
(ML) and cognitive intelligence [4,5,17,18].

BP is a common method for performing inference in PGMs. For
factor graphs, the algorithm called sum-product [8] resembles a similar
message-passing algorithm found in the original Bayesian network
proposed by Judea Pearl [19 . There are two types of messages that are
transmitted among nodes in a factor graph network: the message sent
by a variable node to a factor node (denoted as ji, . {x) and the mes-
sage sent by a factor node to a variable node (denoted as . +(x)).
These messages are computed based on the following equation:

I w0

F:A](X) =
hen(x)if} m

(2)

W X = n(f) is the set of arguments of the function f and ~ {x} is
the “not-sum” or summary indicating the variables that being summed
over. The flow of such messages as a propagation of nodes’ beliefs is
illustrated in Fig. 1.

To integrate the factor graph into the hardware level, we need to
determine how to discretize probabilistic values operated by the factor
graph. In the BP setting, such probabilistic values are treated as mes-
sages propagating through the factor graph network. In our work, we
discretize such messages using a population coding principle. In this
paradigm, a group of neurons are activated in a way such that they
produce neural responses with certain probabilistic distribution when
given stimuli [20-24]. The number of neurons reflects the number of
states (or cardinality) of discretized random variables involved in the
network.

A neuron may receive spikes from its interconnected neurons in the
previous layer because of incoming stimulus:

ST 8 80— ar
AN @)

~{xh yen(f)ix}

y,ﬂx):z[m 11 mwn]

x(i) =

Such a neuron may be characterized by certain tuning curves as its
activation function. One commonly used tuning curve in homogeneous
population codes is the Gaussian function:

1 ptsowg?

PN “

where x; is the ith neuronal activation level of the population, corre-

plemented as IPs that can be re-configured to acc various
requirements for research on PGMs.

Our design readily accommodates the requirements to support
technical systems with PGM-based cognitive capabilities.

w

This paper is organized as follows. After providing selected reviews
on existing factor graph implementations in Section 2, we describe our
development paradigm in Section 3. The paradigm provides guidance
on the development of our proposed embedded framework, which is
explained in detail in Section 4. In Section 5, we provide an analysis of
the implementation results. A thorough discussion about the overall
evaluation of our proposed methods is presented in Section 6. Finally,
we conclude our work and propose recommendations for future work.

ponding to the neuron i in which the relative position of the neuron to
the stimulus is represented by p. Fig. 2 shows an example of the

-
My x)

Fig. 1. lllustration of BP in a factor graph. The red arrow indicates a factor-to-
variable message expressed in (2), whereas the blue arrow indicates a variable-
to-factor message expressed in (1). Both messages take the same variable-x as
their (For interp ion of the to color in this figure le-
gend, the reader is referred to the web version of this article.)




I Sugiarto, J. Conrade

input stimulus

El /\\
: Recoptive Field

i _

3

35 4 &5 6 7 8 8§ d0 11

Neuron index

Fig. 2. The Gaussian tuning curves to represent neuronal activation levels in a
homogeneous population comprising of 11 neurons. When an input stimulus
arrives at the receptive field (shown as a blue-dashed line), each neuron fires.
The measured activation levels from all neurons (along the blue-dashed line)
are then combined to produce the overall probability distribution which is
depicted as a discrete probability mass function. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the web version
of this article.)

homogeneous tuning curves and illustrates how a real value input is
encoded in a population code.

More detailed information about how we implement population
codes for factor graphs can be found in [25]. In our experience, the
precision of the factor graph inference result mainly depends on the
number of neuren used to encode the messages. This demonstrates that
our population code implementation result agrees with the common
consensus in computational neuroscience; that is, the population size
can scale exponentially with the number of neurons to accurately es-
timate the underlying likelihcod function [26].

2.2. Related works

Many PGM tools that are available as software packages were ori-
ginally designed to suit one of the forms of PGMs, either directed or
undirected models [11]. Recently, some of those software packages also
include factor graphs in their libraries and use a factor graph as an
inference engine. For example, a software package called GTSAM
mainly uses the elimination algorithm to make an inference [27,28]. A
similar mechanism is also provided by the BNT software in it's factor
graph library [11]. Another software package called libDAI implements
various inference methods including a message-passing algorithm [29].
Unfortunately, those software packages and many other libraries im-
plement factor graphs only for PCs and serve as a simulation platform
for studying certain aspects of Al or ML. Hence, they cannot be used
directly in real technical applications such as robotics. Furthermore,
none of them implement population codes for encoding message values
to run through a factor graph network. Our factor graph framework, in
contrast, is readily targeting real-time applications that extend a tech-
nical system into a dynamic system with cognitive capabilities [30].

With regard to the discretization strategy, similar research has also
been conducted by Mansinghka, who created a stochastic digital circuit
using FPGA to build fault-tolerant machines for sampling, which en-
ables Markov chain Monte Carlo (MCMC) to run effectively [31]. The
main difference between Mansinghka’s work and ours is that we im-
plement the discretization for continuous variables using a population
coding principle developed by the computational neurcscience com-
munity. On the other hand, Manshinghka concentrates on the sampling
algorithm from statistics and provides little details on the higher level
of intelligence abstraction. Nevertheless, both approaches work in the

Microprocessors and Microsystems 60 (2018) 53-64

discrete domain because working with the propagation of continuous
variable distributions may result in multidimensional integration which
leads to intractable operations, especially for embedded systems with
limited resources [32].

One underlying source of motivation for our work is to achieve high
performance computing through parallelism. Many researchers have
already proposed methods to improve the performance of graphical
model computations by harnessing parallelism in modern computers
[12,33-36]. Additionally, although not so surprisingly, the trend of
exploiting graphics processing units (GPUs) has attracted many re-
searchers to start deploying their PGMs on GPUs. Silberstein et al. first
demonstrated the potential of a GPU computation that impacts the
performance of Bayesian networks for statistical fitting tasks using a BP
approach [37]. Factor graphs have also already been implemented in a
GPU [38,39]. However, to our knowledge, no investigations have yet
been conducted on factor graphs using any dedicated hardware.

We are also aware that there is an effort to exploit Bayesian net-
works using factor graphs in a distributed computing framework [40].
They use libDAI [29] to implement discrete factor graphs and speed up
the computation by using a parallelism framework called MapReduce
[41]. Unfortunately, we could not test their method on a discrete factor
graph using population code because libDAI does not support popula-
tion code techniques.

There is also an attempt to implement BP that is inspired by bio-
physical properties of neuronal networks. Work by Andreas Steimer (in
[42]) focuses on different levels of abstraction for implementing BP in
neural substrates. His method was implemented using Liquid-State
Machines (LSMs) and he applied it to Forney-style factor graphs. Our
approach, on the other hand, uses BP on ordinary, but arbitrary, factor
graphs with tuning-curve-based population coding. Furthermore,
Steimer developed an abstract idea of hardware implementation called
Interspike-Intervals-based processor; while we implemented our factor
graph in real SoC hardware.

3. Embedded framework development

Working with SoCs entails two perspectives. On one hand, SoCs
offer extensive system level integration and flexibility; on the other
hand, these devices impose a new challenge to the integration of both
concurrent and sequential programming paradigms. Because of these
different paradigms, we cannot directly implement a PC-based factor
graph program into an SoC. We need to implement the distributed
computing mechanism in a very low hardware level, down to the signal
and bus topology that must be designed and implemented within the
chip itself.

Also, developing an SoC-based embedded system always involves at
least two different programming platforms: the software platform for
the central processing unit and the software platform for the pro-
grammable logic (FPGA) unit. In this work, all of the main cores of our
embedded factor graph were developed using Vivado-HLS (High Level
Synthesis), which transforms a C, C+ + or SystemC design specification
into a Register Transfer Level (RTL) implementation which in turn can
be synthesized into the FPGA. Only the gluelogic components and
small but frequently used non-behavior-based logic blocks are written
purely in VHDL to decrease total latency and achieve high area opti-
mization. Vivado HLS can also generate the drivers for an embedded
Linux kernel running on the PS part of the SoC. The diagram in Fig. 3
shows the work-flow of our SoC-based factor graph framework.

3.1. Design considerations
Deploying programs in dedicated hardware requires different

treatments and explicit considerations. Our framework was developed
with the following criteria.




I Sugiarto, J. Conrade

®» -
':' RTL E. Synthesize
! | synthesize )
° o
° ]
g G 2 [Mapping &
S} [ Generation > Routing
Device FPGA
Driver Bitstream |
v ‘ TE7020
o F5aL Ubaot Runvia |4 2
0} | Generation Generation [TAG/SDcard
x
c
=i [Petalinux
x BSP

Petalinux-SDK

Fig. 3. The overall design flow for creating the framework of SoC-based factor
graph engine. In this diagram, the abbreviations mean: SDK =Software
Development Kit, BSP= Board Support Package, FSBL = First Stage Boot Loader,
RTL=Register Transfer Level, IPI=1Intellectual Property Integrator.

Scalability. The framework should be able to work with a variable
number of chips, allowing us to conveniently resize the networks later.

Cross-boundary. The framework should be able to seamlessly connect
the separated elements of a factor graph, ie., inter-chips and intra-
chips.

Modularity. Having an environment that offers a high degree of
flexibility, the modules in the SoC-based embedded factor graph
should be flexible enough to be reconfigured or remapped into a new,
possibly denser, SoC chip.

Flexibility. The framework should be flexible enough to be reconfigured
for many general purpose applications without too many modifications
to the framewark.

In addition to the aforementioned hardware-criented paradigms,
our overall framework also includes application programs running on a
host-PC. For example, we developed a robot controller program based
on factor graphs, which utilizes a graphical user interface to facilitate
an interaction between the human operator and the robot, as described
in [30]. Hence, we added the following criteria for our design con-
siderations.

Continuity. The framework should be able to be used in a simple
transitional step from its original PC-based framework. This means that
when we have finished simulating a factor graph network on a PC
(using our PC-based framework), the network should be able to be
translated into the SoC-based embedded version seamlessly. Minor
modifications may be required, but it should not be a burden to the
application developers. To fulfil this aspect, we put the BP scheduler to
run on the ARM-core instead of the FPGA part; hence, making the
porting from PC to SoC easier for user.

Platform-friendly. The modules should be flexible enough to be re-
synthesized in the new version of the development environment, both
for the FPGA’s bitstream generation and the Linux kernel
reconfiguration. This co-development paradigm requires a careful
design of both hardware and software for the resulting embedded

system to work efficiently.

Microprocessors and Microsystems 60 (2018) 53-64
3.2. Optimization strategy

The optimization strategies that we apply in our design are closely
related to two issues: the numerical accuracy and the speed-area trade-
off.

With regard to numerical accuracy, we decided to use single pre-
cision floating-point rather than fixed-point; this is because fixed-point
arithmetic introduces difficulties for probabilistic computations. This is
often the case when a factor graph is used in an application that mixes a
wide range of real-value numbers with probability values. In such cases,
it is very difficult to compromise between large real-value numbers
(greater than 100.0) and very low probability values (less than
0.000001) using fixed-point arithmetic. We argue that floatdng-point is
the best choice for the implementation of our factor graph in the FPGA,
because it can represent real numbers with a much wider dynamic
range, which allows the data to be used through long sequences of
calculations (e.g., in a BP computation).

Fortunately, Vivado-HLS provides a convenient way to use floating-
point arithmetic in a C-style code. However, even with the abundance
of logic resources in Zyng-7000, we still need to be cautious when
implementing floating-point operations. This is because floating-point
numbers inherently contain two main artifacts: accumulation of
rounding errors and improper handling of subnormals [43]. In our
implementation, we carefully inspected the synthesis report produced
by the FPGA synthesizer and looked for mismatches and artifacts.

Regarding the trade-off between area and speed optimization, we
are aware that there is no rule or theory on how the optimization can be
best achieved with respect to the defined area and desired speed. This is
because not all SoC/FPGA chips share the same internal supporting
components (e.g., distributed RAM and DSP blocks). Hence, the re-
implementation from one chip to another (from different families) will
always produce different results. In this work, however, we placed an
emphasize on speed over area optimization. The argument is that the
optimization of speed is a more generic issue than area optimization for
at least two reasons:

-

. In general, the basic motivation for using dedicated hardware is to
speed up the computation process. We often assume that the chip
vendor will create/produce chips with all of the necessary elemental
units

Many of the optimization options provided by the synthesizer
vendor are more related to the speed issue, which the system de-
signer can play with.

I

It turns out that many parts in our algorithm require accesses to
memory units in the form of an array. Our optimization strategy for
arrays includes reshaping and partitioning [44,45]. In addition to this
strategy, we also consider the utilization ratio of look-up tables (LUTs))
and block RAMs (BRAMs). Although it is possible to use external
memory, we prefer to avoid this method, because external memory
access is an expensive task in terms of allocating FPGA resources.
Controlling external memory requires explicit routing strategies to
match the interfacing protocols and timing constraints required by the
memory hardware [46-48]. In our design, the use of BRAMs is max-
imized as long as latency does not pose any issues, because the locations
of BRAM units within the chip are usually sparse.

With regard to speed optimization, our approach is mainly based on
the idea of exploiting the “unbounded” parallelism paradigm [49,50].
Our design was focused more on the function-parallelism rather than on
data-parallelism. We achieved this by combining both unrolling and
pipeline mechanisms, which means that parallelism happens in a loop
(statically-scheduled instruction-level parallelism) and between loops
(dynamic task-level parallelism). Fig. 4 shows an example of how the
unrolling and pipelining are employed by using Vivado HLS directives.
More about the use of unrolling and pipelining in the module of our
embedded factor graph are described in the next section.




I Sugiarto, J. Conrade

#define NVAR 3
#deiine CARD 2
#deline N 2
#deiine NPARAM (NVAR*CARD)
int CARDLIST[NVAR] = {CARD};
iloat msg_in[CARD];

float msg_out[CARD];

iloat myFactor{ NPARAM];

/I factor's scope
/{ variables' cardinality

extern int varldx;
void factorProduct()

inti, j;
for (j=0; j<CARD; j++}{
#pragma HLS unroll factor=N
for (i=0; i<NPARAM; i++) {
#pragma HLS PIPELINE
if(inScope(),i,varldx))
msg_out[j] = msg_in[j] * myFactor{i];

+

int inScopelint j, int i, int idx)
int i, sINVAR] = {1};
for (i=1; i<NVAR; i++)

sli] = CARD * s[i-1];
return (i/s[j]) % CARDLIST[idx])
}

Fig. 4. A snippet of a code that shows how unrolling and pipelining are used in
our embedded factor graph.

These unrolling and pipelining require more resources in exchange
for increases in speed. We use two metrics to measure the efficiency of
our optimization approach: clock latency (which indicates the success
of our speed-based optimization) and resource consumption (which
measures how well our area-based optimization has been carried out by
the synthesizer).

4. Hardware architecture design

In this work, we aimed to optimize the embedded factor graph by
exploiting all available resources in the FPGA. The factor graph in-
ference engine was implemented completely in the FPGA part of the
SoC, while the scheduling for the belief propagation (BP) is kept run-
ning in the ARM core in the SoC. The reason behind this strategy is that,
we want to explore the challenge of cyclic factor graph in the future. It
is known that cyclic factor graphs are very challenging since there is not
guarantee that they will converge. Hence, we make our SoC-based
factor graph engine widely open for researches in fundamental prob-
abilistic graphical model.

4.1. Tested hardware

As a test case, our work was implemented on a Zyng-7000 from
Xilinx Inc. The SoC has two parts: a processing system (PS), which
contains one or more microprocessors, and a progr: able logic (PL)
component, which is normally an FPGA. We used 2 tailored module
TE0720-2IF produced by Trenz-Electronics GmbH. It contains an SoC
XC7Z020 with the following features: dual core ARM Cortex-A9 mi-
croprocessor, and an Artix-7 FPGA with 85K logic cells and 560 KB
BlockRAM respectively. It also provides a large number of configurable
1/0s in its form factor of 5 x 4 cm® which is suitable for embedded
system applications such as mobile robotics.

Fig. 5 shows the general overview of our design partitioning. As we
explain in Section 5 that the SoC XC7Z020 has limited resources to
implement the full network with high resolution, we also simulate the

Microprocessors and Microsystems 60 (2018) 53-64

Zynq SoC

PS-part (ARM-caore)

Embedded Linux - 0S5
Factor Graph
Scheduler
PL-part (FPGA)
Factar Graph Inference Engine
{running message-passing on nodes)

Fig. 5. General overview and mapping of the modular design of our SoC-based
factor graph engine. The FPGA part of the SoC works as the main component for
the factor graph inference engine, whereas the microprocessor part of the SoC
works as a supervisory controller and provides interface to external system.

p IO
&=

Application
(praides inteace
0 PC andior
axtemal systems]

Table 1
Summary of important resources of the FPGAs inside the SoC XC7Z020 and
XC7Z030.

XC72020 XC72030
Logic Cells 85K 125K
Look-Up Tables (LUTs) 53,200 78,600
Flip-Flop (FF) 106,400 157,200
BRAM 4,9Mb 9,3Mb
DSP4BE (Slices) 220 400

network using SoC XC7Z030 to gain some insight on the performance of
our design. We used SoC XC7Z030 as an alternative simulation because
this SoC is still supported by the synthesizer Vivado-Webpack from
Xilinx. Table 1 summarizes the internal FPGA resources of both SoCs
XC7Z020 and XC7Z030. The XC7Z2020 is equipped with Artix FPGA,
whereas the XC7Z030 is equipped with Kintex FPGA.

4.2. Modular design of factor graph engine

To achieve real-time performance, we developed a fully embedded
factor graph framework. In this mode, we maximized the exploitation
of the FPGA’s abundance of logic fabrics and its routing channels. The
routing management is the key to successfully implementing an effi-
cient embedded factor graph. Inside the FPGA chip, there are numerous
signal lines that interconnect the logic blocks within the chip. These
lines can be arranged and managed to create buses, which can later be
customized for our embedded factor graph. In our work, we used the
AXI protocol to encapsulate the buses that communicate the factor
graph messages between the PS and PL components.

We identified the following core modules that are necessary to build
a complete discrete factor graph based on population coding: factor and
variable nodes, a message encoder/decoder, and a scheduler. In this
work, we regarded the factor/variable node and the message encoder/
decoder as the most generic parts of the system, which could be used in
almost any scenario, whereas the scheduler is a flexible module, which
can be tailored to support the application scenario. For some applica-
tions where the network has loops, the scheduler will play an important
role. Conceptually, we can implement many scheduling strategies in the
scheduler (synchronous, asynchronous, residual, etc.). However, we
have only tested the asynchronous option and defined it as the default
scheduling strategy for tree-like networks.

Factor and variable node controller

Our implementation of factor and variable node modules follows
the same mechanism described in [25]. We optimized the module with
the following default setting: unrolled into N instances (where N is the
variable’s cardinality) and pipelined with cne initiation interval (i.e.,
fully pipelined without resource sharing for operators). The unrolling




I Sugiarto, J. Conrade

Local Function

cho_in '—"’ #" ch2_out
FNode
cho_out S [ chzin

chl_out

£
o
=
]

(a) Functional Symbol
FNode

setFactor D—

reset
MsglniD

. D oron

scheduler

(b) IP Symbol

Fig. 6. FNode symbol representation.

optimization is done by creating multiple independent operations of
for-loops rather than a single collection of operations, whereas pipe-
lining is used to increase throughput by performing concurrent opera-
tions.

The basic algorithm for the factor and the variable node controllers
is the same because both employ the same message-passing algorithm
in Egs. (1) and (2). However, they differ only in the internal factor
product operation, which only happens with the factor node. We first
created the factor node controller and then decreased its operation (i.e.,
removed the internal factor component) to create the variable node
controller.

Fig. 6a shows the functional symbol of a factor node controller
(marked with the name FNode). It represents a three-channel bidirec-
tional module that can connect up to three variable nodes. Fig. 6b
shows the lting IP-block repr already included in the
Xilinx Vivado IP repository after its successful synthesis. The internal
factor’s function can be supplemented in the controller using a simple
call function, which is already encapsulated in the common AXI inter-
face together with the main function of the module. The internal
structure of this FNode module is shown in Fig. 7.

Within the FNode module, there are four sub-modules: setFactor,
UpdateFMsg, NodeMsglO, and LocalFactor. Apart from these four sub-
modules, the FNode module requires several instances of BRAMs
(which could also be replaced with distributed memory using LUTs) to
facilitate data array processing. The sub-modules setFactor and
LocalFactor work together and are responsible for managing the in-
ternal factor’s function that corresponds with the factor node. The value
of this internal factor's function can be set by using a standard call
function, which is already available in the device driver to make it
convenient when using the embedded Linux running in the PS com-
ponent of the SoC. The sub-module NodeMsglO is responsible for re-
ceiving and delivering messages from/to external variable nodes. It
contains three bidirectional channels and has a small table which tracks
the messages’ exchange during the transaction. Whenever a new mes-
sage arrives, this table will be updated and the sub-module UpdateFMsg

Microprocessors and Microsystems 60 (2018) 53-64

Flode

L]
setractor e
reser( e
I RCPTe-PToRctoN
Upsateriis 0
MsginiD] =it
ok ==t

scheduler 2t

‘SPAFaciorlade (Pre Produciion)

Fig. 7. Internal block diagram of module FNode shown in Fig. 6b.

will be notified when incoming messages are delivered and ready to be
used to compute the output message. The sub-module UpdateFMsg is
the core module where we implemented the sum-product algorithm.
This sub-module also has an internal memory to save old messages,
which can be used during the training with an MLE or EM algorithm in
a message-passing scenario for example. This sub-module also has
scheduler input signals that can be used to control the scheduling of the
message-passing exclusively on this FNode instance. By default, we
implemented asynchronous scheduling, which is the standard sche-
duling strategy for an acyclic factor graph.

From the FNode module, we derived the VNode module which is
responsible for handling variable nodes in factor graphs. In principle,
the VNode module works in a similar way as the FNode module, but
without the functionality to set up an internal function. The functional
symbol and the IP symbol of the VNode module are shown in Fig. 8,
whereas its internal structure is shown in Fig. 9.

There is one more input signal that is present in both FNode and
VNode modules and is responsible for assigning an ID to each message.
This input signal is called MsgIn ID and is preserved for future im-
provement of our embedded factor graph. Using this signal, the node
can identify if this message is the same message circulating in the
network or if it is a new message. This mechanism is useful to resolve
cycling errors in a cyclic factor graph. However, we did not fully ex-
plore this mechanism yet and simply set its counter to 0; this means that
all incoming messages are always assumed to be new. Consequently, if
our embedded factor graph is going to be used to implement a cyclic
network, then the software running in the PS must check manually to
determine if there is a cycling error in the network.

Message encoder and decoder

We implemented a special module, called NodelO, that is re-
sponsible for encoding and decoding messages. This module imple-
ments our population coding algorithm. With regard to the structural
complexity of the design, this module is simpler than the FNode or
VNode modules and contains only a single bidirectional channel. The
functional and the IP symbols of this NodelO module are shown in
Fig. 10.

This module should only be connected to a VNode module because
it represents the input factor of the corresponding variable node. Once
this module is connected to a VNode, we can send a value to the re-
spective variable node via the kernel’s function getStates (). This
module then encodes the value into a probabilistic vector and sends it
to the variable node via its output channel. Afterward, that vector will
be propagated in the network as a message. At some point in time, the




I Sugiarto, J. Conrade

cho_in T3] ‘—', ch2_out
VNode
chi_out — = chz.in

£
-
=
=

(a) Functional Symbol
VNode

chl_out

—12 cho_in
|l ch0_out

MsglnID

scheduler “_D chi_in
reset |l——> ch1_out
ok L chzin
[——2> ch2_out
(b) IP Symbol
Fig. 8. VNode symbol representation.
Msginio]y—2ias
k=]
eneduler
reset[

Updatahdsg [Prs-Préduction

"NodebMiglO (Fro Prosction)

Fig. 9. Internal block diagram of module VNode shown in Fig. 8b.

NodelO module might receive a message from its variable node. When a
new message arrives, this module starts decoding the message and
when it is completed, it triggers an interrupt to inform the hardware
driver that a new value is ready to be picked up. The program in the PS
then able to retrieve this value by calling the getRealval () function
of the kernel.

The sending of a value to this NodelO module will trigger the BP
automatically. This message-passing circulation will stop in a definite
time if the network is an acyclic one. Reading a message arriving at this
NodelO corresponds to the reading of the marginal value of the corre-
sponding variable node. There is no guarantee, however, that the
message circulation will converge (or not) in a cyclic network. To stop
the circulation, the software needs to inform all the nodes in the net-
work by sending a value of -1 to the scheduler of each node.

Example network

Here, we provide an example of how to use our embedded factor
graph. An example of a network, shown in Fig. 11(a), has five variable
nodes, two factor nodes and four input nodes. This network has been
used to control the omnidirectional mobile robot in our previous work

Microprocessors and Microsystems 60 (2018) 53-64

NodelO

value_in_out g

(a) Functional Symbol
NodelO_0

AXI-PopCodelO (Pre-Production)

(b) IP Symbol

Fig. 10. Node-10 symbol representation.

by kinematic mapping from robot’s body velocity to its wheels velo-
city [30]. Here variables A, B, and C represent robot velocity in Xand Y
directions as well as its rotational velocity respectively, whereas vari-
able D represent a wheel velocity of the robot.

Assuming that we have learned the factor’s parameters, we can send
those factor’s parameters to the factors fapy and fopm by calling
setFactor() through the kemel’s driver prior to running the BP on
the network. We translated the network in Fig. 11(a) into the symbolic
diagram presented in Fig. 11(b).

As seen in Fig. 11, building the factor graph network using our
framework is straightforward: given a structural description of a net-
work, we then create its symbolic representation. The next step is to
draw such a diagram in the Vivado IPI editor by fetching all of the
corresponding IP blocks from the repository and connecting them.

5. Experimental results

We evaluate the modules used in our design in terms of their clock’s
latency characteristics, as well as their consumption of FPGA resources.
It is important to note that the optimization using the pipeline me-
chanism works only with perfect or semi-perfect loops; hence, we need
to specify the cardinality of the variables in the source code before
synthesizing it.

We compare the overall estimated performance on two scenarios:
fully optimized and unoptimized designs. For the fully optimized de-
sign, both unrolling and pipeline were maximized. Fig. 12 shows the
latency characteristics of those modules for both scenarios.

In general, it is obvious that the optimized design that involve both
unrolling and pipelining will reduce the clock latency; hence, it will
speed-up the computation. However, the area coverage (i.e., the re-
source consumption) will be increased as its consequence.

The chart in Fig. 12 is obtained by using cardinality value of five;
hence, the design with optimization is unrolled five times. We observe
that we gained the speed-up at about six to seven times instead of five
since we also employ one stage pipeline on the design.

For the NodelO module, the encoder section generally has a higher
profile than the decoder section. This is not surprising because in the
encoder part, the sampling of each tuning curve takes more time and
resources due to the use of an exponential function to compute the
Gaussian distribution. Compared with the other modules (FNode and
VNode), the clock latency is much lower, revealing the fact that the




I Sugiarto, J. Conrade

Microprocessors and Microsystems 60 (2018) 53-64

Table 2
Summary of FPGA’s resources consumption of the main modules in our embedded factor graph with full ¢ (unrolling and pipelining)
NodelO FNode VNode
Encoder Decoder z MsglO Factor Product Sum z Msglo Factor Product Sum z
BRAM (%) 5 5 10 2 14 12 28 2 12 10 24
DSP48E (%) 7 3 10 o 2 2 4 o 2 4
FF (%) 4 3 7 1 17 10 28 1 14 10 29
LUT (%) 12 3 15 1 9 6 16 1 4 12

encoding and decoding of a message will not create a bottleneck for the
entire system. For the FNode and VNode modules, their latencies did
not differ much because those modules essentially originate from the
same source. With an average clock latency of 160529, it takes about
0.24 ms for the node to compute an output message when we run the
system with a clock frequency of 667 MHz.

Using unrolling and pipelining on the design will increase the speed
operation, but they also increase the resource consumption. We mea-
sure the FPGA resource utilization on the following components: Look-
up Tables (LUTs), Flip-flops (FFs), Block RAMs (BRAMs), and DSP Slices
(DSPs). These four components are the major resources that will be
utilized in order to implement any functions on the FPGA. Hence,
measuring the utilization on these components will inform us how ef-
ficient our design is synthesized. We measure resource utilization on
both scenarios: without optimization and with optimization (unrolling
plus pipelining).

Comparing the usage of FPGA resources (BRAMs, DSPs, FFs, and
LUTs), the FNode and VNode modules still show similar characteristics.
For the optimized design with five states per node, the NodelO module
consumes 10% BRAMs, 7% FFs, and 15% LUTs. Table 2 shows the
optimized design using five states for the variable’s cardinality.

For the network shown in Fig. 11 with four states for variables’
cardinality, the NodelO modules consumes 25% BRAMs, 14% FFs, and
37% LUTs altogether. The FNode modules consumes 36% BRAMSs, 36%
FFs, and 22% LUTs altogether. The VNode modules consumes 39%
BRAMs, 20% FFs, and 36% LUTs altogether. This configuration is the
maximum setting that can be achieved using our hardware. Fig. 13a
shows the floorplan of the implementation result with this maximum
configuration.

If we increase the cardinality to be 5, then we get the following
result: the NodelO modules consumes 40% BRAMs, 21% FFs, and 60%
LUTs; the FNode modules consumes 56% BRAMSs, 56% FFs, and 32%
LUTs; and the VNode modules consumes 80% BRAMSs, 20% FFs, and
60% LUTs. This excessive amount of resource consumption could not be
synthesized with our current hardware (TE0720 with an SoC XC7Z020).
Hence, we simulated the network using a denser SoC chip such as
XC7Z030. Fig. 13b shows the floorplan of the implementation with five
states for variables’ cardinality. It can be seen that there are still plenty
of spaces left that can be used for extension. Using denser SoC
XC7Z030, we could synthesize modules with cardinality up to 10.
However, we could not use high number of unrolling factor. In our
design, the maximum unrolling factor is 7 in order to achieve cardin-
ality up to 10.

Fig. 11. An example of how to construct a factor graph network using core
modules of our factor graph framework. (a) The original network consists of
two factor nodes, five variable nodes, and four [0s. (b) The network in (a) is re-
constructed using the core elements of our factor graph framework and later
can be implemented in the FPGA.

The second approach in our design is conducted by using a simple
module design (without unrolling and pipeline optimization). Table 3
summarizes the synthesis result for the design with five states for
variable’s cardinality.

Comparing Table 3 to Table 2, we can observe that our unoptimized
design requires fewer FPGA resources. With this setting, we can im-
plement the network shown in Fig. 11 on our hardware TE0O7 20 without
any problem. Fig. 14 shows the floorplan of this design. Comparing to
the Fig. 13a for the same network but with a bit higher cardinality (five
states rather than four states in this case), the unoptimized design yields
area coverage about 75% fewer than the optimized design.

For five states per node, the total amount of resources used by the
synthesized network are as follows. NodelO modules require 24%
BRAMs, 8% FFs, and 16% LUTs. The total amount of resources used by
the FNode modules were: 22% BRAMSs, 12% FFs, and 8% LUTs. The
total amount of resources used by the VNode modules were: 40%
BRAMSs, 25% FFs, and 15%. Hence, to implement the network in Fig. 11
using SoC XC7Z020 with five states for cardinality, it requires a com-
bination of 86% BRAMsS, 45% FFs, and 39% LUTs. These can fit into our
small density SoC, but with additional delay of about 3 ms for the
network to generate the output message.

To test the speed-up gain for having such a full optimization, we ran
the belief propagation using the network shown in Fig. 11 on two de-
signs: the optimized version and the unoptimized version. The result is
shown in Fig. 15. The performance on the SoC XC7Z020 was measured

Table 3
Summary of FPGA resource ion without optimization ( lling nor pipelining) for the design that uses only five states for each variable’s cardinality. The
report was generated for SoC XC72020.
Nodel0 FNode VNode
Encoder Decoder = MsglO Factor Product Sum = MsglO Factor Product Sum =
BRAM (%) 3 3 6 1 5 5 1 1 5 4 10
DSP4BE (%) 2 1 3 0 1 1 2 0 1 1 2
FF (%) 1 1 2 0 4 2 6 ] 3 2 5
LUT (%) 3 1 4 1 2 1 4 1 1 1 3




I Sugiarto, J. Conrade

uOptimized = Unoptimized
1400K

1200K 175267
1000K
BOOK

BOOK

Clock Latency (clk)

NodelO Fnode
Modules

Fig. 12. Clock latency (in number of clocks) of three main modules.

in real-time, whereas the performance on the SoC XC7Z030 was esti-
mated. In order to estimate the performance of the factor graph as if it
ran on a real XC7Z030, we compared the latency of each module when
they were synthesized for both XC72020 and XC7Z030. The latency
values were aggregated according to the number of modules in-
stantiated in the network. We then ran a program under Petalinux on
TE7020 that utilized the network, and measured the execution time of
the program until it produced the output. By using these values, we
performed a regression to estimate how long it will take if the same
network run on a XC7Z030 device.

Fig. 15a indicates that our TE0720 hardware limits the capability of
our design to be synthesized with full optimization options. Up to four
states for the cardinality is synthesizable for the network shown in
Fig. 11. However, running the network without full optimization is still
acceptable in our case because the actual robot that will be controlled
by our hardware usually runs at much slower speed. The sensory sys-
tems of the robot in [30] are sampled within 100ms interval; hence, in
this circumstance, our unoptimized design will work properly even with
high number of states (i.e., 10 states).

From Fig. 15b, we can observe that the optimized version can give

(a)

Microprocessors and Microsystems 60 (2018) 53-64

Fig. 14. Floorplan view of the design without optimization for the network
shown in Fig. 11. This was implemented on SoC XC7Z020, and we used car-
dinality value of five for the network.

speed-up gain up to five times for the network with cardinality up to
seven states. Afterwards, the speed-up gain remains to be constant at
about three times. This happens because we used a fix number for
unrolling factor, which is 7. Beyond this number, the network could not
be synthesized on SoC XC7Z030. We believe that if we used denser SoC
(such as XC7Z045 or XC7Z100), then we can increase the unrolling
factor again, which will result in increasing speed-up gain accordingly.
With these results, we are convinced that our proposed factor graph
engine has achieved its goal. Furthermore, it opens the possibility to be
extended into a massively distributed probabilistic computing engine.

(b)

Fig. 13. (a)Floorplan view for the design using optimization with four states per node implemented on SoC XC7Z020. (b)Floorplan view for the design using
optimization with five states per node implemented on SoC XC7Z030. Using higher density SoC allows us to achieve greater resolution.




I Sugiarto, J. Conrade

25
- A213
2 20 /
£ .
=3 /
[} /
.§ 15 ,/’145
o e
it
e 10
@
&
£ ° 27 =P i
0
2 3 4 5
Cardinality
-Unoptimized Optimized

(2)

483

W W & B
S o 0 o
@

r
Y
&
i

Py
a o

Inference Time (ms)
- ]
o o

5 6 7 8 9 10
Cardinality

—+—Unoptimized -=-Optimized

(b)
Fig. 15. Runtime performance of the network shown in Fig. 11 using two dif-
ferent design 1 and an ized impl it
(a) Real implementation result on XC7Z020. (b) Simulation result using
XC7Z030.

ions: an opti

6. Discussion

In this paper, we proposed the construction of a full factor graph
inference engine as a part of embedded factor graph framework running
natively on the FPGA part of an SoC. From the implementation result,
we observed that implementing the whole factor graph nodes on the
FPGA is a resource-intensive approach. Even with low variable car-
dinality and without optimization, it almost consumes all of the FPGA’s
main resources. Furthermore, the trade-off between area and speed
optimization is a really challenging choice. Even though this burden
can be easily overcome by employing higher density SoC (or FPGA), we
prefer to find a practical solution using our existing SoC platform.

In our hardware experiment, we can only specified up to four states
as the default variable’s cardinal value for the design that include full
optimization (both unrolling and pipelining are on). This cardinal value
is the highest value we can achieve with TE0720-2IF hardware because
of the limited resources of the XC7Z020. For evaluation purpose, we
simulated and synthesized our design also for XC7Z030. This was to

Microprocessors and Microsystems 60 (2018) 53-64

prove that our design is scalable and that high resolution is easily
achievable using higher density SoC. Using XC7Z030, we can have re-
solution up to 10 states for each variable; this resolution is high enough
to achieve high precision control for mobile robot platform used in
[30].

In our design, we did not use external memory for storing messages,
rather we simply maximize the utilization of the existing BRAMs and
LUTs. The main reason for this choice is that accessing the external
memory independently requires more resources, which in turn will not
leave enough resources for the factor graph modules themselves.
Controlling external memory needs explicit routing strategies in order
to match the interfacing protocols and timing constrains required by the
memory hardware. If we rely on the PS for intermediating between the
FPGA and the external memory chips, then we have to implement the
DMA protocol. Unfortunately, this DMA mechanism (using AXI-DMA IP
in the Vivado library) is not a gooed choice for our current hardware
because it consumes a considerable amount of FPGA resources.

To achieve higher scalability and adaptablity, the following ap-
proaches can be applied. (1) The NodelO module can be modified such
that one instance of this module will be used by all nodes in the net-
work. A gating mechanism to determine which node the encoded
message will be delivered to could be used to incorporate this approach.
Of course, a new delay effect will be introduced to the system, but we
can ignore it in a larger network because the total delay will be
dominated by delays in the message-passing computation. (2) There are
nodes without intense computation in its microarchitecture, especially
for second order variable nodes. Therefore, it is beneficial if we do not
create a complete working node by deriving it from the FNode module.
Rather, we can create a simple message forwarding module. With this
approach, we will have different modules for variable nodes; the choice
of using a specific module depends on the degree of the corresponding
variable. (3) The optimization strategy can be set to a moderate level to
maintain a balance between the area and the speed.

In this paper, we present the design only using a single SoC system.
However, we have laid a foundation to create more complex systems by
providing interconnection and interface between modules that run on
different chips. This will be our future work, where we want to have a
massive distributed factor graph engine that spans across multiple SoC
chips.

7. Conclusions

Bringing a high abstraction level concept such as factor graphs
down to a hardware level is a fascinating but challenging task. In this
paper, we described our work on developing an embedded factor graph
framework that is implementable on an SoC. Initially, we started de-
veloping our approach by utilizing the FPGA in the SoC only as an
accelerator for a factor graph framework that runs on the ARM pro-
cessor of the SoC. As the accelerator, the FPGA is responsible for
transforming the sequential nature of the sum-product algorithm into a
parallel fashion. We continued exploring the framework by extending it
into a more complex design that maximized the use of the FPGA re-
sources. Using this fully embedded platform, the entire factor graph can
run on the FPGA component of the SoC. To measure the effectiveness of
our design, we used two metrics: clock latency and resource con-
sumption. From the implementation of our approach, we gained some
insights about the nature of the trade-off between speed-and-area op-
timization for our factor graph. Although our approach requires ex-
tensive FPGA resources, its architectural design matches the general
implementation of a factor graph; hence, it is very flexible and may be
extended for a larger factor graph network. From the implementation
and experimental results, our approach is proven to be a flexible design
with high customizability and impressive performance. With these re-
sults, we are confident that we have already built an important fun-
damental framewark for a powerful embedded factor graph that opens
many possibiliies for further exploration. We envision future




I Sugiarto, J. Conrade

applications of our embedded factor graph in the domain of cognitive
intelligence, especially in the direction of a massively distributed
computing engine.

Acknowledgement

This

work was supported partially by DAAD (Deutscher

Akademischer Austauschdienst e.V.) under the grant A/10/76323.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.micpro.2018.04.002.

References

[1] M. Wainwright, M. Jordan, Graphical models, exponential families, and variational
inference, Found. Trends Mach. Learn. 1 (1-2) (2008) 1-305, hrtp://dx.doLorg/ 10
1561,/2200000001.

(2] L Gox, J. Leonard, Modeling a dynamic environment using a bayesian multiple
hypothesis approach, Artf. Intell. 66 (0) (1994) 311-344,

(3] M. Montemerlo, 5. Thrun, Simultaneous localization and mapping with unknown
data association using FastSLAM, IEEE Int. Conf. Robaotics and Automation, Taipei,
Taiwan. (2003).

[4] M. Toussaint, C. Goerick, A bayesian view on motor control and planning, From
Motor Learning to Interaction Learning in Robots, Berlin: Springer, 2010.

[5] M. Toussaint, N. Plath, N. Jetchev, Integrated motor control, planning, grasping and
high-level reasoning in a blocks world using probabilistic reasoning, [EEE
Intemational Conference an Robotics and Automation (ICRA) 2010, Anchorage,
Alaska, {2010).

[6] A. Hommersom, P.J. Lucas, Using bayesian networks in an Industrial setting:
making printing systems adaptive, 19th European Conference on Artificial
Intelligence (ECAI2010), Lisbon, Portugal, (2010).

171 c[Mhop, Pattern Recognition and Machine Leaming, Springer, 2006.

[8] F. Rschischang, B. Frey, H.-A Loeliger, Factor graphs and the sum-product algo-
rithm, IEEE Trans. In. Theory 47 (2) (2001) 498-519.

(9] J. Yedidia, W. Freeman, Y. Weiss, Constructing free-energy approximations and
generalized belief propagation algorithms, IEEE Trans. Inf. Theory 51 (7) (2005)
22622312,

[10] B.L. Frey, N. Jojic, A comparison of algorithms for inference and learning in
probabilistic graphical models, [EEE Trans. Pattern Anal. Mach. Intell. 27 (9) (2005)
1-25.

[11] K. Murphy, The bayes net toolbox for MATLAB, Comput. Sci. Star. 33 (2001) 2001.

[12] H. Guo, W. Hsu, A survey of algorithms for real-time Bayesian network inference,
AAAI/KDD/UAI-2002 Joint Workshop on Real Time Decision Support and
Diagnosis Systems 2002, Edmonton, Alberta, Canada, (2002).

[13] P. Ramadge, W. Wonham, The control of discrete event systems, Proc. IEEE 77 (1)
(1989) 81-98, hitp://dx.doi.org/10.1109/5.21072,

(14) W. Savich, M. Moussa, S. Areibi, The impact of arithmetic representation on im-

lementing MLP-BP on FPGAs: a study, IEEE Trans. Neural Networks 18 (1) (2007)
iO—ZSZ‘
[15])

(6]

n71

(18}

[19]

[20]

[21]

[22]

[23]

[24]

A Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, F. Kschischang, The factor graph
approach to model-based signal processing, Proc. IEEE 95 (6) (2007) 1295-1322,
hitp: doi.org/10.1109/JPROC. 2007 .896497.
D.-N. 18, M. Kobilarov, F. DelhmAfamg:pha
model predictive control on ehicles, on
Unmanned Airceaft Systems (ICUAS) 2014, (2014), pp. 181-188, http://dx.doi. org/
10.1109/ICUAS. 2014.6842254.

E Riickert, G. Neumann, M. Toussaint, W. Maass, Learned graphical models for
probabilistic planning provide a new class of movement primitives, Front, Comput
Neurosci. 6 (97) (2013).

B. Williams, M. Toussaint, A. Storkey, Modelling motion primitives and their timing
in biclogically executed movements, in: J. Platt, D. Koller, ¥, Singer, S. Roweis
(Eds.), Advances in Neural Information Processing Systems 20, Curran Associates,
Inc., 2008, pp. 1609-1616.

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann, 1988,

S. Deneve, P. Latham, A. Pouget, Reading population codes: a neural im-
plementation of ideal observers, Nat. Neurosci. 2 (8) (1999) 740-745.

S. Wu, S. Amari, H. Nakahara, Population coding and decoding in a neural field: a
computational study, Neural Comput. 14 (5) (2002) 999-1026.

R Ince, R Senatore, E Arabzadeh, F. Montani, M. Diamond, §. Panzeri,
Information-theoretic methods for studying population codes, Neural Netw, 23 (6)
(2010) 713-727.

E Dol, M. Lewicli, A simple model of optimal population coding for sensory sys-
tems, PLoS Comput. Biol. 10 (8) (2014) 1-14, bitp://dx.dol.org/10.1371/journal,
pebi. 1003761,

J. Beck, A. Pouget, K. Heller, Complex inference in neural circuits with probabilistic

h to estimation and
e

[25]

[26]

271

28]

[29]

30

31]

32]

33

34]

[35]

[36]

37

[38]

[39]

0]

[41]

[42]

43]

[44]

[45]

[46]

471

[48]

[49]

50

Microprocessors and Microsystems 60 (2018) 53-64

population codes and topic models, Adv. Neural Inf. Process. Syst. 25 (2012)
3068-3076.
L Sugiarto, P. Maier, J. Conradt, Reasoning with discrete factor graph, IEEE
International Conference on Robotics, Biomimetics, and Intelligent Computational
Systems (ROBIONETICS) 2013, (2013), pp. 170-175. doi:10.1 109ROBIONETICS.
2013.6743599 .
A Mathis, A, Herz, M. Stemmler, Resolution of nested neuronal representations can
be exponential In the number of neurans, Phys. Rev. Lett. 109 (2012) 018103,
p://dx.doi.org/10.1103/PhysRevLett. 109.018103.
" Dellaert, M, Kaess, Square root SAM: simultaneous location and mapping via
are root information smoothing, Int. J. Rob. Res. (IJRR) 25 (12) (2006)
81-1213. Special issue on RSS 2006
. Kaess, A Ranganathan, F. Dellaert, ISAM: incremental smoothing and mapping,
IEEE Trans. Rob. (TRO) 24 (6) (2008) 13651378, htp://dx.doi org/10.1 109,/ TRO,
2008.20067 06.
J. Mooij, Libdai: a free and open source ¢+ + library for discrete approximate in-
ference in graphical models, J. Mach. Learn. Res. 11 (2010) 2169-2173.
1. Sugiarto, J. Conradt, Discrete belief propagation network using population coding
and factor graph for kinematic control of a mobile robot, IEEE International
Conference on Computational Intelligence and Cybemetics (CYBERNETICSCOM)
2013, Yogyakarta, Indonesia, (2013}, pp. 136-140
doi:10.1109CyberneticsCom. 2013.6865797
V. Manshinghka, Natively Probabilistic Computation, Ph.D. thess, Department of
Brain & Cognitive Sciences, Massachusetts Institute of Technology, 2009,
F. Palmieri, Learning non-linear functions with factor graphs, IEEE Trans. Signal
Process. 61 (17) (2013) 4360-4371.
V. Namasivayam, A. Pathak, V. Prasanna, Scalable parallel implementation of
Bayesian network to junction tree conversion for exact inference, The 18th
International Symposium on Computer Architecture and High Performance
‘Computing (SBAC-PAD'06), Ouroc Preio, Minas Gerais, Brasil, (2006).
V. Sudhakar, C. Murthy, Efficient mapping of backpropagation algorithm onto a
network of workstations, IEEE Trans. Syst,, Man, Cybern., Part B 28 (1998)
841-849.
S. Alury, N. Jammula, A review of hardware acceleration for computational
genomics, EEE Design Test 31 (1) (2014) 10-30, hrrp://dx.doiorg/10.1109/
MDAT 2013.2293757.
A. Papadk losa, I. V. P , T. Theocharides, FPGA-based
hardware acceleration for local complexity analysis of massive genomic data,
Integr., VLSI J. 46 (3) (2013) 230-235.
M. Silberstein, A Schuster, D. Geiger, A. Patney, J. Owens, Efficient computation of
sum-products on GPUs through software-managed cache, Proceedings of the 22nd
annual i | on ing (ICS'08), ACM, New York, NY,
USA, 2008, pp. 309-318, htp://dx.doiorg/10.1145/1375527.137557 2.
N. Piatkowski, Parallel algorithms for GPU accelerated probabilistic inference, NIPS
2011: workshop on parallel and large-scale machine learning, Sierra Nevada, Spain,
(2011).
R. Nasre, M. Burtscher, K. Pingali, Morph algorithms on GPUs, the 18th ACM
SIGPLAN symposium on Principles and practice of parallel programming
(PPoPP'13), Shenzhen, China, (2013), pp. 147-156.
¥. Zhao, J. Xu, Y. Gao, A parallel algorithm for bayesian network parameter
learning based on factor graph, 2013 [EEE 25th International Conference on Tools
with Artificial Intelligence (ICTAI2013), Washington DC, USA, (2013), pp.
506-512.
J. Dean, 5. Ghemawat, Mapreduce: simplified data processing on large clusters,
Commun, ACM 51 (1) (2008) 107-113, hitp: //dx.doi.org/10.1145/1327452,
1327492,
A. Steimer, Neurally Inspired Models of Belief-Propagation in Arbitrary Graphical
Models, ETH Ziirich, Switzerland, 2012 Ph.D. thesis.
IEEE, [EEE Standard for Binary Floating-Point Arithmetic, The Institute of Electrical
and Electronics Engineers, Inc., 2008,
P. Zhao, 8. Cui, Y. Gao, R. Silvera, J. Amaral, Forma: a framework for safe automatic
array reshaping, ACM Trans, Programm. Lang. Syst. 30 (1) (2007).
¥, Asher, N. Rotem, Automatic memory partitioning: increasing memory paralle-
lism via data structure partitioning, [EEE/ACM/TFIP International Conference on
Hardware Sofiware Codesign and System Synthesis (CODES +155S) 2010, (2010),
pp. 155-161,
N.Margolus, An FRGA architecture for DRAM-based systolic computations, The 5th
Annual IEEE Symposium on Field-Programmable Custom Computing Machines,
(1997), pp. 2-11, hitp://dx.doi.org/10.1109/FPGA. 1997.624599.
F. Mat‘c'm) M. Cervetto, M. Tenorio, A DDR3 memory based time interleaving FPGA
fon for ISDB-T standard, Progr ble Logic (SPL), 2011 VII Southem
Canfenam:e on, (2011), pp. 1-5, http://dx.doi.org/10.1109/5PL.2011.5782616.
S. Aqueel, K. Khare, Design and FPGA implementation of DDR3 SDRAM controller
for high performance, Int. J. Comput. Sci. Inf. Technol. (LICSIT) 3 (4) (2011)
101-110.
D. Capalija, T. Abdelrahman, An atchitecture for exploiting coatse-grain parallelism
onFPGAs, Intemnational Conference on Field-Programmable Technology 2009 (FPT
2009), (2009), pp. 285-291, hittp://dx.doiorg/10.1109 FPT.2000,537 7658,
P. Banerjee, M. Haldar, A. Nayak, V. Kim, D. Bagchi, S. Pal, N. Tripathi, A beha-
wvioral synthesis tool for exploiting fine grain parallelism in FPGAs, in: §. Das,
5. Bhattacharya (Eds.), Distributed Computing, Lecture Notes in Computer Science,
2571 Springer Berlin Heidelberg, 2002, pp. 246-256, , hitp://dx.doi.org/10.1007/
3-540-36385-8_25.




I Sugiarto, J. Conrade

Indar Sugiarto is a lecturer in the Department of Electrical
Engineering at Petra Christian University. Currently he
works as a Research Associate in the Advanced Processor
Technalogy Group of the School of Computer Science at the
University of Manchester. He holds B.Sc. in Electrical
Engineering from Institut Teknologi Sepuluh Nopember,
Indonesia, M.Sc. degrees in Information and Automation
Engineeting from Universitit Bremen, Germany, and Ph.D.
in Electrical and Computer Engineering from Technische
Universitit Miinchen, Germany. His main research interests
are computational intelligence, Bayesian machine learning,
reconfigurable computing, and robotics

Microprocessors and Microsystems 60 (2018) 53-64

Jérg Conradt is a Junior Professor at the Technische
Universitit Miinchen in the Faculty of Electrical
Engineering and Information Technology, Institute of
Automation and Control Engineering. The laboratory is af-
filiated  with  TUM's Competence Center on
NeurcEngineering and the Munich Bernstein Center for
Computational Neuroscience, He holds an M.S. degree in
Computer Science/Robotics from the University of
Southem California, a Diploma in Computer Engineering
from TU Berlin and a Ph.D. in Physics/Neuroscience from
ETH Zurich. His research group on Neuroscientific System
Theory (hitp:/; nstel um.de) investigates key prin-
ciples by which information processing in brains works, and
applies those to real-world interacting technical systems




Cek Plagiarism Modular SoC Paper

ORIGINALITY REPORT

6% % 6% %

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED)

2%

* Xiwei WU, Bing XIAO, Cihang WU, Yiming GUO,
Lingwei LI. "Factor graph based navigation and
positioning for control system design: A review",
Chinese Journal of Aeronautics, 2022

Publication

Exclude quotes Off Exclude matches <1%

Exclude bibliography  Off



