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Abstract. Deep learning (DL) has been considered as a breakthrough 
technique in the field of artificial intelligence and machine learning. 
Conceptually, it relies on a many-layer network that exhibits a 
hierarchically non-linear processing capability. Some DL architectures 
such as deep neural networks, deep belief networks and recurrent neural 
networks have been developed and applied to many fields with incredible 
results, even comparable to human intelligence. However, many 
researchers are still sceptical about its true capability: can the intelligence 
demonstrated by deep learning technique be applied for general tasks? This 
question motivates the emergence of another research discipline: 
neuromorphic computing (NC). In NC, researchers try to identify the most 
fundamental ingredients that construct intelligence behaviour produced by 
the brain itself. To achieve this, neuromorphic systems are developed to 
mimic the brain functionality down to cellular level. In this paper, a 
neuromorphic platform called SpiNNaker is described and evaluated in 
order to understand its potential use as a platform for a deep learning 
approach. This paper is a literature review that contains comparative study 
on algorithms that have been implemented in SpiNNaker.  
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1 Introduction 
In recent years, researches on artificial neural networks (ANNs) become a hype again, 
especially with the rise of learning engines equipped with “deep” learning capability. Many 
researchers, especially in the machine learning com-munity, consider deep learning (DL) as 
a second break-through for ANNs after many years of “silence” (not much progresses). The 
first breakthrough is attributed to the application of backpropagation (BP) algorithm for 
ANNs [1, 2]. Since then, no further significant progress on ANNs has been reported until 
recently. 

Generally speaking, GP is a gradient-based approach applied as a means of learning for 
an ANN [3]. This is done by transforming the learning process into an optimization 
problem. In the optimization theory, gradient-based methods are well-known approaches to 
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find a global optimum of a function. This is why the activation function of neurons in 
ANNs are expected to be di erentiable functions. 

Since early 1970, GP has been used as a prominent tool for learning in ANNs. Both 
shallow and deep ANNs can be trained by using GP. However, due to computer hard-ware 
limitation at that time, only shallow ANNs were actively explored and deployed in real 
world applications. Only recently, when the computing power of computers becomes 
dramatically increased, especially with the advent of GPGPU (general purpose graphical 
processing unit) computing, deep ANNs are actively being explored [4]. This leads to the 
advancement of DL for practical pur-poses. 

DL is a machine learning algorithm that relies on a many-layer network which exhibits 
a hierarchically non-linear processing capability. The idea of DL can be traced back from 
the work of Ivakhnenko [5] that produced a general learning algorithm for supervised 
feedforward Multi-layer Perceptrons (MLPs). It is commonly used by many layer networks, 
such as deep neural network (DNN), deep belief network (DBN), recurrent neural network 
(RNN), generative adversarial network (GAN), and convolutional neural network (CNN) 
[6–10]. Conceptually, DL is a generic technique and can be applied on other graphical 
models, for example deep reinforcement learning [11]. However, in this paper we focus on 
DL for ANNs, including spiking neural network (SNN) model. 

DL is closely related to a class of theories of brain development, specifically neocortical 
development [12, 13]. Marblestone et. al. hypothesize that the brain optimizes cost 
functions, in which the cost functions are diverse and di er across brain locations and over 
development [12]. In this circumstance, the impressive performance demonstrated by DL as 
a credit assignment through multiple layers of neurons is in fact a manifesto of an 
optimization operation within a pre-structured architecture matched to the computational 
problems for specific classes. However, such interpretation does not show a direct relation 
between learn-ing mechanism in DL and in the brain. In particular, DL mechanism does not 
reflect brain dynamics even though its structure resembles the hierarchical neuronal 
circuitry of the brain cortex [14]. 

2 Overview of deep learning architectures 
In this section, we describe some prominent ANN architectures where DL can be applied. 
These are architectures used by the second generation of ANN.  

2.1 Deep neural network 

Deep Neural Network (DNN) is a generalized feedforward neural network with several 
(hidden) layers. It is an advanced extension of the first generation of ANN, which was 
developed by Rosenblatt based on a single thresh-old logic unit neural network proposed by 
McCulloch and Pitts in 1943 [15]. This early simple ANN, known as “Perceptron”, soon 
became a larger network by adding more neurons and layers; thus creating a Multilayer 
Perceptron (MLP) [16, 17]. 

The structure of MLP is similar to DNN, and the application domains of MLP is as 
diverse as DNN. The most distinguishable feature of DNN from MLP is the learning 
process, especially during the initialization. Instead of using random number for initialising 
the weights, DNN can use other technique such as restricted Boltzmann machine (RBM) to 
find initial weight values that close to optimal. With this approach, vanishing/exploding 
gradients problem, which is common in “deeper” MLPs, can be avoided [18–20]. 
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DNN learns to map a fixed-size input (e.g, images) to a fixed-size output (e.g, a probability 
for each of several categories). Currently, the rectified linear unit (ReLU) is the most 
popular non-linear activation function used in DNNs. It is much faster than conventional 
but smoother activation functions such as tanh or sigmoid. Within the hidden layers, ReLU 
creates distortion to the input in a non-linear way, making categories linearly separable at 
the output layer [21]. Figure 1 shows typical structure of a DNN for image recognition. 

 

Fig. 1. A typical DNN structure for image/object recognition. 

2.2 Deep recurrent neural network 

Similar to DNN, a deep recurrent neural networks (DRNN) has several layers between its 
input and output layer. Conceptually, a DRNN is an extension to the standard recurrent 
neural network (RNN), whose neurons send feedback signals to each other exhibiting 
dynamic temporal behaviour. This feedback loop mechanism includes a huge number of 
possibilities, but conceptually can be classified into two classes: loops within a single layer, 
and loops between multiple layers. From these, several RNN structures have been 
proposed, such as fully recur-rent, recursive, Hopfield, Elman, echo state, long short-term 
memory, etc. 

The temporal dynamic exhibited by RNNs leads into the memory capability that can be 
classified as short-term memory (STM), medium-term memory (MTM), or long-term 
memory (LTM) [22, 23]. These create the foundation of Adaptive Resonance Theory, 
which is the most advanced cognitive and RNN theory of how the brain autonomously 
learns to categorize, recognize, and predict objects and events [24]. 

A more practical example of DRNN is the long short-term memory (LSTM), which 
were invented by Hochreiter and Schmidhuber in 1997 [25]. This LSTM can have a very 
deep structure, allowing it to perform excellently in tasks such as speech recognition, 
handwritten recognition, and multilingual language processing [26]. 

An LSTM has several “gates” that control the feedback flow of information. A special 
“forget” gate which deletes the information in the self-recurrent unit without releasing the 
information into the network whilst making room for a new memory. An example structure 
of an LSTM is shown in Figure 2; it consists of four input weights (from the data to the 
input and three gates) and four recurrent weights (from the output to the input and the three 
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gates). Occasionally, peepholes are added as extra connections between the memory cell 
and the gates. 

 
Fig. 2. An example of LSTM structure (modified from [27]). 

2.3 Deep convolutional neural netword  

Another form of ANN that can have a deep structure is the Convolutional Neural Network 
(CNN). Basically, it is a feed-forward network that is designed to require minimal pre-
processing [9, 28, 29]. A CNN consists of an input and an output layer, as well as multiple 
hidden layers. The hidden layers are either convolutional, pooling or fully connected. 

CNNs were inspired by biological processes in which the connectivity pattern between 
neurons is inspired by the organization of visual cortex [30]. Individual cortical neurons 
respond to stimuli only in a restricted region of the visual field known as the receptive field. 
The receptive fields of different neurons partially overlap such that they cover the entire 
visual field. This mechanism underlies the convolutional layer - the core building block of a 
CNN. 

The convolutional layer has a set of kernels that operates as a small receptive field. 
Each kernel is convolved across the width and height of the input data, computing the dot 
product between them and resulting in two dimensional activation map of that kernel. As a 
result, the network learns kernels that activate when it detects some specific type of feature 
at some spatial position in the in-put. Stacking the activation maps for all kernels along the 
depth dimension forms the full output of the convolution layer, which can be interpreted as 
an output of a neuron that looks at a small region in the input and shares parameters with 
neurons in the same activation map. 

Another important layer in CNNs is the pooling layer. Basically it performs a non-linear 
down-sampling to reduce the spatial size of the representation as well as to reduce the 
number of parameters and amount of computation in the network. This way the network 
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can avoid overfitting. The pooling layers are periodically inserted between successive 
convolutional layers. 

Finally, after a series of several convolutional and pooling layers, a fully connected 
layer is added at the final stage that is responsible for the high-level reasoning. Neurons in 
this final layer have connections to all activations in the previous layer. Fig. 3 shows the 
general structure of a DCNN. 

 
Fig. 3. The general structure of a DCNN (adopted from [31].  

2.4 Deep belief network 

Deep Belief Networks (DBNs) are another example of networks with a deep structure. 
They are composed of stacked smaller networks called restricted Boltzmann ma-chines 
(RBMs). RBMs are different to the standard ANNs; whereas ANNs use real scalar values 
for the weights, RBMs use probabilistic functions (usually in the form of conditional 
probability) for the weights [32]. The term “belief” is usually associated with the concept of 
generative model of the RBM, very similar to the Bayesian net-work in stochastic 
modelling [33]. 

Instead of using a stochastic ANN, a DBN can also be constructed by using a rather 
conventional network called autoencoder. Basically, an autoencoder is an MLP or feed-
forward net with input and output tied together. This way, an autoencoder is supposed to be 
able to learn a representation (encoding) for a set of data, typically for the purpose of 
dimensionality reduction [34]. 

Either using RBMs or autoencoder, a DBN presents a hierarchical network where each 
sub-network’s hidden layer serves as the visible layer for the next [7]. The learning 
mechanism of a DBN is performed layer-by-layer top-down with one layer at a time by 
treating the values of the latent variables in one layer, as the data for training the next layer. 
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DBNs have been used successfully in many applications such as in EEG 
(electroencephalography) analysis [35], generating and recognizing images [7, 36, 37], 
video sequences [38], and motion-capture data [39]. 

2.5 Deep generative adversarial 

Generative Adversarial Network (GAN) is a neural net-work model for estimating 
generative models via an adversarial process. There are two models in the network 
contesting with each other in a zero-sum game framework: a generative model G that 
captures the data distribution, and a discriminative model D that estimates the probability 
that a sample came from the training data rather than G. In his paper (see [10]), Goodfellow 
et.al use this technique to generate synthetic photographs that look authentic to human 
observers. In his GAN, the G model creates natural looking images that are similar to the 
original data distribution, whereas the D model determines whether the given image looks 
natural or looks like it has been artificially created. Here, the generator is trying to fool the 
discriminator while the discriminator is trying to not get fooled by the generator. As the 
models train through alternating optimization, both methods are improved until a 
convergence has been achieved (i.e., a point where the synthetic image is indistinguishable 
from the genuine one). 

For some test cases, such as images of number or face, GAN produces good quality 
synthetic images. But for other test cases, such as natural scenes, GAN does not work well. 
To overcome this, GAN can be combined with other technique such as CNN to produce a 
deeper network [40], such as Laplacian Pyramid of Adversarial Network (LAPGAN) [41]. 

Even though the combination of CNN and GAN pro-duces higher accuracy than the 
original GAN, however, it still su ers from scaling problem: it does not work well to 
recover the finer texture details when using a large up-scaling factors. To overcome this 
problem, Ledig et.al proposes to uses an adversarial loss function in their Su-per Resolution 
Generative Adversarial Network (SRGAN) [42]. Figure 4 shows the deep structure of a 
GAN as used in [42]. 

 
Fig. 4. SRGAN structure with corresponding number of fea-ture maps (n) and stride (s) indicated for 
each convolutional layer. (adopted from [42]) 
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3 Overview of neuromorphic systems 
This section focus on the implementation of the third generation of ANN known as the 
spiking neural net-work (SNN) [43]. SNNs leads into the development of neuromorphic 
computing, which tries to mimic neurobiological architectures present in the nervous 
system (i.e., the brain). 

3.1 Connection with neuroscience 

The first generation of ANN started with the work of Mc-Culloch and Pitts in 1943 on a 
computational model for neural networks based on threshold logic units. Since then, newer 
and more complex (and “deeper”) networks have been proposed/implemented. However, 
those ANN models are more into mathematical models rather than biologically realistic 
models. 

Neuroscientists argue that a more flexible and general AI could be built based on 
biologically plausible ANNs [44]. Furthermore, in order to obtain more reciprocal benefits 
between neuroscience and machine learning, the integration of DL and neuroscience should 
be explored further [12]. For this reason, the third generation, spiking based, ANNs have 
been proposed. 

In SNNs, the concept of time has been incorporated inherently, allowing them to 
produce a dynamic ANN model. Neurons will only generate out-put (i.e. “spike”) when 
they have collected enough pre-information to surpass the internal threshold; hence, they do 
not “fire” at each propagation cycle as it hap-pens with conventional ANNs (e.g., MLP, 
DNN, etc.) /citemaass1997networks,gerstner1998spiking. 

Maass shows that SNNs, with regard to the number of neurons that are needed, are 
computationally more pow-erful than conventional second generation of ANNs [43]. He 
shows that a single spiking neuron exhibits a biologically relevant function, which requires 
hundreds of hidden units on a sigmoidal-based ANN. Also, any function that can be 
computed by a small sigmoidal ANN can also be computed by a small SNN. 

Prior to 1980s, most of ANNs and SNNs were conceptualized and implemented as 
software on computers, either on standard PCs or mainframes. With the advancement in 
chip fabrication technologies, researchers have a new option to implement ANNs and SNNs 
on dedicated hard-ware. In the late 1980s, Carver Mead started to look into neural-inspired 
hardware implementation [45] and coined the term neuromorphic. Neuromorphic systems 
strive to mimic neurobiological architectures present in the brain. Using analog VLSI 
technology in his work, Carver Mead demonstrated that biological solutions are many 
orders of magnitude more e ective than those that have been implemented using digital 
methods. 

In recent years, however, the term neuromorphic has been used not only for describing 
analog-based neural-inspired hardware, but also for digital, mixed ana-log/digital VLSI, 
and even software systems that implement broader spectrum models of neural systems 
(from sensory level to cognitive processing) [46–48]. In this pa-per, we particularly 
describe scalable neuromorphic plat-forms. 

3.2 Scalable neuromorphic platform 

Taking advantage of chip fabrication technology, a number of large-scale neuromorphic 
systems have been developed recently, ranging from a single chip form to a full silicon 
wafer. Those systems are designed with scalability feature to make them able to support a 
large scale neural network model with millions of neurons along with their tremendous and 
complex synaptic connectivity [49]. This feature is inherently required in order to build a 
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massive network for emulating a whole brain of animals ranging from nematode species 
(such as Caenorhabditis elegans, or C. elegans) up to smaller mammals [50, 51]. The 
scalability is also one of the main requirements to develop a framework with cognitive 
architecture. The ultimate goal of such plat-forms is to model a complete human brain [52]. 
However, this is a long-term goal and is treated with cautious optimism by scientific 
community, since the full potential of those neuromorphic systems has yet to be realized. 

Four of the most prominent scalable neuromorphic platforms to date are: the IBM 
TrueNorth chip, the Stan-ford Neurogrid, the Heidelberg BrainScaleS system, and the 
Manchester SpiNNaker machine [53–56]. These plat-forms are built with complementary 
approaches and diver-gent intermediate goals. Table 1 summarizes some of the main 
features of these neuromorphic platforms. 

3.3 SpiNNaker many-core platform 

SpiNNaker (Spiking Neural Network Architecture) is a many-core neuromorphic platform 
built on top of commercial general purpose ARM microprocessor. At the lowest level, it is 
a multi-core system-on-chip (SoC) composed of 18 ARM968 processors and equipped with 
128 MB low-power SDRAM mounted on top of the processor die. 

Table 1. Main features of four large-scale neuromorphic platforms. 

Platform Mode 
Chip 
Fabrication 

Power per 
Chip Neuron Model Synapse Model Plasticity 

IBM TrueNorth Digital 28nm 72 mW LIF Binary No 
Neurogrid Analog 180nm 150 mW IF Shared dendrite No 
BrainScaleS Analog 180nm 1.3 W IF 4-bit Digital STDP 
SpiNNaker Digital 130nm 1W Programmable Programmable Programmable 

 
The chip incorporates various digital elements for con-trolling the processors as well as 

for providing neurally-inspired communication infrastructure. The SpiNNaker uses small 
size data packets in various protocols, such as multicast, point-to-point, and nearest-
neighbourhood. Multicast is the most used communication protocol in SpiNNaker for 
propagating neuron spikes in neural net-work models. It uses a packet switched network to 
emu-late the very high connectivity of biological systems. The packets are source-routed, 
i.e., they only carry information about the issuer and the network infrastructure is 
responsible for delivering them to their destinations. 

Each SpiNNaker chip has six bidirectional links that can be connected to other chips. 
The links incorporate asynchronous digital circuitry to achieve the optimal band-width 
whilst maintaining the lowest power consumption. Using these links, 2D triangular mesh 
topology can be created by connecting several SpiNNaker chips. If the number of chips is 
su cient enough (at least 144 chips) and full-links connection is employed, then a 3D torus 
net-work will be created (see Figure 5(a)). Currently, the complete SpiNNaker system 
development is underway; when it is complete, it will have 50k chips, in which 1 million 
ARM cores are available for neuromorphic computing, as well as 7 Tera bytes of memory 
needed for simulating a massive neural network in biological real-time. 

From SpiNNaker chips, several type of SpiNNaker machines are constructed. For the 
sake of naming simplic-ity, SpiNNaker machines are classified by the approximate number 
of processor cores in the format of 10x, where x is the power number for the base 10. For 
example, the 102 and 103 machines, which are single printed circuit boards, actually 
contains 72 cores and 864 cores respec-tively. The final 106 machine, will have 1036800 
proces-sor cores. Figure 5(b) shows the physical appearance of several SpiNNaker 
machines. 
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operating system to be run on the platform. Instead, it only has a small dedicated run-time 
kernel to manage the entire operation of the machine. The SpiNNaker Application Run-
time Kernel (SARK) controls the flow of exe-cution and schedules/dispatches application 
callback functions. Applications do not control execution flow, they can only indicate the 
functions, referred to as callbacks, to be executed when specific events occur, such as the 
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Fig. 5. SpiNNaker architecture in (a) logical topology, and (b) physical appearance. 

4 Case study with SpiNNaker 
In this paper, several experiments on SpiNNaker are studied. The publications related to 
those experiments are explored in order to understand how SpiNNaker can be used to 
implement DL concepts as well as to gain some insight on problems faced during 
SpiNNaker implementation of the corresponding aspect. 

The main issue a network modeller instantly faces when using SpiNNaker is the fact 
that SpiNNaker runs on the basis of spiking neuron model; whereas common DL 
algorithms assume that the network falls into the category of second generation ANN. 
However, since SpiNNaker machines are built on top of a general purpose processor, it is 
still possible, using the direct programming approach on SpiNNaker, to implement a DL 
concept on SpiNNaker. This approach proves that SpiNNaker can also be used for general 
purpose computing, even in a domain far from spiking neural network, such as in image 
process-ing [57]. The following sub-sections provide examples of applications that are 
closely related to the concept of DL. 
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4.1 DNN on SpiNNaker 

The vast amount of processor in SpiNNaker is definitely an attractive resources for 
implementing a DNN. As de-scribed in Section 2.2, basically a DNN is a feed forward 
ANN with many layers. Like SNNs, connections between neurons are through adaptable 
synapses (or “weights”). DNN models, however, have important di erences. Typically 
weights are only plastic for a certain time, that is during the “training phase”, and then are 
fixed afterwards (or during the “test phase”). Each phase consists of some number of 
examples, individual data items presented to the network. This in turn implies that the DNN 
has no time model, or to be exact, a discrete-time model. Contrasting strongly with SNNs: 
the DNN model thus has a synchronous dataflow. In addition, the most popular learning 
technique is backpropagation, a method that involves propagating errors from output units 
backwards through the network to update the weights. Both of these proper-ties present 
challenges to the SpiNNaker architecture. 

To solve the synchronous dataflow problem, a new technique called “update-on-
demand” was proposed [58]. In this technique, partial results are computed and for-warded 
on through the network as soon as they are avail-able. The backpropagation algorithm, 
which presents challenges for the source-routed SpiNNaker topology be-cause it is e 
ectively bidirectional, is solved using a matrix remapping method that distributes the 
processing between cores. 

 
Fig. 6. Implementing a DNN on SpiNNaker. At each stage the unit sums the contributions from the 
previous stage. One processor may implement the input path for more than one final output neuron 
(shown here for the threshold stage). 

The processing in a DNN model remains event-driven. Each processor in the DNN 
responds to a single hardware event (packet-received) and schedules software-generated 
events to complete processing. The packet-received event performs only 2 tasks: i) it places 
the packet into an internal service queue; ii) it schedules a deferred event to dequeue and 
process the packet. The dequeue software event, having retrieved the packet, performs the 
address decode and data processing required, as per each stage. 

The SpiNNaker implementation models DNN networks using the Lens 
(http://tedlab.mit.edu/dr/Lens) specification and provides support for both feed forward and 
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The processing in a DNN model remains event-driven. Each processor in the DNN 
responds to a single hardware event (packet-received) and schedules software-generated 
events to complete processing. The packet-received event performs only 2 tasks: i) it places 
the packet into an internal service queue; ii) it schedules a deferred event to dequeue and 
process the packet. The dequeue software event, having retrieved the packet, performs the 
address decode and data processing required, as per each stage. 

The SpiNNaker implementation models DNN networks using the Lens 
(http://tedlab.mit.edu/dr/Lens) specification and provides support for both feed forward and 

re-current networks. Initial support is provided for networks defined at a Group level; 
future plans may include sup-port for Unit-level definitions. Full support is provided for 
Group-to-Unit and Unit-to-Unit connectivity. A SpiNNaker package plugin for Lens allows 
Lens scripts to be implemented directly on SpiNNaker using the SpiNNaker software tool-
chain. 

4.2 CNN on SpiNNaker 

Conventional CNNs as described in Section 2.3 work in a frame-based fashion, where the 
data (e.g., image) is acquired and presented to the network at a given frame rate (at about 
30ms to 40ms). Each frame is processed sequentially by the different convolution layers 
and it must be completely finished before the processing of the next layer can be started. 
However, this is not how the brain works. In the brain, when a pixel in the retina is 
stimulated, it emits a spike with a very small propagation delay to neurons of the next 
layers. Neurons in the next layer will emit an-other spike when they have received enough 
spikes from the previous layer. This process continues up to the higher recognition layer 
levels. 
To implement such a more biologically plausible CNNs on SpiNNaker, an event-based 
CNN for poker card symbol classification has been proposed [59], which is based on the 
work in [60]. It consists of four convolution layers (C1-C3-C5-C6) interleaved with two 
subsampling stages (S2-S4). Figure 7 shows the architecture of the event-based CNN. 
 

 
Fig. 7. The architecture of a CNN for the poker card symbol classification in [59]. 

The first convolution layer implements Gabor filters at three different orientations and 
two spatial scales (their weights were not trained). The rest of the network weights were 
obtained by backpropagation, training a frame-driven CNN version and afterwards applying 
a conversion method to obtain the corresponding parameters for the event-driven CNN 
[60]. 

 
One important element of a CNN is the kernel. The kernels possess the “weight 

sharing” property, where the weights of the kernels that connect neurons in two consecutive 
feature maps do not depend on the particular neuron positions but just on the relative 

11

MATEC Web of Conferences 164, 01015 (2018)	 https://doi.org/10.1051/matecconf/201816401015
ICESTI 2017



positions of the two neurons in the origin and destination feature maps. To optimize the 
processing speed, the author in [59] introduced a special “convolution connector” to the 
SpiNNaker soft-ware tool. The convolution connector contains the kernel weights which 
are stored in the processor’s local memory of the corresponding neuron population. 

To test the recognition success rate, the author used a test sequence of 40 32×32 tracked 
symbols obtained from a very high speed event-driven camera. In a slow-mode experiment, 
a total of 189 category output events were generated, and the recognition success rate was 
97.5 %. How-ever, when the processing speed was increased by using a slowdown factor of 
10 for the same input stimulus event sequence, the success recognition rate decreases to 80 
% and the total number of output events generated by the net-work has also decreased to 
121 events. 

Another finding by the authors was the source of the bottleneck in the processing flow 
that limits the maximum event throughput. The bottleneck happens in the first layer which 
employs the Gabor filters. Each Gabor filter receives all the events from the input stimulus, 
while generating each a significant number of events, which need to be transmitted and 
processed by the second layer. Unfortunately, there is no solution for this problem yet, 
which leaves a future work for those who are interested on this topic. 

4.3 DBN on SpiNNaker 

DBNs, as described in Section 2.4, can be implemented in several fashions. One of them 
that has been implemented on SpiNNaker is the model using RBM [61], which basically 
implements a spike-based DBN proposed by [62]. Since RBM is a stochastic model, the 
most convenient method to approach it in a spiking neuron models is by using firing rate. In 
this model, the Siegert approximation was used for the activation function of neurons. The 
Siegert function (see for detail in [63]) produces firing rate of a neuron given input firing 
rates and input weights for certain neuron parameters. For representing the weight, the 
author used 16 bits for the fractional part and 6 bit for the integer part (i.e., using the format 
Q6.16). 
For testing, the MNIST dataset [28] was used as a classification benchmark. The MNIST 
dataset consists of 28×28 grey-scale pixel images of handwritten digits and is divided into a 
training set, which comprises 60 000 digits, and a test set, which consists of 10 000 digits. 
The network that consists of 4 layers were used: one input layer with 784 neurons, two 
hidden layers with 500 neurons each, and a 10 neuron output layer (see Figure 8(b)). 
Static images are transformed into spike trains by converting each pixel of an MNIST 
image into a Poisson spike-train with a rate proportional to its intensity, while all firing 
rates are scaled such that the total firing rate of the population is constant [62]. The firing 
rate of neuron populations are depicted in Figure 8(c). 
For the evaluation purpose, the authors used the classification accuracy and the latency as 
performance metrics. Regarding the classification result, their model achieved 95.01 % 
accuracy when using Q6.16 format for the weight values. When measuring the real-time 
performance of their model, the author found a mean classification latency of 20 ms. This 
was expected since the timing used for solving neuron equations in SpiNNaker was set to 1 
ms, which is the default value in SpiNNaker configuration. The experiment also showed 
that increasing the number of input spikes reduces the mean classification latency, and has a 
positive e ect on the classification accuracy. The latency of the hidden layers also varies 
with the number of input spikes. For the MNIST test set encoded with 2 000 spikes per 
second, the mean spike latency between the hid-den layers is 2.3 ms; whereas in 500 spikes 
per second ex-periment, the mean latency per hidden layer rises to 6.22 ms. 
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Fig. 8. DBN experiment on SpiNNaker as reported in [61]. In (a), a general architecture of RBM used 
as a layer for DBN. In (b), a topology of DBN in 784-500-500-10 structure used as a MNIST 
classification network. In (c), the firing rates of the network was under investigation for a single input 
MNIST digit. The bottom plot shows firing rates of the 28×28 neurons in the input population. The 
next two rows of 5×100 show the firing rates of the neurons in the first and second hidden layer (500 
neurons each), and finally the top plot shows the firing rates of the 10 neurons in the output 
population, one for each digit from 0 to 9. 

5 Discussion 
From the study in the previous section, we gain several in-sight on how useful and 
challenging is the SpiNNaker for application in the domain of machine learning and artifi-
cial intelligence. As described in Section 4.1, it is fairly straight forward to implement feed-
forward DNNs. The current SpiNNaker software tool-chain supports, at some degrees, 
modelling of general purpose DNNs. If specific application constraints are needed, 
however, users need to go a bit deeper by modifying the software tool-chain flow. 
Fortunately, SpiNNaker is programmed using stan-dard C/C++ and Python, which are 
common language pro-gramming known by most users. 

In Section 4.2, we have described how the SpiNNaker platform can be used to 
implement a CNN. As proposed by its developer, a special “weight sharing” mechanism 
can be implemented e ciently in SpiNNaker by storing all synaptic weights on local 
memory called DTCM (data-tightly-coupled-memory) at each processor core [59]. This 
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way, the memory access efficiency is increased consider-ably that leads into the increasing 
processing speed of the CNN. 

Even though SpiNNaker provides a convenience way for handling the CNN parameters, 
overall, the efficiency of implemented CNN model is determined by the maxi-mum number 
of addressable neurons, limited by the implemented routing scheme of the current 
SpiNNaker soft-ware tool-chain. Currently, for small size CNNs, this limitation is not a 
problem. But for larger networks, this might impose reduced performance. Hence, in the 
future, the SpiNNaker developer needs to develop a more flexible neural addressing routing 
scheme. 

As emphasized by authors in [59], the SpiNNaker architecture is very flexible and it 
allows to trade o maximum number of neurons per core versus maximum event processing 
throughput. By eventually reducing the maximum number of neurons per core, one 
effectively achieves parallelization of event processing, and the system would be capable of 
handling higher input event rates. This suggests that in the future SpiNNaker software 
release, the trade-o between maximum neurons per core and maxi-mum event throughput 
should be optimized according to the given desired parameters by the SpiNNaker user. 

In Section 4.3, we describe how SpiNNaker was used to implement an event-driven 
DBN. There is an issue regarding the implementation of DBNs on SpiNNaker: both 
training and execution of large-scale DBN require vast computing resources, leading to 
high power requirements and communication overheads. To overcome this problem, 
authors in [61] proposed to limit bit precision during execution and training. Even though 
this idea sounds contra-intuitive, the experiment showed that the spiking DBNs can tolerate 
very low levels of hardware bit precision down to almost two bits. By limiting the bit 
precision, the performance of spiking DBNs can be improved by at least 30 %. 

In addition to the improved performance, the authors also noticed the very promising 
feature of SpiNNaker with regard to scalability issue. It is well known that adding more 
layers to DBNs can improve performance. With the SpiNNaker architecture it becomes 
possible to create very large DBNs by adding additional layers, running on different cores 
or chips, without significantly increasing the latency of the system, and at reasonable power 
dissipation. This suggests that future work on DBNs should explore the implementation of 
larger DBN networks on bigger SpiNNaker machines. While the SpiNNaker hard-ware 
might not achieve the energy performance of dedicated neuromorphic hardware, the 
programmability of its architecture makes it an excellent exploration platform for event-
based computing [61]. 

Finally, as shown in Table 1, some features of SpiNNaker are identified as 
“programmable”. This has consequences of bringing both cons and pros upon the 
SpiNNaker system. The most obvious advantage of being programmable is the high degree 
of flexibility in terms of novel modelling purpose. For example, modellers can specify what 
kind of neurons they want to use in the model, simply by modifying the neuron parameters. 
Or, changing the synapse behaviour by specifying the plasticity rule. As mentioned by its 
developer [56], the SpiNNaker is meant to be a generic neuromorphic platform for novel 
research in neuroscience and it’s following application domains (such as artificial 
intelligence). With this idea in mind, the SpiNNaker provides a very interesting alternative 
to the existing neuromorphic technology. 

6 Conclusion 
 
In recent years, Deep Learning (DL) has been considered as a breakthrough technique in 
the field of artificial intelligence and machine learning. Conceptually, it relies on a many 
layer network that exhibits a hierarchically non-linear processing capability; hence 
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research in neuroscience and it’s following application domains (such as artificial 
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6 Conclusion 
 
In recent years, Deep Learning (DL) has been considered as a breakthrough technique in 
the field of artificial intelligence and machine learning. Conceptually, it relies on a many 
layer network that exhibits a hierarchically non-linear processing capability; hence 

mimicking the underlying topology of human brains. However, this claim needs to be 
clarified since there are some degree of incompatibility between DL and cognitive feature 
of the brain. 

In this paper, we are aiming to understand better how actually DL techniques fit our 
current knowledge of how the brain works. To achieve the goal, we are looking into the 
direct implementation of cognitive machine in a form of neuromorphic systems. For the 
study, we use SpiNNaker references that have close relationship with the DL techniques. 
SpiNNaker is a neuromorphic platform for simulation of a massive spiking neural network. 
After exploring several references, we confirm that to use it for general purpose 
applications in deep learning frame-works, software and hardware adaptation is needed. 
Some DL-based architectures have been implemented on SpiNNaker: DNN, CNN and 
DBN. Indeed, the results from those implementations show some promising features in 
terms of performance and scalability. 
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