

57

JIRAE, Vol. 4, No. 2, October 2019, 57-62 DOI: 10.9744/jirae.4.2.57-62

e-ISSN 2407-7259

Omni-Directional Mobile Robot Control using Raspberry Pi and Jetson Nano

Evert Oneil1,a, Indar Sugiarto2,b
1,2 Electrical Engineering, Petra Christian University, Surabaya, Indonesia

aevertoneil1@gmail.com, bindar@ieee.org

Abstract. This paper describes a process of designing a low-cost robot that moves omni-directionally that capable
of detecting simple objects around it while moving. The robot uses three DC motors with encoder as feedback. The
overall movement control is done by a Raspberry Pi that is embedded into the robot. It also uses ROS (Robotic
Operating System) as the framework. To detect certain objects, the robot is equipped with an infrared sensor for
measuring the object distance, and a camera for capturing the image of the object that will be processed by a Nvidia
Jetson Nano. By using inverse kinematics and odometry calculations, the robot can move smoothly with error at
about 9.5% on the x-axis and 8.1% on the y-axis, measured at the robot's final position. The robot can detect objects
using infrared sensors reliably with error at about 0.87%, however, it cannot measure the object size precisely due
to various factors.

Keywords: Robot, omnidirectional, omniwheel, object detection, kinematics.

1. Introduction

Robot design and programming is a core subject in

engineering that has rich aspects to be explored, especially for

educational purposes. By self-developing robust but low-cost

robots, students and researchers can sharpen their knowledges

while exploring various novelty aspects in robotics. This is in

line with one of the opinions of the Team ABI Research:

"Flexibility and efficiency have become the main differen-

tiators in a system, in order to cope with volatile product

demand, seasonal peaks, and rising consumer shipping expec-

tations" [1].

Seeing that flexibility and efficiency are important compo-

nents in mobile robotics, a robot needs to be designed with

capability of moving easily to specific locations with wider

scope of space. For this reason, the robot needs to have good

mobility and maneuverability, which depends on its wheel

configuration.

One disadvantage of conventional wheels is that they are

limited in motion; thus, the robot cannot move sideways

without preliminary maneuvers. This problem can be over-

come with special omni-directional type wheels that allow the

robot to be driven in all directions.

In this paper, the process of building such a mobile robot is

described. In the future, this robot can also be equipped with a

robotic arm to create a mobile manipulator. For this purpose,

the robot needs to know the distance of the object from the

robot, along with the height and width information of the object

so that the manipulator arm can grip object correctly.

This paper is organized as follows. In section 2, the design

of the omni-directional mobile robot is described. In section 3,

we evaluate the performance of the robot. Finally, in section 4,

we conclude our work.

2. Research Methods

The following figure shows the logical connection between

core components of our mobile robot.

As shown in Figure 1, the Raspberry Pi acts as a controller

that will receive input from the user to determine the desti-

nation position and direction of motion of the robot.

Figure 1. Block diagram of an omni-directional robot system

 The Raspberry Pi will send data to drive a DC motor, and

the encoder will read the wheel’s speed and make it as feedback

so that the Raspberry Pi can determine the robot's mileage.

Infrared sensor input is used to detect the distance from the

robot and the destination objects. The output from the camera

will be processed by Jetson Nano. Camera image processing is

carried out at Jetson Nano to read the height and width of the

detected object, then the reading data will be sent to the

Raspberry Pi. Both microcontrollers (Raspberry Pi and Jetson

Nano) are connected on the same network and use ROS for

communication between controllers.

Figure 2. Three wheeled robot's kinematics

Evert O. et al. / Omni-Directional Mobile Robot Control using Raspberry Pi and Jetson Nano / JIRAE, Vol. 4, No. 2, October 2019, pp. 57–62

 58

Figure 2 shows the basic inverse kinematics calculation of

an omni-directional 3-wheel robot system [2]. And the final

equation can be written as follows:

(1)

With the description of several variables according to this

study:

α1 is the angle between the x-axis and wheel 1, 270O

α2 is the angle between the x axis and wheel 2, 30O

α3 is the angle between the x axis and wheel 3 ,150O

R is the distance of the wheel to the center point, which is 0.12

m.

r is the radius of the wheel, which is 0.0246 m

θ is the initial angle of the robot, which is 0

Figure 3. Odometry calculation

[

ϕ1

ϕ2

ϕ3

] = [

2/3 0 1/3

0 1/√3 1/3

−1/3 −1/√3 1/3

] [

x/r

y/r

θ. 3L/r

] (2)

This equation is implemented in the program to determine

each rotation angle needed to input the intended x, y, θ position

[3]. The units x and y are in meters, while θ is in radians. Units

ϕ1, ϕ2, ϕ3 in radians.

Figure 4. Motor's speed control diagram

Figure 4 is a motor speed control design where the motor

speed’s value as results of inverse kinematics calculation will

be controlled with proportional control, using an encoder as

feedback that reads current speed.

Figure 5. Robot's movement diagam

To regulate the movement of the robot, the encoder acts as
feedback to estimate the movement of the robot. So once the
robot has reached the target position, then the motor will
immediately stop.

To detect the distance between the robot and the object , it
is used an infrared sensor. The SHARP GP2Y0A21 sensor
used can read a range of 10 - 80 cm. Calibration is performed
to determine the conversion equation from the sensor, the
calibration process is done using a black rectangular image
measuring 12 cm x 12 cm. The regression equation is:

y = 12320 x-1,073 (3)

Where ‘x’ is the reading number from the sensor and ‘y’ is the
reading value of the distance of the sensor to the object in
centimeters.

To detect the size of the object in front of the camera, an
object reading program is required by the camera. The camera
used is the Raspberry v2 camera module which will be
processed using openCV.

Figure 6. The process of object sizes measurements

To calculate the size of an object that is read, it needs to
determine the ratio between the pixels read in the image and
the distance of the camera to the object [4]. First it should be
'calibrated' with a reference object first. The reference object
must be known for its original size.The calibration result is:

y = 661.84x-1,002 (4)

Where ‘x’ is the distance that is read and ‘y’ is a dividing
constant to calculate the size of objects. Next for the
implementation of the program are: Actual size = pixel
distance / constant.

3. Result and Discussion

3.1 Motor’s characteristic test

Figure 7. Motor's velocity readings with encoder.

-10

10

30

50

70

90

110

130

150

-10 40 90 140 190

R
P

M

PWM

Motor's Velocity

A_load B_load C_load

A B C

Evert O. et al. / Omni-Directional Mobile Robot Control using Raspberry Pi and Jetson Nano / JIRAE, Vol. 4, No. 2, October 2019, pp. 57–62

 59

The graph shown in Figure 7 shows the difference in

motor speed at no load and under load conditions. After

obtaining characteristic data from each motor, a regression

equation can be made to convert the desired speed numbers to

the PWM numbers needed for each motor. Through the table

data above, the regression equation is obtained using Microsoft

Excel:

PWM_a = -4E-10y6 + 2E-07y5 - 4E-05y4 +

0.0043y3 - 0.2179y2 + 6.0869y - 42.92

y = 7E-06v4 - 0.0016v3 + 0.1341v2 - 4.0937v +

52.613

(5)

PWM_b = 9E-08y5 - 3E-05y4 + 0.0032y3 -

0.1748y2 + 4.2613y - 12.657

y = -3E-10v6 + 2E-07v5 - 4E-05v4 + 0.0049v3 -

0.2711v2 + 7.9921v - 65.117

(6)

PWM_c = 1E-07y5 - 3E-05y4 + 0.0036y3 -

0.1794y2 + 3.9339y - 5.0599

y = -3E-10v6 + 2E-07v5 - 5E-05v4 + 0.0052v3 -

0.2882v2 + 8.468v - 69.855

(7)

Equations (5), (6), (7) are regression equations where v is

the value of velocity required for each motor and PWM_a,

PWM_b, PWM_c is the PWM value given to the motor.

To be able to reach the speed of each motor more

accurately, a proportional controller is used, so the determi-

nation of the motor rotational speed is closer to the target. In

this system, using proportional controller of 0.7, obtained from

testing with trial and error methods.

3.2 Kinematics and odometry calculation test

Table 1. Final Position test

Input[cm] End [cm] Error[cm)

X Y Time[s] X Y x y

0 40 4 8 40 8 0

0 80 4 14 78 14 2

0 120 4 7 125 7 5

40 0 4 38 16 2 16

80 0 4 86 3 6 3

120 0 4 135 5 15 5

0 -40 4 -7 -35 7 5

0 -80 4 -20 -77 20 3

0 -120 4 -15 -116 15 4

-40 0 4 -38 -15 2 15

-80 0 4 -82 3 2 3

-120 0 4 -131 -20 11 20

Average Error 9.08 6.75

For diagonal robot movements, there is an average error of

9.51% on the x-axis and 8.12% on the y coordinate. All robots

are set to reach the target position within 4 seconds, except the

target position x = 120, y = 120 and x = -120, y = -120 where

the robot's movement time is set at 5 seconds because the motor

3’s speed has exceeded the maximum (for 4 seconds). Looking

at the data shown in Table 2, if the final position is small (in

this test x = ± 40, y = ± 40), it causes an error that tends to be

greater, because the required motor speed is below 20 rpm so

that proportional control has difficulty reaching that point.

Table 2. Final Position test (diagonal)

Input[cm] End [cm] Error [%]

X Y T [s] X Y x y Avrg

40 40 4 35 38 12.5 5 8.7
80 80 4 73 65 8.7 18.7 13.7
120 120 5 125 102 4.1 15 9.5

 0 0 0
40 -40 4 38 -37 5 7.5 6.2
80 -80 4 72 -75 10 6.2 8.1
120 -120 4 115 -110 4.1 8.3 6.2

 0 0 0
-40 40 4 -33 37 17.5 7.5 12.5
-80 80 4 -70 74 12.5 7.5 10
-120 120 4 -110 111 8.3 7.5 7.91

 0 0 0
-40 -40 4 -35 -36 12.5 10 11.2
-80 -80 4 -73 -78 8.75 2.5 5.6
-120 -120 6 -108 -118 10 1.67 5.83

Average error 9.51 8.12 8.81

Figure 8. Motor A Poropotional responses

Figure 9. Motor B Poropotional responses

Figure 10. Motor C Poropotional responses

0

50

100

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R
P

M

Motor A Proportional Responses

SP A1 A2 A3 A4

-10

40

90

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R
P

M

Motor B Proportional Responses

SP B1 B2 B3 B4

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
P

M

Motor C Proportional Responses

SP1 C1 C2 C3 C4

Evert O. et al. / Omni-Directional Mobile Robot Control using Raspberry Pi and Jetson Nano / JIRAE, Vol. 4, No. 2, October 2019, pp. 57–62

 60

Looking at the responses of the three motors used, several

points can be observed as follows:

1. All three motors find it difficult to achieve low speed

numbers, especially for speeds below 25 rpm, indicated by

the error number from the proportional control response

that is of high value.

2. The current control parameter setting, which is 0.7, is more

suitable and tends to be more stable at high speeds,

especially at speeds above 90 rpm. This is indicated by the

error number of the proportional control response which is

smaller.

3.3 Distance measurement with Infrared sensor

This test is carried out to determine the use of infrared

sensors used in reading the distance of an object with a robot.

The object used for testing is a rectangular radio with a height

of 8.6 cm and a width of 13.4 cm.

Table 3. Infrared sensor to measure distance

Test Real Distance [cm] Sensor reading [cm] Error [%]

1 10 9.99 0.1
2 15 15.15 1
3 20 20.45 2.25
4 25 25.01 0.04
5 30 30.51 1.7
6 35 35.23 0.65
7 40 40.65 1.62
8 45 45.15 0.33
9 50 50.5 1
10 55 55.12 0.21
11 60 60.52 0.86
12 65 63.8 1.84
13 70 70.08 0.11
14 75 76.8 2.4
15 80 82.6 3.25

Average Error 0.87

In previous experiments, objects with a flat surface were

used. Then an experiment was carried out using a tubular object

whose surface was not flat, dan change the position of the

object. The test method remained the same as before. This is to

determine the effect of the object’s surface dan position on

distance reading with an infrared sensor.

Table 4. Distance measurement on different object’s surfaces

Distance

[cm]

Flat Surfaces Curved surface

Distance

[cm]

Error

[%]

Distance

[cm]

Error

[%]

20 20.45 2.25 18.12 9.40

30 30.51 1.70 28.16 6.13

40 38.45 3.87 36.4 9.00

50 49.55 0.90 52.5 5.00

60 61.35 2.25 62.8 4.67

70 63.8 8.86 78.1 11.57

Table 5. Distance measurement on different object’s position

Distance

[cm]

Parallel Tilted 15°

Distance

[cm]

Error

[%]

Distance

[cm]

Error

[%]

30 30.58 1.9 31.73 5.77

40 41.48 3.7 30.42 23.95

50 50.85 1.70 39.1 21.80

60 61.12 1.87 42.8 28.67

70 70.15 0.21 34.5 50.71

As the result, the curved surface and the tilted object do affect

the reading by infrared sensor, the curved or tilted object

potentially has a greater error number.

3.4 Object size measurement using pi camera and Jetson

Nano

Following the test of distance measurement, object

dimension calculation is also performed. For this, the Nvidia

Jetson Nano is used for the image processing. Due to the

physical constraints, the system cannot detect more than one

object and the object being measured must have height above

7.5 cm (height of the sensor to the ground surface).

For testing, we used various mundane objects such as a

radio, a food box, a flashlight, a DVD box, a bottle, and a lump

of sewing threads (see Figure 11).

Figure 11. Various common objects for the object size

measurement experiment.

Here are the measurement results.

Table 6. Radio’s size measurement

Distance

[cm]

Real size [cm] Camera reading [cm] Error[%]

width height width length width Height

20

13.4 8.6

13.63 8.57 1.72 0.35

25 13.6 8.66 1.49 0.70

30 13.77 8.65 2.76 0.58

35 13.51 8.4 0.82 2.33

40 13.98 8.61 4.33 0.12

45 14.33 8.57 6.94 0.35

50 13.88 8.42 3.58 2.09

55 14.08 8.37 5.07 2.67

60 13.2 8.3 1.49 3.49

65 13.38 8.47 0.15 1.51

70 13.7 8.4 2.24 2.33

Rata-Rata 13.73 8.49 2.78 1.50

Table 7. Food box ‘s size measurement

Distance

[cm]

Real size [cm] Camera reading [cm] Error[%]

width height width height width height

20

11 16

13.2 17.22 20.00 7.62

30 12.55 16.66 14.09 4.13

40 12.32 15.55 12.00 2.81

50 11.7 15.48 6.36 3.25

60 11.64 16.65 5.82 4.06

70 13.1 15.88 19.09 0.75

Rata-Rata 12.42 16.24 12.89 3.77

Evert O. et al. / Omni-Directional Mobile Robot Control using Raspberry Pi and Jetson Nano / JIRAE, Vol. 4, No. 2, October 2019, pp. 57–62

 61

As a note, the food box measurements have an average
error of 12.89% because, at distance of 20cm, the object covers
all the camera's reading screens so the size reading is invalid.
The average error for the height is 3.77%.

Table 8. Flashlight’s size measurement

Distance
[cm]

Real size
 [cm]

Camera reading
[cm]

Error
[%]

width height width height width height

20

12.55 24.88

14.4 12.1 14.74 51.37
30 6.08 4.97 51.55 80.02
40 12.77 24.44 1.75 1.77
50 12.31 23.52 1.91 5.47
60 10.83 19.67 13.71 20.94
70 11.67 21.44 7.01 13.83

Rata-Rata 11.34 17.69 15.11 28.90

For reading the size of a round flashlight, the average
number of errors is 15.11% and 28.9%, because at distance of
20 cm and 30 cm, the size of the object is too large for the
camera reading.

Table 9. DVD box’s size measurement

Distance
[cm]

Real size
[cm]

Camera reading
 [cm]

Error
[%]

width height width height width height

20

38.85 24.85

4.75 2.2 87.77 91.15
30 4.56 2.15 88.26 91.35
40 5.88 3.55 84.86 85.71
50 42.12 25.12 8.42 1.09
60 39.85 24.88 2.57 0.12
70 39.25 23.76 1.03 4.39

Rata-Rata 22.74 13.61 45.49 45.63

Measurement using a DVD box is only effective at
distances greater than 50 cm, because at closer distances, the
camera screen is not enough to capture the entire object.

Table 10. The balm bottle’s size measurement

Distance
[cm]

Real size [cm]
Camera reading

[cm]
Error[%]

width height width length width Height

20

5.1 3.6

11.8 12.3 131.37 241.6
30 8.44 10.01 65.49 178.
40 7.22 8.02 41.57 122.7
50 5.41 6.78 6.08 88.33
60 6.35 9.5 24.51 163.8
70 21.7 10.18 325.4 182.7

Rata-Rata 10.15 9.47 99.08 162.9

Measurement of the size of the balsam bottle object cannot
be carried out, because the height of the object is only 3.6 cm,
while the placement of the sensor is 7 cm from the ground
surface. So it cannot be detected by an infrared sensor, causing
the absence of distance readings and calculations for
measurements with the camera cannot be processed correctly.

Table 11. A lump of sewing thread ‘s size measurement

Distance
[cm]

Real size
[cm]

Camera reading
[cm]

Error
[%]

width height width height width height

20

7.5 11.5

6.40 10.66 14.67 7.30
30 7.53 11.2 0.40 2.61
40 7.45 10.88 0.67 5.39
50 7.21 10.34 3.87 10.09
60 6.85 9.44 8.67 17.91
70 7.47 10.87 0.40 5.48

Rata-Rata 7.15 10.57 4.78 8.13

From the above experiments, we observe the following:

• The system cannot detect objects with the same back-

ground color as the object.

• The shape of objects that can be measured is square,

rectangular, round, tube. Beyond this form, the reading

becomes less accurate.

• To be able to read its size, objects must all enter the camera

reading frame. If it is too close to the camera, it might pro-

duce invalid readings.

Figure 12 shows the sketch and the physical appearance of

our robot.

Figure 12. The sketch and the real robot.

4. Conclusion

This paper describes the process of designing a 3-wheel

omni-directional mobile robot that is controlled using a

Raspberry Pi for its direction and can detect simple objects in

front of it. Inverse kinematics was used to determine the

direction and speed of each motor, and the odometry was used

to estimate the movement of the robot's position. From these

two calculations, the robot can move and stop at the position

inputted by the user with an error rate of 9.51% on the x-axis

and 8.12% on the y-axis for the robot's final position. This is

influenced by the speed of the robot to reach that point, the

proportional parameters used, and the distance between the

final position and the initial position. Reading the distance of

an object using an infrared sensor, we got an average error of

0.87%. The factors that influence this reading accuracy are the

angle of placement of the object to the sensor and the surface

of the object being measured. For the object detection, the

OpenCV library was used that utilizes the color contrast of

Evert O. et al. / Omni-Directional Mobile Robot Control using Raspberry Pi and Jetson Nano / JIRAE, Vol. 4, No. 2, October 2019, pp. 57–62

 62

objects against the background to detect an object. From the

results of testing the size of objects using 6 objects of different

sizes, this method has the ability to read object sizes in front of

the robot with an average error of 30.02% for length readings

and 41.8% for object height readings. This detection accuracy

was influenced by object size, object distance from the camera,

and object detection methods used. For future work, we plan to

combine this omni-directional robot platform with a mani-

pulator to create an adaptive mobile manipulator.

Acknowledgements

This work is supported partially by Petra Christian Univer-

sity through the Special Grant (No.009/SP2H/LT-MULTI/

LPPM-UKP/III/2020 and No.016/SP2H/LT-MULTI/LPPM-

UKP/III/2020).

References

1. ABI Research, “50,000 Warehouses to Use Robots by

2025 as Barriers to Entry Fall and AI Innovation Accele-

rates”, 2019, March 26. [Online] Available: abiresearch.

Com.

2. X. Li and A. Zell, “Motion control of an omnidirectional

mobile robot,” Lect. Notes Electr. Eng., vol. 24 LNEE, pp.

181–193, 20

3. K. Drive, “A Simple Introduction to Omni Roller Robots,”

no. April, 2015.

4. A. Rosebrock, “Measuring size of objects in an image with

Open CV,” 28 March 2016. [Online]. Available:

https://www. pyimagesearch.com/2016/03/28/measuring-

size-of-objects-in-an-image-with-opencv/.

5. P. Malheiros, J. Gonçalves, and P. Costa, “Towards a more

Accurate Infrared Distance Sensor Model,” Manuf. Syst.

Eng. Unit, no. Sept, 2010.

6. M. Taufiqqurohman and N. F. Sari, “Odometry Method

and Rotary Encoder for Wheeled Soccer Robot,” IOP

Conf. Ser. Mater. Sci. Eng., vol. 407, no. 1, 2018.

7. J. J. Parmar and C. V Savant, “Selection of Wheels in

Robotics,” Int. J. Sci. Eng. Res., vol. 5, no. 10, pp. 339–343,

2014.

8. F. Fahmizal, D. U. Rijalussalam, M. Budiyanto, and A.

Mayub, “Trajectory Tracking pada Robot Omni dengan

Metode Odometry,” J. Nas. Tek. Elektro dan Teknol. Inf.,

vol. 8, no. 1, p. 35, 20.

