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Abstract—This paper presents a unified profiling platform
for a many-core machine that gives realtime information about
the current state of the system. Such information is valuable
for the observation and evaluation of running programs on
the machine, as well as the health status of the machine
itself. The information from the profiler can also be used for
tuning the system’s kernel operational parameters to maintain its
performance and reliability. In our work, the profiler framework
is developed for SpiNNaker, a many-core neuromorphic platfrom.
The profiler framework provides realtime information such as
power consumption, chip temperature, processor frequency, core
utilization, and network connectivity. Many researchers and
institutions have been using SpiNNaker not only for simulating
spiking neural networks, but also for general purpose and energy-
aware computing. Therefore, it is important to provide a reliable
and comprehensive profiling platform for helping SpiNNaker
users in developing their programs.

Index Terms—system profiling, many-core, SpiNNaker, run-
time management.

2 [. INTRODUCTION

SpiNNaker (spiking neural network architecture) is a many-
core neuromorphic platform developed originally for simulat-
ing large-scale spiking neural networks (SNNs) in biological
real time [1]. However, it can also be used as a generic
platform that provides a research infrastructure in the domain
of many-core systems and high performance computing.

As a research platform for exploring the emerging many-
core technology, the SpiNNaker development environment is
in a progressive state where everything from the hardware
upwards cannot be assumed to be totally reliable. Therefore,
a reliable and comprehensive profiling tool is needed to help
users and developers to deploy and optimize their programs
on SpiNNaker.

Reading SpiNNaker’s states such as temperature, clock
frequency, and cores utilization is very useful in a scenario
such as a runtime management system (RTM). Such a sys-
tem is designed to optimize the performance of programs

and to optimally make use of available resources. Dynamic
Voltage and Frequency Scaling (DVFS) and Dynamic Power
Management (DPM) are two hardware techniques for reducing
power consumption commonly used in multi-core embedded
system [2], [3]. We are interested on investigating such RTM
techniques for many-core systems such as SpiNNaker. For this,
we have developed a profiling tool that supports future RTM
implementation on SpiNNaker.

In this paper, we introduce a unified and comprehensive
profiling framework that provides the most important informa-
tion about the current state of a running machine. The profiler
framework will collect and present the following information
from a SpiNNaker system: power consumption of several
hardware modules (CPU-cores, SDRAM, FPGA, etc.), chip
temperature, current clock frequency, CPU utilization, and on-
chip networking activity. This information provides essential
metrics for runtime system optimization. The aims of this
paper are three-fold:

1) To give readers and the SpiNNaker user community
an understanding of mechanisms for measuring various
SpiNNaker performance metrics.

To demonstrate the importance of profiling SpiNNaker
performance during software development.

To provide a measurement baseline for further complex
analysis such as application-independent power usage
modelling in a SpiNNaker machine.
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The structure of this paper is organized as follow. Section
II describes the platform development including hardware
and software mechanisms with focus on a SpiNNaker board.
Section III describes profiler functionalities in example use
case scenarios. Section IV discusses the current state of the
profiler framework, and a conclusion is presented in Section
V.

II. PLATFORM DEVELOPMENT
A. SpiNNaker Hardware

Hierarchically, the SpiNNaker machine is constructed on
several la_\'el At the lowest layer, there is a SpiNNaker
chip, which is a many-core system-on-chip (SoC) with 18
ARMY968 cores and 128 MB SDRAM. The second layer is
the SpiNNaker board, which has 48 SpiNNaker chips mounted
on a single PCB. The third layer is the SpiNNaker frame,
which is constructed from 24 SpiNNaker boards. The fourth
layer is the 197 SpiNNaker cabinet, which is constructed from
5 SpiNNaker frames. The final SpiNNaker machine will be
assembled from ten SpiNNaker cabinets.

Each SpiNNaker chip is composed of two modules: a
Sl:ﬂNaker die and an SDRAM module, where the SDRAM
is mounted on top of the SpiNNaker die. The SpiNNaker die
consists of several sub-modules: 18 ARM968 processors (each




has its own local fast static memory), 32 KB static shared
memory, an on-chip router, a system controller, two PLLs,
and three temperature sensors. All of these components are
managed by the system controller.

As an SoC, a SpiNNaker chip is also equipped with a
network-on-chip (NoC). Inside the chip, a dedicated router
is responsible for managing various neuromorphic-style com-
munication protocols. SpiNNaker communication is mainly
done by using small size data packets of 40 or 72 bits.
There are several types of packet used in the communication,
but our work uses only two of them: multicast packet (MC)
and point-to-point packet (P2P). Using P2P, a higher level
communication protocol is built namely SpiNNaker Datagram
Protocol (SDP). We use SDP as a means for transmitting
various measurement values between chips and also to the
host PC.

In our work, we have developed a profiler framework
targeting a SpiNNaker board. Our profiler platform is designed
to collect the following information: power consumption, tem-
perature, frequency, CPU utilization, and packet traffic. The
information about temperature, frequency, CPU utilization,
and network traffic can be collected internally within each
SpiNNaker chip: hence, an external acquisition system is
not necessary. However, for power measurement an external
acquisition system using Arduino was developed.

B. Profiler Components

1) Power Measurement: A SpiNNaker board contains not
only SpiNNaker chips, but also several components that sup-
port inter-board communication as well as board management.
For this, each SpiNNaker board is powered by six DC/DC
converters with various voltage levels. Those are: three 1.2V
supply for all ARM processors in all chips (grouped into
three power banks), one 1.2V supply for logic fabric in three
FPGAs, one 1.8V for SDRAM in all chips, and one 3.3V for
the board management system (which includes a dedicated
microcontroller called BMP and two Ethernet PHY modules).

For measuring power, a data acquisition system (DAS)
using Arduino was developed. This DAS is equipped with six
current-to-voltage (I2V) circuits, and a multi-channel analog-
to-digital converter (ADC) type MAX11633. Each I2V module
contains a current sense amplifier INA213 and a shunt resistor,
where the resistor is placed in series with the corresponding
DC/DC converter. The logical circuit diagram of this DAS
along with the SpiNN-4 board is shown in Fig.1.

2) Temperature Measurement: There are three independent
temperature sensors on the chip, each with its own control
and sensor read-out register. The three sensor
sensor mechanisms to enable the temperature to be corrected
for process and voltage variations [4]. The first two sensors
are linear sensors with opposite polarity (sensor-1 is an NTC
sensor, whereas sensor-2 is a PTC sensor), and the third sensor
is a non-linear sensor.

3) Frequency Measurement: There are several clocks inside
a SpiNNaker chip: processor clock, router clock, SDRAM
clock, and system controller clock. The clock for processors

s use different

is split into two groups: group-A for processors with odd-
numbered ID, and group-B for processors with even-numbered
ID. All of those clock traces are managed by two phase-
locked-loop (PLL) modules, which are driven by a single
10MHz clock source. By using a divider and a multiplier inside
the PLL, the PLL’s output frequency can be adjusted between
25MHz and 400MHz. An external clock divider then converts
the PLL’s output into the required clock frequency.

4) CPU Utilization Measurement: There is no dedicated
circuitry inside a SpiNNaker chip that provides direct mea-
surement of a core utilization (or a CPU load). However, the
System Controller is equipped with a register that contains
sleep mode status flags of all ARM cores in the chip. Each
core will send a STANDBYWFI (stand-by wait for interrupt)
signal when it goes into low-power sleep mode. This signal
will set a bit flag in that register. By counting how many times
this bit flag is changed for a specific time duration, we can
measure the utilization (or load) of the corresponding core.

5) Packets Traffic: Monitoring packet traffic is very useful
for some programs, especially those that require reliable
distributed processing. By monitoring packet traffic, a load
balancing algorithm can be implemented. The SpiNNaker
router has many registers for monitoring and controlling
the packet routing. In our work. we are interested only on
monitoring how many packets have been transmitted and how
many of them are dropped. Our profiler program collects such
information especially on multicast packets (MCs) and point-
to-point packets (P2Ps). These two type of SpiNNaker packets
are the most commonly used data packets in user applications

[5].

C. Software Structure

SpiNNaker system does not have a mainstream operating
system (OS) such as Linux to maintain its operation; rather,
it has its own kernels that manage the entire operation of a
SpiNNaker system. There are two kernels: SpiNNaker control
and monitoring program (SC&MP), and SpiNNaker runtime
application kernel (SARK). The SC&MP runs exclusively in
core-(0 of every SpiNNaker chip, whereas SARK runs in other
cores. Every application program should be compiled using
the SARK library, so that it can access SpiNNaker resources
through the SARK kernel. Our profiler platform also uses
the same mechanism: it uses SARK functionality in order to
collect information for various measurements. There is also an
application program interface (API) than can be used to write
an application for SpiNNaker. Fig.2 shows how our profiler
framework is deployed.

As seen in Fig.2, we run the profiler program in every
chip. On chip (0,0), the profiler program becomes the root
profiler that manages the communication with the main profiler
program (with GUI) in a PC through an Ethernet link. This
root profiler also manages the communication for gathering
all information from other profiler programs in different chips
before sending the combined information to the PC. The root
profiler sends a signal as an MC packet to all profilers, which
instructs them to start sending the information to the root




Fig. 1. The overall logical circuit diagram showing unified measurement system: an Arduino-based DAS for power measurement, and internal SpiNNaker

profiler program for measuring internal state of the SpiNNaker chips.
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Fig. 2. Communication flow of the profiler framework. Inside every ¢
a profiler program runs on core-1 and collects information from the corre-
sponding chip. The profiler program running in chip (0,0} also behaves as the
root profiler, which broadcasts a message using an MC packet periodically
to all other chips. The other profiler programs will respond by sending their
measurement data to the root profiler. To synchronize with Arduino data, the
root profiler waits for a signal from the main profiler in the PC. This signal
will be sent through the Ethernet link by the main profiler, once it gets a new
data from Arduino.

profiler. Once the profiler program in other chips receives
this signal, it sends the information back to the root profiler
using SDP packets. The information sent by the root profiler
is visualized by the main profiler in the PC.

Every SpiNNaker program in a chip can query information
from the profiler in that chip for its own purpose, such as for
optimizing its performance. This has been used for example
in [5]. For general evaluation and monitoring of a SpiNNaker
machine, our profiler framework provides visual information
in a GUI (graphical user interface) that runs on a standard PC.
Fig.3 shows the profiler visualization on a desktop PC.

TABLE I
SPINN-4 POWER PROFILE IN THREE DIFFERENT STATES.

Condition
Powered up, not booted
Booted, no application

Intense applications

Power (Watt)
2358
27.70
53.65

III. EXAMPLE USE CASES

In this section, some use case examples of our profiler
framework are presented.

A. Power Measurement

Measuring power consumption is a crucial aspect when
developing power-aware and reliable applications. This be-
comes more obvious especially for embedded systems, where
hardware constraints play an important role in the overall sys-
tem design and performance evaluation. Recently, SpiNNaker
machine has been used as a “brain” for a mobile robot [6]. The
robot used in [6] is shown in Fig4. Unfortunately, the robot
was designed without measuring the real power consumption
of the SpiNNaker board: hence, the robot is equipped with
“plenty” of batteries to ensure operability of the robot. In
future, the real power consumption by the SpiNNaker board
may be taken into consideration for creating more efficient
robot platforms. By using our profiler framework for power
measurement, the real power consumption can be calculated
precisely. Table I shows the power profile of SpiNN-4 under
several conditions.

Another project that demonstrates the use of our profiler
platform is presented in [5]. The authors measured the power
consumption of the SpiNNaker machine that was used for




Temperatura o

i

mEEE

1

b

Fig. 3. The GUI of the main profiler. It is developed in Python using PyQt module. It has several sub windows that correspond to each modality in the
measurement data. Shown here are the Arduino-based DAS Interface Console, Power Measurement Widget, Temperature Widget. Frequency Widget, and
Network Connectivity and Activity Widget. The other sub windows are hidden: Core Utilization Widget, Frequency Selector Widget, Task Migration Widget.

and the SpiNNaker Debug ging Console.

Fig. 4. SpiNNaker usage for mobile robotic research. The robot was developed
by a team from Neuroscientific System Theory in Technische Universitiit
Miinchen, Germany. The robot is equipped with six high power Li-ion
batteries, much more than enough to power up the entire system.

developing an image processing application on SpiNNaker.
By measuring the real power consumption, it is concluded
by the author that SpiNNaker is capable of performing high
resolution image processing equivalent to modern graphic
cards but with much lower power consumption.

Recently, the profiler framework was also used for measur-
ing the power consumption during a simulation of a spiking
neural network (SNN). Fig.5 shows the plot generated from
data produced by our profiler framework for this simulation.
Initially, the SpiNNaker software developer assumed that

the power should be in either a steady level or fluctuates
synchronously with event processing in SpiNNaker. However,
they found an interesting phenomenon where the fluctuation
happens periodically every six seconds independent of event
processing (shown in Fig.5 in region ¢). This has lead into a
new investigation by the SpiNNaker software team, which is
still in progress at the time of writing this paper.

B. Temperature Measurement

SpiNNaker is an example of the emerging many-core tech-
nology. Running an application on a many-core platform,
especially a compute-intensive one, will easily increase the
temperature of devices that eventually leads into lifetime short-
age of the system (which is usually measured as MTTF - mean
time to failure). Hence, thermal-aware runtime management
(RTM) system has become a hot topic in research recently,
and many engineers and scientists try to model the behaviour
of many-core system under this control mechanism [7]. For
this, we need to provide a reliable temperature monitoring
system. Currently, a dynamic RTM system with predictive
thermal model is under development for SpiNNaker. This RTM
control system will use the temperature measurement of our
profiler program. Fig.6 shows the profile of three SpiNNaker
temperature sensors under normal operations. The temperature
of SpiNNaker chips on SpiNN-4 can also be displayed on real
time, as shown in Fig.3.
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Fig. 5. An example of power measurement during SNN simulation. Three

region of interests are shown: (a) during powering up the SpiNNaker board,
(b) during booting up the board, (¢) during running the SNN simulation.
Regions a and b show SpiNNaker behavior as expected. but region ¢ shows
something new and cumently being investigated thoroughly by the SpiNNaker
software developer team.

C. Processor Frequency and Utilization Measurement

In addition to temperature profiling, a dynamic RTM control
system will also need information about current processor
frequency as well as processor loads. Our profiler platform is
designed to provide such information simultaneously in real
time. The RTM then will use these information to maintain the
system performance at optimal point. This information can be
queried directly by an application in a SpiNNaker chip from
the corresponding profiler program (running in core-1), and
can also be visualized in real time on the main profiler GUL
The frequency measurement plot is shown in Fig.3, whereas
the processor utilization plot is shown in Fig.7.

D. Packets Traffic for Nerwork Evaluation

As a massive many-core system, SpiNNaker has attracted
researchers to deploy a distributed and parallel computing
program on it using a Task Graph (TG) formalism. One
particular challenge of implementing a TG on SpiNNaker is
the mapping between TG nodes and SpiNNaker chips. Authors
in [8] for example used an evolutionary algorithm to produce
optimal mapping of a TG on SpiNNaker. To further improve
the mapping result, the authors observed the number of packet
drops and congestion in the network. This was done by using
our profiler platform that provides information about network
connectivity on the SpiNNaker board. As described in Section
II-B5, the profiler program in each chip monitors packets
traffic in-and-out of the chip, as well as dropped packets. As
a result of using information from the profiler, a more reliable
network is achieved because the TG can be remapped and
the load can be balanced across the network. The networking
activity of SpiNNaker chips can also be observed visually from

the main profiler GUI as shown in Fig.3. The largest window
in the figure shows the layout of SpiNN-4 chips and their
interconnection. Each square in the diagram represents a chip,
and its color represents its networking activity level.

IV. DISCUSSION

Our profiler platform is a part of an RTM system currently
under development for SpiNNaker. Initially, it has only the
following measurements: temperature, frequency, and core uti-
lization. Later on, we found that some SpiNNaker applications
also require power measurement as well as network traffic
monitoring. Hence, we extended the profiler program so that
it covers a wider range of measurement.

As demonstrated in Section III, the profiler platform works
reliably to collect and visualise various measurement data. The
profiler is designed such that it can be accessed directly by
SpiNNaker applications to provide various information about
current SpiNNaker states, or for real-time observation via a
GUI on a standard PC.

Regarding SpiNNaker power distribution modelling, cur-
rently the profiler only supports power measurement of a
single SpiNNaker board. As described in Section II-A, the
big SpiNNaker machine will be composed of many boards
and cabinets. To build a SpiNNaker frame or cabinet, several
supporting circuitry called backplane modules are required.
‘We can estimate the power consumption of these modules per
frame. Thus, by combining the backplane power model and
SpiNNaker board power model, we can build the complete
power model of the whole SpiNNaker machine. We regard
this as an opportunity for our future work.

Another possible improvement for the profiler framework
is the inclusion of a monitor program for memory usage.
In PC-based operating systems, such a monitoring tool is
standard practice and very useful for giving information about
currently available memory. Using this tool, we can monitor
the performance of a program with respect to its memory usage
efficiency. The information from this tool can also be used by
an RTM program in a process migration scenario, where it
needs to estimate the time needed to move a process and its
workspace in memory from one chip to another chip. Hence,
we also regard this as another opportunity for future work.

V. CONCLUSION

A unified and comprehensive profiling platform for SpiN-
Naker has been developed, and its evaluation as well as its
current use cases is presented in this paper. The profiler
platform is developed to collect, represent, and visualise
various machine states/information, such as machine’s power
distribution and consumption, chip temperature, processor
clock frequency and utilization, and network traffic. Such
information is valuable for observation and evaluation of
running programs on the machine, as well as the health
status of the machine itself. The information from the profiler
can also be used for tuning the system’s kernel operational
parameters to maintain its performance and reliability. Many
researchers and institutions have been using SpiNNaker not
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Fig. 6. The behaviour of three internal sensors of a SpiNNaker chip under normal operation. On the top row, each sensor output is plotted in the time domain
alongside an external sensor reading for calibration. On the bottom row, the output of a simple mapping function between real sensor output and external

sensor reading is plotted; these will give temperature readings in centigrade.

Fig. 7. A dialog window showing processor (CPU) utilization. This window
actually belongs to the main GUI shown in Fig.3, but shown separately here
for figure simplicity. The CPU utilization can be displayed as raw/absolute
values (shown above), or relative values (by changing the mode in the Mode
Menu).

only for simulating spiking neural network, but also for general
purpose and energy-aware computing. Thus, the the profiler
platform presented in this paper will be very useful to help
SpiNNaker users and software developers in developing their
program.
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