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Abstract—This paper presents an approach to provide a Run-
time Management (RTM) system for a many-core neuromorphic
platform. RTM frameworks are commonly used to achieve an
energy saving while satisfying application performance require-
ments. In commodity processors, the RTM can be implemented
by utilizing the output of Performance Monitoring Counters
(PMCs) to control the frequency of the processor’s clock. How-
ever, many neuromorphic platforms such as SpiNNaker do not
have PMC units; thus, we propose a software-defined PMC that
can be implemented using standard programming tool-chains
in such platforms. In this paper, we evaluate several control
strategies for RTM in SpiNNaker. These control programs are
equivalent with governors in standard operating systems such as
Linux. For evaluation, we use the RTM with several image pro-
cessing applications. The results show that our propoesed method,
called Improved-Conservative, produces the lowest thermal risk
and energy consumption while achieving the same performance
as other adaptive governors.

Index Terms—PMC, RTM, many-core, SpiNNaker.

I. INTRODUCTION

Run-time Management (RTM) is a feature commonly found
in modern Operating Systems (OS), and its importance be-
comes prominent in the era of mobile computing [1]. Tt is
a task of the OS that maximises performance whilst trying
to maintain the overall reliability for long-term usage. In
Unix/Linux based OSes, this RTM can be implemented using
a framework called a governor. Even though the concept of
the RTM has been developed for some time, it is still being
actively explored for multi-core processors [2]. [3].

The complexity of an RTM design increases when the
system is expanded from a multi-core to a many-core system.
In a many-core system. the RTM is required to work seam-
lessly accross the network of distributed processors. Several
models of RTM for many-core systems have been proposed,
and to our knowledge, those RTMs rely on the presence of
a standard/mainstream OS that provides access to processor’s
performance monitoring hardware. However, not all many-core
systems are equipped with such an OS; in this circumstance,
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the design of an RTM must be done from scratch, and this
paper presents a study of an RTM design for a many-core
system without an OS.

As a target platform, a many-core neuromorphic called
SpiNNaker is used. SpiNNak which stands for Spiking
Neural Network Architecture, is a many-core neuromorphic
platform developed for simulating a massive spiking neural
network (SNN) in biological real time [4]. SpiNNaker is
built on a standard low-p@Rer ARM processor architecture:
hence, it is possible to use the SpiNNaker for general purpose
computing beyond SNN simulation [5].

The SpiNNaker system does not use a standard OS com-
monly found in computers. Instead, it uses a special kernel
program known as SARK (SpiNNaker Application Runtime
Kernel) that manages the entire operation of an application
program running on a SpiNNaker machine. Currently, the
SARK does not have any RTM, and in this paper we explore
the possibility of deploying several RTM programs and evalu-
ate their performance. The presence of an RTM in SpiNNaker
is useful to maintain reliability over long-term operation of a
SpiNNaker machine as well as to optimize the performance
of application programs running on the machine.

The challenges of developing an RTM in SpiNNaker come
not only in the absence of a standard OS, but also from
the hardware itself: the SpiNNaker chips do not have any
Performance Monitoring Counters (PMCs) that are usually
used in an RTM program [6], [7]. Hence, we propose a method
which we refer to as software-defined PMC as an alternative
to provide performance metrics needed by RTMs. The aims
of this paper are as follows.

1) To give readers an understanding of mechanisms for
developing and using an RTM for many-core system.

2) To describe methods for developing PMCs in software
for SpiNNaker that can be extended for general purpose
many-core system.
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3) To demonstrate the possiblity of implementing an RTM
for SpiNNaker.
4) To provide a measurement baseline for further complex
RTM desiggs in the future.
The structure of this paper is organized as follows. Section
II shortly describes the platform and the basic concept of RTM
that is relevant to its development for SpiNNaker. Section IIT
describes several PMCs that are defined and used for control
algorithms in the RTM framework. Section IV contains the
experiment results and also discusses the current state of
the implemented RTMs. Finally, the paper is closed with a
conclusion in Section V.

1I. BACKGROUND
A. The SpiNNaker System

SpiNNaker is a novel massively parallel computer archi-
tecture, inspired by the fundamental structure and function
of the human brain, which itself is composed of billions of
simple computing elements, communicating using unreliable
spikes. It is a power efficient heterogeneous system intended
for modeling spika neurons in real-time. Each SpiNNaker
chip comprises of 18 identical ARM968 cores. cach with its
own local tightly-coupled memory (TCM) for storing data
(64KB) and instructions (32KB)EJIl cores have access to a
shared off-die 128MB SDRAM through a self-timed system
network-on-chip (NoC). In terms of the number of cores, there
are several different SpiNNaker machines, including a 4-node
board (72 cores), 48-node board (864 cores), and 24-board
frame (20,736 cores). The final version of the SpiNNaker
machine will contain 1,036,800 cores, which will be hosted in
ten 19-inch cabinets. An example of a 48-node board is shown
in Fig.1, which is used in this paper.

The communication infrastructure of SpiNNaker relies
mainly on small pa&t protocols. A router is placed at the
center of the chip. The router is capable of handling one-
to-many communications efficiently, while its novel intercon-
nection fabric allows it to cope with very large numbers of
SpiNNaker data packets.

Each chip has 2-phased (phase-locked loop) PLL circ
that can be controlled for providing correct clock frequency.
The PLLs provide clock to the following component in SpiN-
Naker chip: ARM cores, SDRAM, router, and system bus. In
this paper, we only modify the clock frequency of ARM cores.

B. RTM for System Reliability

Running a compute-intense application on a multi-core
system almost always raises issues. On one side, this type
of applications consumes more timing-related resources from
the processor, leaving the other applications shorter execution
periods and thus reducing the overall performance. On the
other side, due to the elevated operating temperature, the life-
time operability of the system is threatened by the acceleration
of device wear-out. Also, in the era of mobile and green
computing, the requirement for power/energy optimization is
increasing. These are the main reasons for the existence of
RTM in many modern OSes.

"Root-node” at coordinate <0,0>

Fig. 1. 48-node SpiNNaf] board. Fach chip contains 18 ARMI&S cores
(shown on top figure) and 128MB SDRAM mounted on top of the processor
die. A special chip labeled as “root-node™ contains an RTM supervisor that
coordinates all other RTMs in each chip on the board.

Many RTMs that address both system performance and
the thermal awareness have been proposed in the literature.
Dynamic Voltage and Frequency Scaling (DVFS) and Dy-
namic Power Management (DPM) are two hardware tech-
niques for reducing power consumption commonly used in
multi-core embedded systems [1], [8]-[10]. Fundamental to
the approaches is a run-time n that collects various

>s using components such as on-board thermal sens
s a controller program that maps the relationship
between the frequency of processor cores and its lelneralule,
The controller, which is also called governor, aims to control
the average temperature and the thermal cycling to achieve an

extended uptime of the system (i.e., mean time to failure or
MTTF). Through this parameter, the lifetime reliability of the
system can be determineﬁs follows [11]:

R(t) = e ®4°

where A is the thermal aging of the system that depends on
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the execution time of the application, the average temperature
during the execution, and the fault density. The lifetime of the
system is thus modeled by integrating R(t) overtime:

:x. bo
Mrn’:]ﬂ(tjdt:fp-“"”’dt
o [

Hence, maximizing the MTTF is equivalent to minimizing the
aging of the system. It can be done by reducing the thermal
str which is closely related to the maximum temperature
and its variation in thermal cycles.

Regarding the control mechanism, unfortunately the SpiN-
Naker hardware does not have a dedicated module that pro-
vides a fully compliant DVFS mechanism. It does, however,
have programmable PLL units inside the chip that can be
controlled for providing correct frequency settings. The RTM
for SpiNNaker relies on these PLLs, and we have developed
a program that emulates performance counters.

C. PMC for RTM

The use of PMCs for RTM is of paramount importance as
they can be monitored at regular fine grained intervals, e.g. 100
ms, and the RTM can take decisions based on the monitored
values to perform optimization for one or several objectives,
such as energy consumption and/or performance [12], [13].
The decision can be mapping of an application to a different
set of cores [14] or voltage/frequency levels of the cores
[13]. In case of unavailability of PMCs, the design options
related to different decisions need to be explored offline for
all the possible run-time scenarios, which are non-traceable
for dynamic and large scale systems [15].

Since usage of PMCs for RTM has tremendous potential,
it has been well exploited. While most of the efforts have
exploited PMCs during runtime [7]. [14]. [16]. [17]. some
have also used them to build profiling information to facilitate
efficient RTM [18], [19]. Runtime optimizations have replied
on one or several PMCs, such as CPU cycles, L2 cache read
refills, total amount of executed instructions, active cycles, L1
and L2 cache misses per instruction, and branch mispredictions
per instruction. The values of PMCs at regular intervals
provide information to optimize for one or several metrics,
e.g. a high value of L2 cache read refills indicates that the
program needs data from the main memory and thus the core
executing the program can be run at low frequency.

In aforementioned works, the PMCs are made available by
the OS to the scheduler/RTM to take appropriate decisions.
However, the OS has significant memory and power overheads.
Such OS overheads in SpiNNaker are significantly reduced
by using SARK. but this imposes challenges to make PMCs
available to the RTM.

1I1.

In this section, the core algorithm for RTM in SpiNNaker
that makes use of software-defined PMCs is presented. One
of the main elements of an RTM is the governor: the program
that manages the clock frequency of the system. In our work,

SOFTWARE-DEFINED PMC FOR SPINNAKER

the three standard governors are implemented and tested: user
defined, on-demand, and conservative. In addition to these,
we propose a new algorithm to improve to performance of the
standard conservative governor.

A. PMC Design

As described in Section II-A, SpiNNaker is a neuromorphic
system that is used to mimic brain operation at the neuron
level. The main characteristic of such an operation is the
massive network of small computational units (i.e., the neu-
rons) with very low power consumption. With this paradigm,
the SpiNNaker chip was designed with focus on providing a
reliable communication infrastructure. Hence, standard PMCs
commonly found in conventional processor systems are not
available in SpiNNaker chips. Furthermore, the SpiNNaker
chip’s core uses ARM968, which does not have any per-
formance monitoring unit (PMU). The SpiNNaker hardware,
however. provides PMCs that are directly related with the
communication infrastructure, such as the router diagnostic
counter, packet delay histogram, etc. The SpiNNaker kernel
(SARK) uses these PMCs to maintain the communication
reliability, e.g., by managing the emergency routing when a
link fails (temporarily, due to congestion, or permanently, due
to component failure).

In this paper, we introduce and define the following PMCs:
CPU Idle Counter (CIC), DMA Full Counter (DFC). and
Thermal Violation Counter (TVC).

The CIC is implemented by reading the CPU sleep status
register (register 25 in the System Controller at address
0xe2000064). When a core is in idle state (awaiting an
interrupt), it raises a flag in this register. By counting how
many times the flag is raised. we can measure the load of
the corresponding core. To facilitate counting, we utilize the
system-wide slow counter of the SpiNNaker machine that runs
at 32kHz.

The DFC is implemented by counting how many times
the DMA module is in a full state. DMA is the most im-
portant memory access feature of SpiNNaker, since a core
in a SpiNNaker chip has a very limited internal memory
(32KB for instruction, and 64KB for data). By using DMA,
the SpiNNaker core can access the external SDRAM (up to
128MB per chip) at high speed. However, this DMA module
is shared among 18 cores in the chip. Hence, the DFC is
very important in a multi-core processi y providing
DFC, an application program in a core can adaptively adjust
its performance. The DFC is related to register 5 of the DMA
module in a SpiNNaker chip at address 0x40000014. When
DMA is full, a core is prohibited to request a DMA acce:
hence increasing the processing latency of the core.

The TVC is implemented by counting how many times
the SpiNNaker chip’s temperature is above the predefined
threshold value. As described in Section 1I-B, thermal stress is
one important parameter to maintain to achieve longer lifetime
of a SpiNNaker chip. For measuring this thermal stress, TVC
is developed by utilizing internal temperature sensors of a
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TABLE [
THE FOUR PMC-BASED GOVERNORS DEVELOPED FOR SPINNAKER RTM.

[ Name Label
User Defined [ GI
On-demand G2

Description ]
Static/constant frequency defined by user.
Runs at highest frequency when cpu loads
are high, and at lowest frequency when cpu
loads are low.
Increase or decrease frequency at fixed
frequency-step interval according to the cpu
load levels.
Similar to G3, but the step is computed from
the half of difference between the current
frequency and the highest/lowest frequency.

Conservative | G3

Proposed G4

SpiNNaker chip, which is read periodically using the system-
wide slow timer alongside the CIC. In our proposed governor
(see section III-B), we used the value of TVC to set the
maximum frequency that can be selected during frequency-
step calculation in order to avoid thermal violations.

B. Governor Design

Four governors for our RTM are implemented and eval-
uated. Three of these are standard Linux governors: User-
defined, On-demand, and Conservative, whereas our proposed
method is an enhancement to the Conservative governor.
Table I shows the governors and their symbols used this paper.

The governor program runs exclusively on core-1 in ev-
ery SpiNNaker chip, and each governor is responsible for
managing only the PLLs inside the corresponding chip. A
SpiNNaker chip might have a different frequency controlling
scheme than the other chips. However, they can also run
synchronously. In this synchronous mode, the governor in the
chip with coordinate <0,0> on the 48-node board (labeled
as “root-node” in Fig.1), behaves as the main governor that
coordinates all governors in other chips. This scenario is useful
for applications that run on several chips in the SpiNNaker ma-
chine. For communication among governors, the SpiNNaker
Datagram Protocol (SDP) is utilized. Even though SDP is a
slow mechanism, it can contain a larger payload than any other
communication protocol available in SpiNNaker [20].

1) User-defined Governor: When this governor is selected,
a fixed frequency defined by the user is applied to SpiNNaker
cores in a chip. The minimum and maximum clock frequency
for SpiNNaker cores selectable by the user are 10MHz and
255MHz respectively. The frequency can be incremented or
decremented at 1MHz step. For our experiments, we set the
User-defined frequency at 200MHz, which is the normal op-
eration of SpiNNaker for spiking neural network applications.

2) On-demand Governor: In this paper, we developed the
on-demand governor as follows. using CIC, we defined a

THRESHOLD utilization value. During application run-time,
the CIC will increase and/or decrease dynamically. When the
CIC value is higher than the THRESHOLD value, the clock
frequency is set to the maximum (255MHz). Otherwise, it
decreases the clock frequency at a fixed-step of 50MHz. When

it reaches a frequency smaller than 100MHz, the frequenc
will be set at the minimum value (100MHz). This differs

slightly from the standard implementation of the On-demand
governor in the Linux kernel [21], where the decreasing-step
is set to be 20% of the current frequency.

3) Conservative Governor: The difference between the
conservative and the on-demand governor is in the mechanism
of increasing and decreasing the frequency. In the conser-
vative governor, the frequency is gracefully increased and/or
decreased rather than jumping to the maximum value. In our
work, the conservative governor is implemented in the same
way as on-demand. By using the value from CIC, the clock
frequency is increased or decreased by 5% until it reaches the
maximum or minimum frequency respectively.

4) Improved Conservative Governor: The conservative
governor described above only takes consideration of CPU
load from CIC. In order to make it thermal aware whilst
maintaining high responsiveness, we propose an improved
version of the conservative algorithm (see Algorithm 1). Here,
we include information provided by the TVC to control
the maximum clock frequency that can be selected by the
algorithm. We defined a TVC_THRESHOLD value that limits
the number of violation of the maximum thermal heat when
running a program. Everytime the TVC_THRESHOLD is
reached, the maximum frequency that the governor can choose
is reduced by 5SMHz. However, when the TVC_THRESHOLD
is not reached again after a specified period, then the maximum
frequency can be increased again by factor of SMHz. Another
improvement we added in our proposed governor is the scaling
factor for the increment and decrement steps. The original
conservative governor uses a fixed size step; therefore, it
is relatively slow to respond. Our algorithm, on the other
hand, uses successive approximation where a step-size of the
half between the maximum (or minimum) frequency and the
current frequency is used. This makes the proposed governor
more responsive without going into the extreme condition as
experienced by the on-demand governor.

IV. EXPERIMENTAL SETUP AND EVALUATION

To evaluate the performance of our proposed governor, we
developed three non-SNN applications and run the governors
alongside the applications. We use non-SNN applications
to demonstrate that our methods are applicable for general
purpose applications even though they are implemented on a
neuromorphic platform. Those applications are: JPEG image
encoding (Al). JPEG image decoding (A2), and edge detection
(A3). Application A3 has been used in our previous research
to demonstrate graceful degradation and amelioration concept
on SpiNNaker [5].

Application Al and A2 are the first applications that are
developed by considering the impact of DFC for performance
improvement. Both applications retrieve/store data from/to
SDRAM using DMA. Hence, it is crucial to detect the level of
the DMA buffer before they request a direct memory access.
Otherwise, the SpiNNaker core might be trapped in a live-
lock waiting for a slot. This is a new mechanism introduced
in our applications, whereas the application A3 still uses the
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Algorithm 1 Improved Conservative Governor

for every thermal tick do
if TVC < TVC_THRESHOLD and maxFreq < 255
then
maxFreq + =5
end if
end for
for every governing tick do
if TVC > TVC_THRESHOLD then
maxFreq — =5
end if
get eputil {utilization since last check}
get cf {current frequency}
if cputil < CPU_THRESHOLD then
step = (maxFreq - ¢f)/2
if cf < maxFreq then

ef+ = step
else
ef = maxFreq
end if
else

step = (ef - minFreq)/2
if ¢f > minFreq then
cf — = step
else
ef = minFreq
end if
end if
end for
return cf

TABLE II
TIMING MEASUREMENT RESULT (IN MILLISECONDS).
Fovernor
[App- [Res. | GI [ G2 | G3 [ G4 |
vea | 955 [ 976 | 976 | 975
Al svga [ 1490 | 1522 | 1522 [ 1523
xga | 2444 | 2498 | 7498 | 749§
vega | 2670 | 3080 | 3080 | 3080
A2 svga | 4408 | 4737 | 4737 | 4737
xga | TII4 | 7342 [ 7342 | 7342
vga 437 454 454 451
A3 svga | 614 606 606 697
xga 1171 TI50 [ TI50 | 1150

old mechanism, in which a master core is assigned with a task
for coordinating DMA among cores in a SpiNNaker chip.

We run Al, A2, and A3 alternately whilst changing the
governor. During application execution, we measure the energy
consumption and temperature of SpiNNaker chips using a
SpiNNaker profiler program [22]. Table I1 shows the execution
time for each application controlled by each governor. Table 111
and Table IV show the measured energy consumption and the
temperature fluctuation when SpiNNaker runs the program and
the governor respectively.

From Table 1T and Table III, one can see the close relation-

TABLE IIT
ENERGY CONSUMPTION (IN JOULE)
Governor ]
[App- ] Res. G2 G3 G4 |
Ve 1.98 211 227
Al svga 3.06 303 512
Xga T374 | 1382 [ 1374
vga 684 T16 706
A2 svga 1646 | 1702 | 1613
xga 3929 | 4095 | 39.29
Ve . 7.16 717 6.62
A3 svga | 17.0 130T 1308 [ T1.90
xga | 4830 | 3719 | 3687 | 3392
TABLE IV
TEMPERATURE INCREASE (IN DEGREE CELCIUS) DURING A PROGRAM
EXECUTION.
[App.
Vea [ 019 [ 072 [ 075 [ 071
Al svga | 0.3 | 095 [ 0935 [ 0OF
xga | 022 [ 108 | 1.05 | 1.05
vga | 036 [ 139 | 1.21 1.3
A2 svea | 034 [ 139 [ 134 | 1.43
xga 0.5 T7I [ T.66 | 133
vga | 107 17 .01 115
A3 svEa 1.7 T36 | T34 | 1.27
xga 134 [ 154 [ 152 | 1.41

ship between task execution time and the consumed power.
In general, governor G1 runs faster than the other governors;
however, it also consumes higher power than the others.

Table IV shows that, in general. governor Gl produces a
lower temperature variation than the other governors. It does
not mean that G1 works better than the others in terms of
heat production, because the SpiNNaker chip already has high
temperature when running G1. SpiNNaker has been running
at a high constant frequency of 200MHz, even when there is
no user application loaded into the chip. On the other hand,
governors G2, G3, and G4 run at low frequency of 100MHz
when there is no running user application. Fig.2 shows the
behavior of those governors with respect to this temperature
anomaly. It also shows that our proposed algorithm works
better than its original version: it produces lower temperature
variation.

V. CONCLUSION

A basic run-time management framework for SpiNNaker
has been developed, and RTM evaluation is presented in this
paper. The RTM has several governors that control the clock
frequency of SpiNNaker cores. The governors utilize perfor-
mance monitoring counters (PMCs) developed on software
using the existing registers and sensors inside the SpiNNaker
chip. The performance of those governors with regard to
application speed impact, energy consumption, and thermal
dissipation are evaluated by running the govemors alongside
three non-SNN applications. From the experiment, we observe
that setting the clock at fix and relatively high frequency makes
the program run faster but with higher thermal risk and energy
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i . Temperature when running A3 showing
similar pattern in G2, G3, and G4, but distinguishable from Gl. This shows
that with Gl manages the system operation, it already produces higher termal
dissipation even when there is no user application running on the machine.

consumption. On the other hand. applications that are under
supervision of the three other adaptive governor, namely On-
demand, Conservative, and Improved-Conservative, run a bit
slower but with lower thermal risk and energy consumption.
Especially for the Improved-Conservative, which implements
our proposed method, the thermal risk and energy consumption
are at the lowest while impacting the same speed comparing
to the other governors.
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