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Abstract—The most automated speech recognition (ASR) 
systems are extremely complicated, integrating many 
approaches and requiring a high variety of tuning parameters. 
Deep understanding and experience of each component are 
required to achieve optimal performance in ASR, confining the 
development of ASR systems to the experts. Hyperparameters 
are crucial for machine learning algorithms because they 
directly regulate the behavior of training algorithms and have a 
major impact on model performance. As a result, developing an 
effective hyperparameter optimization technique to optimize 
any given machine learning method would considerably 
increase machine learning efficiency. This work investigates the 
use of Random Forest and Bayesian to automatically optimize 
BiLSTM-CNN systems. We built the ASR based on the 
BiLSTM-CNN model and customized its hyperparameters 
value to heed our low-hardware specification during 
optimization. Furthermore, we gathered 1,000 clips of speech 
data from various movies, classifying them according to emotion 
and stress classes. In pursuit of contextual-level understanding 
in our ASR, we transcribed our speech data and used the bigram 
textual feature. Our Random Forest-optimized BiLSTM-CNN 
model ultimately reaches 84% of accuracy result and learning 
runtime in under 17 seconds. 

Keywords—Automatic Speech Recognition, Hyperparameter 
Optimization, BiLSTM-CNN, Random Forest, Bayesian 
Optimization 

I. INTRODUCTION 
Many researchers have widely studied Automatic Speech 

Recognition (ASR), successfully implemented in speech-
related applications. Since ASR transforms human speech 
signals to sentence as text, several tasks processing human 
speech information adopt speech recognition results. The 
three basic foundations of a speech recognition model are 
Basis on Acoustic (BA), Basis on Pronunciation (BP), and 

Basis on Language (BL) [1]. BA learns how each syllable is 
spoken and sequentially organized in speech production since 
human language comprises different syllables. BP stores 
information on how words are mapped to their actual 
pronunciation, influenced by the language's complicated 
phonological laws. Finally, BL stores the grammatical 
information and correct word sequence patterns that make a 
phrase natural. A dictionary must be used to create a BP since 
each word must be appropriately mapped to phoneme 
sequences. As a result, developing a vocabulary is critical for 
building a whole process. However, this process is complex 
and time-consuming because it must be updated anytime new 
words are discovered in a corpus and cover various 
pronunciations if each word is spoken in multiple ways. For 
example, bear (animal) has two ways to be pronounced: [bɛːa] 
or [beuh]. Trigram modeling is one of the most effective ways 
to construct a BL. However, there are certain disadvantages, 
such as a sparse representation of language and processing 
cost [2]. 

Machine learning entails predicting and classifying data 
and employing various machine learning models based on the 
dataset. Machine learning models are programmable so that 
their behavior can be modified for a specific problem. These 
models have numerous parameters, and determining the best 
set of parameters can be viewed as a search issue [3]. 

This paper is organized as follows: Section 1 introduces 
the importance of using hyperparameter optimization. Section 
2 supports the ASR idea by previous work related to optimized 
deep learning models. Section 3 illustrates our experiment 
setup, from data collection, data pre-processing, features 
extraction, and optimization of BiLSTM-CNN using Random 
Forest. Section 4 provides results of accuracy, runtime, tuned 
hyperparameter, and comparison with other works. 
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Ultimately, we conclude our optimized BiLSTM-CNN in 
Section 5. 

II. RELATED WORK 

A. Deep Learning Models 
Convolutional Neural Network (CNN) is initially 

powerful enough to map the feature space’s structural 
locality. As CNN applies the local frequency region pooling, 
it is able to handle a small shift in feature space and 
translational variance. CNN also works very well with image 
data, while CNN might be used for speech and text data [4]. 
The ASR system usually converts speech data into 
spectrogram data or cochleagram data using the Hilbert-
Huang transform to bring the most of CNN. But Soltau et al. 
argue that the CNN system deteriorates with semi-clean data 
[5]. 

One solution is to combine CNN with Recurrent Neural 
Network (RNN). Generally, RNN often yields high 
recognition accuracy in noise-robust contextual data [6]. 
Unfortunately, RNN has a burdening runtime because of the 
Vanishing and Exploding Gradients (VnEG) phenomenon 
[7]. The accumulation of large derivatives in exploding 
gradients results in the model being volatile and ineffective 
in the successful learning stage. The drastic changes in the 
model's weights establish a precarious and chaotic network, 
which at extreme values causes the inundation. It often results 
in null ("Not a Number" data type or NaN) values for weights. 
The accumulation of small gradients, on the other hand, 
results in a model that is incapable of comprehending 
meaningful insights because of the weights and biases of the 
initial layers. These biases tend to ineffectively updates the 
weight from the input data’s features. In the worst-case 
scenario, the gradient will yield zero value, causing the 
network to stop further training [7]. 

The memory unit in Long-Short Term Memory (LSTM) 
tends to tackle the aforementioned problem. The memory in 
LSTM is a special unit that arguably controls the flow of 
information and how weights are updated [8]. It has a natural 
sensitivity of static data, which can be solved by tinkered in 
the model to generate low latency between input and direct 
output. This solution is beneficial for acoustic modeling 
tasks. It is often offered by special architecture called the 
Bidirectional LSTM, which controls the input in both 
directions between LSTM layers. Ayutthaya and Pasupa 
suggested using the BiLSTM-CNN method for standard 
sentiment analysis and speech emotion systems [9]. Their 
experiment specifically applies the Thai language and 
successfully reaches an accuracy of 78.89%. However, 
Ayutthaya and Pasupa only use textual data.  

We implement two BiLSTM layers and one CNN layer in 
this work. Our optimized model of BiLSTM-CNN takes input 
from both speech and text data by handling the translational 
variance (tackled by CNN) and the VnEG problem (tackled 
by BiLSTM) almost simultaneously. We involved about 200 
speech features and bigram text features that connect two 
words in a sentence. Later on, we use Weighted Average 
Accuracy validation methods and runtime for both 
hyperparameter optimization and end-stage learning that uses 
the best fit hyperparameter model. To the best of our 
knowledge, runtime as validation is important in such 

recognition systems to reveal its ability to tackle large data 
and/or complex models [10]. 

B. Hyperparameter Optimization Concept 
The iterative machine learning component is essential 

because models may adjust autonomously as they are 
exposed to fresh captured data. Because machine learning 
relies on solving mathematical models effectively, 
optimization is a necessary element of the process [11]. On 
the other hand, machine learning can give novel momenta and 
optimization suggestions by reducing the computing costs of 
optimization, one of the most significant artificial 
intelligence applications. Various methods for solving issues 
based on assumptions have been given and explored, each 
with its own set of assumptions.  

 
Fig. 1. A classification of hyperparameter optimization methods [12] 

Hyperparameter optimization is frequently confused with 
automated machine learning because of its widespread use 
and ease of conceptualization [11], [13]. There are a few 
crucial factors while considering hyperparameters. The 
default settings of hyperparameters have long been known to 
be inefficient. Depending on the methodology, the 
hyperparameter tuning process usually improves accuracy by 
3–5%. Parameter tweaking resulted in up to a 60% increase 
in accuracy in some cases and datasets [14]. There are several 
ways to finding the proper continuous hyperparameters, for 
example: 

• A model's learning rate  
• Hidden layers number's 
• Batch size of iterations 
• Number of iterations 

The kind of operator, activation function, and method 
choice are all examples of categorical hyperparameters, also 
can be conditional, such as choosing the convolutional kernel 
size if a convolutional layer is utilized, or the kernel width if 
an SVM uses a Radial Basis Function (RBF) kernel. There 
are many different hyperparameter optimization approaches 
since there are many different types of hyperparameters. The 
following techniques are utilized for hyperparameter 
optimization: grid and random search, evolutionary-based, 
bandit-based, Bayesian optimization, and Gradient Descent-
based techniques [15]. Manual, grid, and random search are 
the three most straightforward hyperparameter tuning 
approaches, as seen in Figure 1. Manual turning is dependent 
on intuition and guesswork based on previous experiences, as 
the name implies. Grid and random searches are slightly 
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different when choosing a set of hyperparameters for each 
combination (grid) or randomly cycle over them to keep the 
top-performing ones. However, as the search space grows 
more prominent, the optimization can rapidly become 
computationally unmanageable [15]. Furthermore, simple 
illustrations of grid search and random search are shown in 
Figure 2. 

 
Fig. 2. Illustration of Point Grids and Random Point Sets 

C. Hyperparameter Optimization with Random Forest 
There is a popular hyperparameter search technique, 

namely the grid search. Sadly, it almost always hardly 
struggle to adapt to high dimensions [16]. Therefore, a 
substantial amount of newer studies have concentrated on 
superior methods, namely Bayesian Optimization (Bayes-
Opt) and its derivative, namely the Random Forest-based 
Optimization (RF-Opt). The RF-Opt follows the sequential 
version of Bayes-Opt (Sequential-based Model of Bayesian 
Optimization or SMBO). The RF-Opt derivation is later 
called the Sequential Model-based Algorithm Configuration 
(SMAC) for general Deep Learning models. 

Algorithm 1. RF-Opt Algorithm  
Input: Target 𝑓𝑋; limit 𝐻; hyperparameter space Ψ;  

initial space 〈Ψ1, … ,  Ψ𝑡〉 
Result: Best hyperparameter configuration as Ψ̂ 

1 for 𝑖 + 1 to ℎ 
do 𝑦𝑖  evaluate 𝑓𝑋(Ψ𝑖) 

2 for 𝑗  to ℎ + 1 to 𝐻 
3 do ℳ  fit model on performance data 〈Ψ𝑖 , 𝑦𝑖〉𝑖=1

𝑗−1 
4 select Ψ𝑗 ∈ 𝑎𝑟𝑔 𝑚𝑎𝑥Ψ ∈ Ω α(Ψ,ℳ) 
5 𝑦𝑗  evaluate 𝑓𝑋(Ψ𝑗) 
6 end for 
7 return 𝑎𝑟𝑔 𝑚𝑖𝑛Ψ𝑗 ∈ Ψ1,…,Ψ𝑇𝑦𝑗

𝑦𝑖𝑒𝑙𝑑𝑠
→     Ψ̂  

The configuration is structured as follows: suppose we 
have 𝑋 as the dataset. Also, suppose the Ψ1, … ,  Ψ𝑛 denotes 
the hyperparameters of BiLSTM and CNN, and suppose 
Ω1, … ,  Ω𝑛 denote the value of their numerical and categorical 
parameters. The RF-Opt in our work denotes all 
hyperparameters of numerical (learning rate, nodes number, 
batch size, dropout value, epoch variation) and categorical 
(activation function, optimizer, weight initialization 
technique, loss optimization, etc.) in Ω𝑖 . Thus, space 
algorithm for proposed BiLSTM-CNN hyperparameters is 
defined as Ω = Ω1 × …× Ω𝑛. When trained with Ψ ∈ Ω on 

data  𝑋𝑡𝑟𝑎𝑖𝑛 , we denote  𝑍(Ψ,  𝑋𝑡𝑟𝑎𝑖𝑛 ,  𝑋𝑣𝑎𝑙𝑖𝑑)  on data 
 𝑋𝑡𝑟𝑎𝑖𝑛  as the algorithm’s validation. Using the built-in k-fold 
cross-validation, the hyperparameters optimization problem 
for dataset 𝑋 is shown in Equation (1). 

𝑓𝑋(Ψ) =
1

𝑘
∑ 𝑍(Ψ,  𝑋𝑡𝑟𝑎𝑖𝑛

(𝑖) ,  𝑋𝑣𝑎𝑙𝑖𝑑
(𝑖) )𝑘

𝑖=1  (1) 

The SMAC-based RF-Opt is an efficient tool for global 
optimization of costly black box functions 𝑓. A complete RF-
Opt stage is defined in Algorithm (1). RF-Opt starts by 
function inquiry 𝑓  to the ℎ  values in an initial space and 
record ⟨Ψ𝑖 , 𝑓(Ψ1)⟩𝑖=1𝑡  as the ⟨𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡⟩ result pair. Then 
it fit a probabilistic-based model ℳ to the previous recorded. 
Later on, ℳ is used to select input for Ψ, which happened to 
be evaluating function value from input Ψ ∈ Ω  through 
acquisition function of α(Ψ,ℳ). Finally, it evaluates function 
in Ψ newest input. 

III. EXPERIMENT SETUP 
We divided our experiment into approximately five 

scenarios, which are shown in Table I. The scenario's division 
is based on each speech (BA and BP) and textual data (BL). 
Four of them are for text data (binary classification), and one 
is for speech data (multiclass classification). We predict 
stress’s contextual word-level information related to the 
speech data’s primary function in recognizing speech-based 
emotion. The “non-” version for every class in each scenario 
is taken from other classes. 

TABLE I.  EXPERIMENT SCENARIOS 

Our speech emotion-stress recognition system receives 
speech input, and later wit.ai engine converted it into text data. 
The transcribed text data is intent-categorized as either Stress 
or Non-stress, based on context. Both speech data and text 
data undergo their own data pre-processing steps. Afterward, 
both data undergo the feature extraction step. We also 
optimized most of the influential BiLSTM-CNN 
hyperparameters. 

A. Data Pre-processing 
For speech data pre-processing, we used the sample rate 

generalization. We gathered about 1,000 clips of speech data 
from various movies. We also generalized all sample rates into 
44,100 Hz. The silence segment trimming cuts the silence 
segment in the speech data so that there are no empty data 
segments when the speech features are extracted. Because 
whole speech data is taken from movies with a duration 
ranging from 1 to 2 hours, we have brought down every 
recording to be trimmed around 5 seconds. These clips are also 
used for text data creation in wit.ai, classified as Stress or  
Non-stress. Meanwhile, the duration trimming within the 
limits of the speech-to-text processing capabilities of the wit.ai 
engine is a maximum of 20 seconds. 

At the same time, we used three different data pre-
processing for textual features: punctuation removal, 

Details Scenario 
1 2 3 4 5 

Data Speech Text Text Text Text 

Data Class for 
Training Stage 

Anger, 
Fear, 
Sad, 

Happy 

Anger, 
Non-
Anger 

Fear, 
Non-
Fear 

Sad, 
Non-
Sad 

Happy, 
Non-

Happy 
Data Class for 
Testing Stage Stress, Non-Stress 
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whitespace removal, and number removal. It removes 
unnecessary punctuation symbol marks (!, @, #, $, %, ', ", 
etc.), removes unnecessary space in-between words or 
characters, and removes numbers that may have been 
automatically transcribed using wit.ai engine. 

Furthermore, our speech data processed by wit.ai resulted 
in all lowercase utterances. The wit.ai engine has no 
recognition for specific subjects that should begin with the 
first character's upper case. Therefore, we eliminate the need 
for the lowercase convert function of standard data pre-
processing. After serious consideration, we also do not use 
stopwords removal since many of our data included in 
stopwords are too influential to be removed. 

B. Feature Extraction 
We used the notably famous and robust Harmonic-to-

Noise Ratio, Fundamental Frequency, Zero Crossing Rate, 
Root Mean Square Error, Mel-Frequency Cepstral 
Coefficient, and Linear Predictive Coding features as its 
derivations. We used Jitter and Shimmer that represent 
perturbation which often happens in jittery speech. Spectral 
features are also used to represent time-series or temporal 
speech. The Intensity and Loudness features are also vital in 
determining stressed intonation. 

TABLE II.  EXTRACTED SPEECH FEATURES 

Feature Name Total Features w/ 
Derivation(s) 

Fundamental Frequency 15 

Harmonic-to-Noise Ratio 15 

Intensity 15 

Jitter 30 

Linear Predictive Coding 24 

Loudness 15 

Mel-Frequency Cepstral Coefficient 30 

Root Mean Square Error 6 

Shimmer 15 

Spectral Centroid 6 

Spectral Flux 6 

Spectral Rolloff 6 

Spectral Variability 6 

Zero-Crossing Rate 15 

Total 204 

Table II shows the complete 204 speech features extracted 
in this work that are related to emotion. Meanwhile, we used 
the bigram feature for text data to grasp two-word pair worth 
of contextual stress recognition. 

C. Customizing Hyperparameter Value  
Table III illustrates the value for each hyperparameter, 

either in numerical or categorical. The customization of 
hyperparameter value relies on how we do not take every 
value to the respective hyperparameter, therefore reducing 
the probability and is beneficial for low-budget hardware 
[17]. The best fit model chosen by RF-Opt within the said 
value will automatically apply in BiLSTM-CNN in each 
experiment scenario. Any possible patterns of 
hyperparameters value combination are limited to 100 

iterations (with no early stopping employed) to not further 
burden the hardware. 

TABLE III.  HYPERPARAMETERS VALUE TO BE OPTIMIZED 

Hyperparameter Value 

Activation Function sigmoid, tanh, relu, leaky_relu, selu, linear, 
softmax 

Batch Size 2 until 64 

CNN Filter 2 until 10 

Data Test Size 0.4, 0.3, 0.2, 0.1 

Data Train Size 0.6, 0.7, 0.8, 0.9 

Dense Nodes Number 5 until 512 

Dropout 2e-6 until 0.5 

Epoch 30, 60, 70 
L2 Kernel 
Regularization 0.01, 0.001, 0.0001, 0.000001 

Learning Rate 1e-6 until 1e-1 

Loss Function binary_crossentropy, 
categorical_crossentropy, hinge, mae 

LSTM Unit 2, 4, 8, 16, 32, 64 

Optimizer Function Adam, RMSprop, Ftrl, SGD, AdaDelta, 
Adagrad 

Weight Initialization random_uniform, glorot_uniform, 
lecun_uniform, truncated_normal 

IV. RESULT AND DISCUSSION 

A. Result 
As a result of optimization by RF-Opt, Figure 3 and Figure 

4 shows every RF-Opt and Bayes-Opt runtime result for each 
tuning runtime and learning runtime in seconds. 

 

Fig. 3. BiLSTM-CNN Runtimes optimized by RF-Opt (in seconds)  

 

Fig. 4. BiLSTM-CNN Runtimes optimized by Bayes-Opt (in seconds)  
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TABLE IV.   BEST HYPERPARAMETER OF BILSTM-CNN WITH RF-OPT 

TABLE V.   BEST HYPERPARAMETER OF BILSTM-CNN WITH BAYES-OPT  

 
Table IV and Table V illustrate the hyperparameter tuning 

result of RF-Opt and Bayes-Opt, respectively, for each 
scenario.  

 

Fig. 5. Optimized BiLSTM-CNN Accuracy Result  

Figure 5 shows a fairly consistent accuracy result for each 
scenario, between the respective optimization method of RF-
Opt and Bayes-Opt. As presented in Table VI, our proposed 
work of optimized BiLSTM-CNN by RF-Opt and Bayes-Opt 
reached the best accuracy from previous work. 

TABLE VI.  RESULT COMPARISON WITH PREVIOUS WORKS 

Authors Data Testing Model Best 
Accuracy 

[9] Ayutthaya  
et al. (2018) Text BiLSTM-CNN 78.89% 

[18] Buddhika  
et al. (2018) Text NN, SVM, and DT 74% 

[19] Zhang et al. 
(2018) 

Text 
(Named 
Entity) 

BiLSTM-CNN optimized 
by Gaussian 83.2% 

[20] Qaffas 
(2019) Text Jaccard and Cosine 70% 

[21] Duwairi  
et al. (2021) Text BiLSTM-CNN 73% 

Proposed Model 
(2021) 

Text and 
Speech 

BiLSTM-CNN optimized 
by RF-Opt 84% 

Text and 
Speech 

BiLSTM-CNN optimized 
by Bayes-Opt 84.8% 

B. Discussion 

The accuracy result, runtimes, and best hyperparameter 
are shown varied between RF-Opt and Bayes-Opt. In RF-Opt, 
the best activation function, batch size, CNN filter, dense 
number, dropout, learning rate, and weight initialization for 
every scenario is not the same, varied with no regard to the 
data. However, RF-Opt did pick binary_crossentropy as the 

Hyperparameter Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Activation Function softmax tanh sigmoid relu selu 

Batch Size 19 10 14 21 16 

CNN Filter 2 7 7 8 3 

Data Train/Test 0.1/0.9 - - - - 
Dense Nodes 
Number 12 505 217 494 400 

Dropout 0.002580695379659 0.09813176944163 0.049899 0.005835585171253 0.2217270034368 

Epoch 60 60 60 60 30 

Learning Rate 1.6e-03 0.01 0.000001 1e-06 1e-06 

Loss Function categorical_crossentropy binary_crossentropy 

LSTM Unit 12 32 32 32 32 

Optimizer Function Adam Ftrl RMSprop 

Weight Initialization lecun_uniform random_uniform glorot_uniform lecun_uniform truncated_normal 

Hyperparameter Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Activation Function selu relu tanh tanh sigmoid 

Batch Size 26 3 11 23 12 

CNN Filter 3 10 8 6 6 

Data Train/Test 0.1/0.9 - - - - 
Dense Nodes 
Number 305 200 214 267 288 

Dropout 0.0015794629720744 2.069459761472289e-05 0.099124155 0.63231827967 0.701651690311 

Epoch 30 50 50 30 60 

Learning Rate 1.1e-03 1.6e-04 1.4e-05 1.2e-07 1.7e-05 

Loss Function categorical_crossentropy hinge binary_crossentropy mae 

LSTM Unit 16 32 12 12 16 

Optimizer Function RMSprop Adam RMSprop Adam 

Weight Initialization truncated_normal orthogonal glorot_uniform lecun_uniform random_uniform 
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best loss function hyperparameter in most scenarios (4 out of 
5), including at Scenario 5, which results in the best accuracy 
from RF-Opt (84%). The learning runtime for RF-Opt also 
seems to slow in Scenario 3, differs at 3,202 seconds by best 
learning runtime from Scenario 5, which is only 17 seconds. 

Most numerical and categorical hyperparameter results 
by Bayes-Opt also seem to vary with no regard to speech or 
text data. Bayes-Opt showed consistent learning and 
hyperparameter tuning runtimes but is generally slower than 
RF-Opt, with the best runtime is at the learning runtime of 
Scenario 2 in 821 seconds. The best accuracy by Bayes-Opt 
is with Scenario 1 with 84.8% and decreases in each scenario.  

V. CONCLUSION 

The whole framework of our proposed speech emotion 
and stress recognition with BiLSTM-CNN is automatic since 
the data collection, feature extraction, hyperparameter 
optimization using RF-Opt, BiLSTM-CNN construction, and 
eventually end-result from accuracy and runtimes. Our 
automatic speech emotion and stress recognition took in two 
affective inputs of speech (emotion as BA & BP) and intent-
based text (stress as BL).  

RF-Opt optimized the proposed BiLSTM-CNN to 
achieve excellent accuracy results and fast learning runtime 
(17 seconds). Based on the scenario, RF-Opt did improve 
accuracy results up to 7,57%, from Scenario 4 with 76,43% 
to Scenario 5 with 84% accuracy. The runtime also improves 
from scenario to scenario, although both hyperparameter 
optimization and learning runtime are slowed at Scenario 3. 
For our future work, we planned on creating a data-centered 
custom hyperparameter from feature extraction with 
optimization from different SMAC-based methods. 
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