
BiLSTM-CNN Hyperparameter Optimization for
Speech Emotion and Stress Recognition

Agustinus Bimo Gumelar
Dept. of Electrical Engineering,

Faculty of Intelligent Electrical and
Information Technology (ELECTICS),
Institut Teknologi Sepuluh Nopember,

Surabaya, Indonesia
bimo.19071@mhs.its.ac.id

bimogumelar@ieee.org

Eko Mulyanto Yuniarno
Dept. of Electrical Engineering,
Dept. of Computer Engineering,

Faculty of Intelligent Electrical and
Information Technology (ELECTICS),
Institut Teknologi Sepuluh Nopember

Surabaya, Indonesia
ekomulyanto@ee.its.ac.id

Derry Pramono Adi
Dept. of Electrical Engineering,

Faculty of Intelligent Electrical and
Information Technology (ELECTICS),
Institut Teknologi Sepuluh Nopember,

Surabaya, Indonesia
derryalbertus@ieee.org

Adri Gabriel Sooai
Dept. of Computer Science,

UNIKA Widya Mandira,
Kupang, NTT, Indonesia
adrigabriel@unwira.ac.id

Indar Sugiarto
Dept. of Electrical Engineering,

Petra Christian University,
Surabaya, Indonesia

indi@petra.ac.id

Mauridhi Hery Purnomo
Dept. of Electrical Engineering,
Dept. of Computer Engineering,

Faculty of Intelligent Electrical and
Information Technology (ELECTICS),

Institut Teknologi Sepuluh Nopember and
University Center of Excellence on

Artificial Intelligence for Healthcare
and Society (UCE AIHeS),

Surabaya, Indonesia
hery@ee.its.ac.id

Abstract—The most automated speech recognition (ASR)
systems are extremely complicated, integrating many
approaches and requiring a high variety of tuning parameters.
Deep understanding and experience of each component are
required to achieve optimal performance in ASR, confining the
development of ASR systems to the experts. Hyperparameters
are crucial for machine learning algorithms because they
directly regulate the behavior of training algorithms and have a
major impact on model performance. As a result, developing an
effective hyperparameter optimization technique to optimize
any given machine learning method would considerably
increase machine learning efficiency. This work investigates the
use of Random Forest and Bayesian to automatically optimize
BiLSTM-CNN systems. We built the ASR based on the
BiLSTM-CNN model and customized its hyperparameters
value to heed our low-hardware specification during
optimization. Furthermore, we gathered 1,000 clips of speech
data from various movies, classifying them according to emotion
and stress classes. In pursuit of contextual-level understanding
in our ASR, we transcribed our speech data and used the bigram
textual feature. Our Random Forest-optimized BiLSTM-CNN
model ultimately reaches 84% of accuracy result and learning
runtime in under 17 seconds.

Keywords—Automatic Speech Recognition, Hyperparameter
Optimization, BiLSTM-CNN, Random Forest, Bayesian
Optimization

I. INTRODUCTION
Many researchers have widely studied Automatic Speech

Recognition (ASR), successfully implemented in speech-
related applications. Since ASR transforms human speech
signals to sentence as text, several tasks processing human
speech information adopt speech recognition results. The
three basic foundations of a speech recognition model are
Basis on Acoustic (BA), Basis on Pronunciation (BP), and

Basis on Language (BL) [1]. BA learns how each syllable is
spoken and sequentially organized in speech production since
human language comprises different syllables. BP stores
information on how words are mapped to their actual
pronunciation, influenced by the language's complicated
phonological laws. Finally, BL stores the grammatical
information and correct word sequence patterns that make a
phrase natural. A dictionary must be used to create a BP since
each word must be appropriately mapped to phoneme
sequences. As a result, developing a vocabulary is critical for
building a whole process. However, this process is complex
and time-consuming because it must be updated anytime new
words are discovered in a corpus and cover various
pronunciations if each word is spoken in multiple ways. For
example, bear (animal) has two ways to be pronounced: [bɛːa]
or [beuh]. Trigram modeling is one of the most effective ways
to construct a BL. However, there are certain disadvantages,
such as a sparse representation of language and processing
cost [2].

Machine learning entails predicting and classifying data
and employing various machine learning models based on the
dataset. Machine learning models are programmable so that
their behavior can be modified for a specific problem. These
models have numerous parameters, and determining the best
set of parameters can be viewed as a search issue [3].

This paper is organized as follows: Section 1 introduces
the importance of using hyperparameter optimization. Section
2 supports the ASR idea by previous work related to optimized
deep learning models. Section 3 illustrates our experiment
setup, from data collection, data pre-processing, features
extraction, and optimization of BiLSTM-CNN using Random
Forest. Section 4 provides results of accuracy, runtime, tuned
hyperparameter, and comparison with other works.

978-1-6654-4346-3/21/$31.00 ©2021 IEEE

2021 International Electronics Symposium (IES)

156

20
21

 In
te

rn
at

io
na

l E
le

ct
ro

ni
cs

 S
ym

po
si

um
 (I

ES
) |

 9
78

-1
-6

65
4-

43
46

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IE

S5
34

07
.2

02
1.

95
94

02
4

Authorized licensed use limited to: ULAKBIM UASL - CUKUROVA UNIVERSITESI. Downloaded on November 10,2022 at 23:42:24 UTC from IEEE Xplore. Restrictions apply.

Ultimately, we conclude our optimized BiLSTM-CNN in
Section 5.

II. RELATED WORK

A. Deep Learning Models
Convolutional Neural Network (CNN) is initially

powerful enough to map the feature space’s structural
locality. As CNN applies the local frequency region pooling,
it is able to handle a small shift in feature space and
translational variance. CNN also works very well with image
data, while CNN might be used for speech and text data [4].
The ASR system usually converts speech data into
spectrogram data or cochleagram data using the Hilbert-
Huang transform to bring the most of CNN. But Soltau et al.
argue that the CNN system deteriorates with semi-clean data
[5].

One solution is to combine CNN with Recurrent Neural
Network (RNN). Generally, RNN often yields high
recognition accuracy in noise-robust contextual data [6].
Unfortunately, RNN has a burdening runtime because of the
Vanishing and Exploding Gradients (VnEG) phenomenon
[7]. The accumulation of large derivatives in exploding
gradients results in the model being volatile and ineffective
in the successful learning stage. The drastic changes in the
model's weights establish a precarious and chaotic network,
which at extreme values causes the inundation. It often results
in null ("Not a Number" data type or NaN) values for weights.
The accumulation of small gradients, on the other hand,
results in a model that is incapable of comprehending
meaningful insights because of the weights and biases of the
initial layers. These biases tend to ineffectively updates the
weight from the input data’s features. In the worst-case
scenario, the gradient will yield zero value, causing the
network to stop further training [7].

The memory unit in Long-Short Term Memory (LSTM)
tends to tackle the aforementioned problem. The memory in
LSTM is a special unit that arguably controls the flow of
information and how weights are updated [8]. It has a natural
sensitivity of static data, which can be solved by tinkered in
the model to generate low latency between input and direct
output. This solution is beneficial for acoustic modeling
tasks. It is often offered by special architecture called the
Bidirectional LSTM, which controls the input in both
directions between LSTM layers. Ayutthaya and Pasupa
suggested using the BiLSTM-CNN method for standard
sentiment analysis and speech emotion systems [9]. Their
experiment specifically applies the Thai language and
successfully reaches an accuracy of 78.89%. However,
Ayutthaya and Pasupa only use textual data.

We implement two BiLSTM layers and one CNN layer in
this work. Our optimized model of BiLSTM-CNN takes input
from both speech and text data by handling the translational
variance (tackled by CNN) and the VnEG problem (tackled
by BiLSTM) almost simultaneously. We involved about 200
speech features and bigram text features that connect two
words in a sentence. Later on, we use Weighted Average
Accuracy validation methods and runtime for both
hyperparameter optimization and end-stage learning that uses
the best fit hyperparameter model. To the best of our
knowledge, runtime as validation is important in such

recognition systems to reveal its ability to tackle large data
and/or complex models [10].

B. Hyperparameter Optimization Concept
The iterative machine learning component is essential

because models may adjust autonomously as they are
exposed to fresh captured data. Because machine learning
relies on solving mathematical models effectively,
optimization is a necessary element of the process [11]. On
the other hand, machine learning can give novel momenta and
optimization suggestions by reducing the computing costs of
optimization, one of the most significant artificial
intelligence applications. Various methods for solving issues
based on assumptions have been given and explored, each
with its own set of assumptions.

Fig. 1. A classification of hyperparameter optimization methods [12]

Hyperparameter optimization is frequently confused with
automated machine learning because of its widespread use
and ease of conceptualization [11], [13]. There are a few
crucial factors while considering hyperparameters. The
default settings of hyperparameters have long been known to
be inefficient. Depending on the methodology, the
hyperparameter tuning process usually improves accuracy by
3–5%. Parameter tweaking resulted in up to a 60% increase
in accuracy in some cases and datasets [14]. There are several
ways to finding the proper continuous hyperparameters, for
example:

• A model's learning rate
• Hidden layers number's
• Batch size of iterations
• Number of iterations

The kind of operator, activation function, and method
choice are all examples of categorical hyperparameters, also
can be conditional, such as choosing the convolutional kernel
size if a convolutional layer is utilized, or the kernel width if
an SVM uses a Radial Basis Function (RBF) kernel. There
are many different hyperparameter optimization approaches
since there are many different types of hyperparameters. The
following techniques are utilized for hyperparameter
optimization: grid and random search, evolutionary-based,
bandit-based, Bayesian optimization, and Gradient Descent-
based techniques [15]. Manual, grid, and random search are
the three most straightforward hyperparameter tuning
approaches, as seen in Figure 1. Manual turning is dependent
on intuition and guesswork based on previous experiences, as
the name implies. Grid and random searches are slightly

157

Authorized licensed use limited to: ULAKBIM UASL - CUKUROVA UNIVERSITESI. Downloaded on November 10,2022 at 23:42:24 UTC from IEEE Xplore. Restrictions apply.

different when choosing a set of hyperparameters for each
combination (grid) or randomly cycle over them to keep the
top-performing ones. However, as the search space grows
more prominent, the optimization can rapidly become
computationally unmanageable [15]. Furthermore, simple
illustrations of grid search and random search are shown in
Figure 2.

Fig. 2. Illustration of Point Grids and Random Point Sets

C. Hyperparameter Optimization with Random Forest
There is a popular hyperparameter search technique,

namely the grid search. Sadly, it almost always hardly
struggle to adapt to high dimensions [16]. Therefore, a
substantial amount of newer studies have concentrated on
superior methods, namely Bayesian Optimization (Bayes-
Opt) and its derivative, namely the Random Forest-based
Optimization (RF-Opt). The RF-Opt follows the sequential
version of Bayes-Opt (Sequential-based Model of Bayesian
Optimization or SMBO). The RF-Opt derivation is later
called the Sequential Model-based Algorithm Configuration
(SMAC) for general Deep Learning models.

Algorithm 1. RF-Opt Algorithm
Input: Target 𝑓𝑋; limit 𝐻; hyperparameter space Ψ;

initial space 〈Ψ1, … , Ψ𝑡〉
Result: Best hyperparameter configuration as Ψ̂

1 for 𝑖 + 1 to ℎ
do 𝑦𝑖  evaluate 𝑓𝑋(Ψ𝑖)

2 for 𝑗  to ℎ + 1 to 𝐻
3 do ℳ  fit model on performance data 〈Ψ𝑖 , 𝑦𝑖〉𝑖=1

𝑗−1
4 select Ψ𝑗 ∈ 𝑎𝑟𝑔 𝑚𝑎𝑥Ψ ∈ Ω α(Ψ,ℳ)
5 𝑦𝑗  evaluate 𝑓𝑋(Ψ𝑗)
6 end for
7 return 𝑎𝑟𝑔 𝑚𝑖𝑛Ψ𝑗 ∈ Ψ1,…,Ψ𝑇𝑦𝑗

𝑦𝑖𝑒𝑙𝑑𝑠
→ Ψ̂

The configuration is structured as follows: suppose we
have 𝑋 as the dataset. Also, suppose the Ψ1, … , Ψ𝑛 denotes
the hyperparameters of BiLSTM and CNN, and suppose
Ω1, … , Ω𝑛 denote the value of their numerical and categorical
parameters. The RF-Opt in our work denotes all
hyperparameters of numerical (learning rate, nodes number,
batch size, dropout value, epoch variation) and categorical
(activation function, optimizer, weight initialization
technique, loss optimization, etc.) in Ω𝑖 . Thus, space
algorithm for proposed BiLSTM-CNN hyperparameters is
defined as Ω = Ω1 × …× Ω𝑛. When trained with Ψ ∈ Ω on

data 𝑋𝑡𝑟𝑎𝑖𝑛 , we denote 𝑍(Ψ, 𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑣𝑎𝑙𝑖𝑑) on data
 𝑋𝑡𝑟𝑎𝑖𝑛 as the algorithm’s validation. Using the built-in k-fold
cross-validation, the hyperparameters optimization problem
for dataset 𝑋 is shown in Equation (1).

𝑓𝑋(Ψ) =
1

𝑘
∑ 𝑍(Ψ, 𝑋𝑡𝑟𝑎𝑖𝑛

(𝑖) , 𝑋𝑣𝑎𝑙𝑖𝑑
(𝑖))𝑘

𝑖=1 (1)

The SMAC-based RF-Opt is an efficient tool for global
optimization of costly black box functions 𝑓. A complete RF-
Opt stage is defined in Algorithm (1). RF-Opt starts by
function inquiry 𝑓 to the ℎ values in an initial space and
record ⟨Ψ𝑖 , 𝑓(Ψ1)⟩𝑖=1𝑡 as the ⟨𝑖𝑛𝑝𝑢𝑡, 𝑜𝑢𝑡𝑝𝑢𝑡⟩ result pair. Then
it fit a probabilistic-based model ℳ to the previous recorded.
Later on, ℳ is used to select input for Ψ, which happened to
be evaluating function value from input Ψ ∈ Ω through
acquisition function of α(Ψ,ℳ). Finally, it evaluates function
in Ψ newest input.

III. EXPERIMENT SETUP
We divided our experiment into approximately five

scenarios, which are shown in Table I. The scenario's division
is based on each speech (BA and BP) and textual data (BL).
Four of them are for text data (binary classification), and one
is for speech data (multiclass classification). We predict
stress’s contextual word-level information related to the
speech data’s primary function in recognizing speech-based
emotion. The “non-” version for every class in each scenario
is taken from other classes.

TABLE I. EXPERIMENT SCENARIOS

Our speech emotion-stress recognition system receives
speech input, and later wit.ai engine converted it into text data.
The transcribed text data is intent-categorized as either Stress
or Non-stress, based on context. Both speech data and text
data undergo their own data pre-processing steps. Afterward,
both data undergo the feature extraction step. We also
optimized most of the influential BiLSTM-CNN
hyperparameters.

A. Data Pre-processing
For speech data pre-processing, we used the sample rate

generalization. We gathered about 1,000 clips of speech data
from various movies. We also generalized all sample rates into
44,100 Hz. The silence segment trimming cuts the silence
segment in the speech data so that there are no empty data
segments when the speech features are extracted. Because
whole speech data is taken from movies with a duration
ranging from 1 to 2 hours, we have brought down every
recording to be trimmed around 5 seconds. These clips are also
used for text data creation in wit.ai, classified as Stress or
Non-stress. Meanwhile, the duration trimming within the
limits of the speech-to-text processing capabilities of the wit.ai
engine is a maximum of 20 seconds.

At the same time, we used three different data pre-
processing for textual features: punctuation removal,

Details Scenario
1 2 3 4 5

Data Speech Text Text Text Text

Data Class for
Training Stage

Anger,
Fear,
Sad,

Happy

Anger,
Non-
Anger

Fear,
Non-
Fear

Sad,
Non-
Sad

Happy,
Non-

Happy
Data Class for
Testing Stage Stress, Non-Stress

158

Authorized licensed use limited to: ULAKBIM UASL - CUKUROVA UNIVERSITESI. Downloaded on November 10,2022 at 23:42:24 UTC from IEEE Xplore. Restrictions apply.

whitespace removal, and number removal. It removes
unnecessary punctuation symbol marks (!, @, #, $, %, ', ",
etc.), removes unnecessary space in-between words or
characters, and removes numbers that may have been
automatically transcribed using wit.ai engine.

Furthermore, our speech data processed by wit.ai resulted
in all lowercase utterances. The wit.ai engine has no
recognition for specific subjects that should begin with the
first character's upper case. Therefore, we eliminate the need
for the lowercase convert function of standard data pre-
processing. After serious consideration, we also do not use
stopwords removal since many of our data included in
stopwords are too influential to be removed.

B. Feature Extraction
We used the notably famous and robust Harmonic-to-

Noise Ratio, Fundamental Frequency, Zero Crossing Rate,
Root Mean Square Error, Mel-Frequency Cepstral
Coefficient, and Linear Predictive Coding features as its
derivations. We used Jitter and Shimmer that represent
perturbation which often happens in jittery speech. Spectral
features are also used to represent time-series or temporal
speech. The Intensity and Loudness features are also vital in
determining stressed intonation.

TABLE II. EXTRACTED SPEECH FEATURES

Feature Name Total Features w/
Derivation(s)

Fundamental Frequency 15

Harmonic-to-Noise Ratio 15

Intensity 15

Jitter 30

Linear Predictive Coding 24

Loudness 15

Mel-Frequency Cepstral Coefficient 30

Root Mean Square Error 6

Shimmer 15

Spectral Centroid 6

Spectral Flux 6

Spectral Rolloff 6

Spectral Variability 6

Zero-Crossing Rate 15

Total 204

Table II shows the complete 204 speech features extracted
in this work that are related to emotion. Meanwhile, we used
the bigram feature for text data to grasp two-word pair worth
of contextual stress recognition.

C. Customizing Hyperparameter Value
Table III illustrates the value for each hyperparameter,

either in numerical or categorical. The customization of
hyperparameter value relies on how we do not take every
value to the respective hyperparameter, therefore reducing
the probability and is beneficial for low-budget hardware
[17]. The best fit model chosen by RF-Opt within the said
value will automatically apply in BiLSTM-CNN in each
experiment scenario. Any possible patterns of
hyperparameters value combination are limited to 100

iterations (with no early stopping employed) to not further
burden the hardware.

TABLE III. HYPERPARAMETERS VALUE TO BE OPTIMIZED

Hyperparameter Value

Activation Function sigmoid, tanh, relu, leaky_relu, selu, linear,
softmax

Batch Size 2 until 64

CNN Filter 2 until 10

Data Test Size 0.4, 0.3, 0.2, 0.1

Data Train Size 0.6, 0.7, 0.8, 0.9

Dense Nodes Number 5 until 512

Dropout 2e-6 until 0.5

Epoch 30, 60, 70
L2 Kernel
Regularization 0.01, 0.001, 0.0001, 0.000001

Learning Rate 1e-6 until 1e-1

Loss Function binary_crossentropy,
categorical_crossentropy, hinge, mae

LSTM Unit 2, 4, 8, 16, 32, 64

Optimizer Function Adam, RMSprop, Ftrl, SGD, AdaDelta,
Adagrad

Weight Initialization random_uniform, glorot_uniform,
lecun_uniform, truncated_normal

IV. RESULT AND DISCUSSION

A. Result
As a result of optimization by RF-Opt, Figure 3 and Figure

4 shows every RF-Opt and Bayes-Opt runtime result for each
tuning runtime and learning runtime in seconds.

Fig. 3. BiLSTM-CNN Runtimes optimized by RF-Opt (in seconds)

Fig. 4. BiLSTM-CNN Runtimes optimized by Bayes-Opt (in seconds)

159

Authorized licensed use limited to: ULAKBIM UASL - CUKUROVA UNIVERSITESI. Downloaded on November 10,2022 at 23:42:24 UTC from IEEE Xplore. Restrictions apply.

TABLE IV. BEST HYPERPARAMETER OF BILSTM-CNN WITH RF-OPT

TABLE V. BEST HYPERPARAMETER OF BILSTM-CNN WITH BAYES-OPT

Table IV and Table V illustrate the hyperparameter tuning

result of RF-Opt and Bayes-Opt, respectively, for each
scenario.

Fig. 5. Optimized BiLSTM-CNN Accuracy Result

Figure 5 shows a fairly consistent accuracy result for each
scenario, between the respective optimization method of RF-
Opt and Bayes-Opt. As presented in Table VI, our proposed
work of optimized BiLSTM-CNN by RF-Opt and Bayes-Opt
reached the best accuracy from previous work.

TABLE VI. RESULT COMPARISON WITH PREVIOUS WORKS

Authors Data Testing Model Best
Accuracy

[9] Ayutthaya
et al. (2018) Text BiLSTM-CNN 78.89%

[18] Buddhika
et al. (2018) Text NN, SVM, and DT 74%

[19] Zhang et al.
(2018)

Text
(Named
Entity)

BiLSTM-CNN optimized
by Gaussian 83.2%

[20] Qaffas
(2019) Text Jaccard and Cosine 70%

[21] Duwairi
et al. (2021) Text BiLSTM-CNN 73%

Proposed Model
(2021)

Text and
Speech

BiLSTM-CNN optimized
by RF-Opt 84%

Text and
Speech

BiLSTM-CNN optimized
by Bayes-Opt 84.8%

B. Discussion

The accuracy result, runtimes, and best hyperparameter
are shown varied between RF-Opt and Bayes-Opt. In RF-Opt,
the best activation function, batch size, CNN filter, dense
number, dropout, learning rate, and weight initialization for
every scenario is not the same, varied with no regard to the
data. However, RF-Opt did pick binary_crossentropy as the

Hyperparameter Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Activation Function softmax tanh sigmoid relu selu

Batch Size 19 10 14 21 16

CNN Filter 2 7 7 8 3

Data Train/Test 0.1/0.9 - - - -
Dense Nodes
Number 12 505 217 494 400

Dropout 0.002580695379659 0.09813176944163 0.049899 0.005835585171253 0.2217270034368

Epoch 60 60 60 60 30

Learning Rate 1.6e-03 0.01 0.000001 1e-06 1e-06

Loss Function categorical_crossentropy binary_crossentropy

LSTM Unit 12 32 32 32 32

Optimizer Function Adam Ftrl RMSprop

Weight Initialization lecun_uniform random_uniform glorot_uniform lecun_uniform truncated_normal

Hyperparameter Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Activation Function selu relu tanh tanh sigmoid

Batch Size 26 3 11 23 12

CNN Filter 3 10 8 6 6

Data Train/Test 0.1/0.9 - - - -
Dense Nodes
Number 305 200 214 267 288

Dropout 0.0015794629720744 2.069459761472289e-05 0.099124155 0.63231827967 0.701651690311

Epoch 30 50 50 30 60

Learning Rate 1.1e-03 1.6e-04 1.4e-05 1.2e-07 1.7e-05

Loss Function categorical_crossentropy hinge binary_crossentropy mae

LSTM Unit 16 32 12 12 16

Optimizer Function RMSprop Adam RMSprop Adam

Weight Initialization truncated_normal orthogonal glorot_uniform lecun_uniform random_uniform

160

Authorized licensed use limited to: ULAKBIM UASL - CUKUROVA UNIVERSITESI. Downloaded on November 10,2022 at 23:42:24 UTC from IEEE Xplore. Restrictions apply.

best loss function hyperparameter in most scenarios (4 out of
5), including at Scenario 5, which results in the best accuracy
from RF-Opt (84%). The learning runtime for RF-Opt also
seems to slow in Scenario 3, differs at 3,202 seconds by best
learning runtime from Scenario 5, which is only 17 seconds.

Most numerical and categorical hyperparameter results
by Bayes-Opt also seem to vary with no regard to speech or
text data. Bayes-Opt showed consistent learning and
hyperparameter tuning runtimes but is generally slower than
RF-Opt, with the best runtime is at the learning runtime of
Scenario 2 in 821 seconds. The best accuracy by Bayes-Opt
is with Scenario 1 with 84.8% and decreases in each scenario.

V. CONCLUSION

The whole framework of our proposed speech emotion
and stress recognition with BiLSTM-CNN is automatic since
the data collection, feature extraction, hyperparameter
optimization using RF-Opt, BiLSTM-CNN construction, and
eventually end-result from accuracy and runtimes. Our
automatic speech emotion and stress recognition took in two
affective inputs of speech (emotion as BA & BP) and intent-
based text (stress as BL).

RF-Opt optimized the proposed BiLSTM-CNN to
achieve excellent accuracy results and fast learning runtime
(17 seconds). Based on the scenario, RF-Opt did improve
accuracy results up to 7,57%, from Scenario 4 with 76,43%
to Scenario 5 with 84% accuracy. The runtime also improves
from scenario to scenario, although both hyperparameter
optimization and learning runtime are slowed at Scenario 3.
For our future work, we planned on creating a data-centered
custom hyperparameter from feature extraction with
optimization from different SMAC-based methods.

ACKNOWLEDGMENT
We thank the Kementerian Riset dan Teknologi

(Indonesian Ministry of Research and Technology) and the
Badan Riset dan Inovasi Nasional (Indonesian National
Research and Innovation Agency) for providing the research
grant with contract number 848/PKS/ITS/2021.

REFERENCES
[1] B. Shillingford et al., “Large-Scale Visual Speech Recognition,”

arXiv Prepr. arXiv1807.05162, 2018.

[2] J. Fritsch, S. Wankerl, and E. Nöth, “Automatic Diagnosis of
Alzheimer’s Disease using Neural Network Language Models,” in
ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2019, pp. 5841–5845.

[3] S. Paul, “Hyperparameter Optimization in Machine Learning
Models,” Python Tutorials, 2018.
https://www.datacamp.com/community/tutorials/parameter-
optimization-machine-learning-models? (accessed Jun. 01, 2021).

[4] H. Xie, S. Fang, Z.-J. Zha, Y. Yang, Y. Li, and Y. Zhang,
“Convolutional Attention Networks for Scene Text Recognition,”
ACM Trans. Multimed. Comput. Commun. Appl., vol. 15, no. 1s, pp.
1–17, Feb. 2019, doi: 10.1145/3231737.

[5] H. Soltau, H.-K. Kuo, L. Mangu, G. Saon, and T. Beran, “Neural
Network Acoustic Models for the DARPA RATS Program,” in
INTERSPEECH, 2013, pp. 3092–3096.

[6] R. Sharma, R. K. Bhukya, and S. R. M. Prasanna, “Analysis of the

Hilbert Spectrum for Text-Dependent Speaker Verification,” Speech
Commun., vol. 96, no. December, pp. 207–224, 2018, doi:
10.1016/j.specom.2017.12.001.

[7] A. H. Ribeiro, K. Tiels, L. A. Aguirre, and T. Schön, “Beyond
Exploding and Vanishing Gradients: Analysing RNN Training using
Attractors and Smoothness,” in International Conference on Artificial
Intelligence and Statistics, 2020, pp. 2370–2380.

[8] J. Zhao et al., “Do RNN and LSTM have Long Memory?,” in
International Conference on Machine Learning, 2020, pp. 11365–
11375.

[9] T. S. N. Ayutthaya and K. Pasupa, “Thai Sentiment Analysis via
Bidirectional LSTM-CNN Model with Embedding Vectors and Sentic
Features,” in 2018 International Joint Symposium on Artificial
Intelligence and Natural Language Processing (iSAI-NLP), Nov.
2018, pp. 1–6, doi: 10.1109/iSAI-NLP.2018.8692836.

[10] A. Sheth, H. Y. Yip, A. Iyengar, and P. Tepper, “Cognitive Services
and Intelligent Chatbots: Current Perspectives and Special Issue
Introduction,” IEEE Internet Comput., vol. 23, no. 2, pp. 6–12, Mar.
2019, doi: 10.1109/MIC.2018.2889231.

[11] L. Yang and A. Shami, “On Hyperparameter Optimization of Machine
Learning Algorithms: Theory and Practice,” Neurocomputing, vol.
415, pp. 295–316, 2020.

[12] R. Elshawi, M. Maher, and S. Sakr, “Automated Machine Learning:
State-of-the-Art and Open Challenges,” arXiv Prepr.
arXiv1906.02287, 2019.

[13] M. Feurer and F. Hutter, “Hyperparameter Optimization,” in
Automated Machine Learning, Springer, Cham, 2019, pp. 3–33.

[14] R. S. Olson, W. La Cava, Z. Mustahsan, A. Varik, and J. H. Moore,
“Data-driven Advice for Applying Machine Learning to
Bioinformatics Problems,” in PACIFIC SYMPOSIUM ON
BIOCOMPUTING 2018: Proceedings of the Pacific Symposium,
2018, pp. 192–203.

[15] P. Liashchynskyi and P. Liashchynskyi, “Grid Search, Random
search, Genetic Algorithm: A Big Comparison for NAS,” arXiv
Prepr. arXiv1912.06059, 2019.

[16] T. Yu and H. Zhu, “Hyper-parameter Optimization: A Review of
Algorithms and Applications,” arXiv Prepr. arXiv2003.05689, 2020.

[17] P. T. Sivaprasad, F. Mai, T. Vogels, M. Jaggi, and F. Fleuret,
“Optimizer Benchmarking Needs to Account for Hyperparameter
Tuning,” in International Conference on Machine Learning, 2020, pp.
9036–9045.

[18] D. Buddhika, R. Liyadipita, S. Nadeeshan, H. Witharana, S. Javasena,
and U. Thayasivam, “Domain Specific Intent Classification of Sinhala
Speech Data,” in 2018 International Conference on Asian Language
Processing (IALP), 2018, pp. 197–202.

[19] L. Zhang and F. Xiang, “Relation Classification via BiLSTM-CNN,”
in Data Mining and Big Data. DMBD 2018. Lecture Notes in
Computer Science, vol 10943, 2018, pp. 373–382.

[20] A. A. Qaffas, “Improvement of Chatbots Semantics using wit.ai and
Word Sequence Kernel: Education Chatbot as a Case Study,” Int. J.
Mod. Educ. Comput. Sci., vol. 11, no. 3, p. 16, 2019.

[21] R. Duwairi, A. Hayajneh, and M. Quwaider, “A Deep Learning
Framework for Automatic Detection of Hate Speech Embedded in
Arabic Tweets,” Arab. J. Sci. Eng., vol. 46, no. 4, pp. 4001–4014, Apr.
2021, doi: 10.1007/s13369-021-05383-3.

161

Authorized licensed use limited to: ULAKBIM UASL - CUKUROVA UNIVERSITESI. Downloaded on November 10,2022 at 23:42:24 UTC from IEEE Xplore. Restrictions apply.

