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Abstract—Given the high number of hyperparameters in 

deep learning models, there is a need to tune automatically deep 
learning models in specific research cases. Deep learning models 
require hyperparameters because they substantially influence 
the model’s behavior. As a result, optimizing any given model 
with a hyperparameter optimization technique will improve 
model efficiency significantly. This paper discusses the 
hyperparameter-optimized Speech Emotion Recognition (SER) 
research case using Transformer-CNN deep learning model. 
Each speech samples are transformed into spectrogram data 
using the RAVDESS dataset, which contains 1,536 speech 
samples (192 samples per eight emotion classes). We use the 
Gaussian Noise augmentation technique to reduce the 
overfitting problem in training data. After augmentation, the 
RAVDESS dataset yields a total of 2,400 emotional speech 
samples (300 samples per eight emotion classes). For SER 
model, we combine the Transformer and CNN for temporal and 
spatial speech feature processing. However, our Transformer-
CNN must be thoroughly tested, as different hyperparameter 
settings result in varying accuracy performance. We experiment 
with Naïve Bayes to optimize many hyperparameters of 
Transformer-CNN (it could be categorical or numerical), such 
as learning rate, dropouts, activation function, weight 
initialization, epoch, even the best split data scale of training and 
testing. Consequently, our automatically tuned Transformer-
CNN achieves 97.3% of accuracy. 

Keywords—Speech Emotion Recognition, Automatic 
Hyperparameter Tuning, Transformer-CNN, Naïve Bayes 
Optimization 

I. INTRODUCTION 

In SER, the most emotion-related acoustic features are 
"extracted" from speech data in general. Acoustic features in 
human speech contain information that characterizes emotion. 
Due to its vast ability for complex computation, Speech 

Emotion Recognition (SER) is implemented using varying 
Deep Learning models. 

Moving forward with current improvements, end-to-end 
SER has gained potential performance with the introduced 
self-attention network: Transformer, which has been dubbed 
as a successor for both LSTM and RNN. One outstanding 
element of the Transformer is that it provides direct access per 
step via self-attention, which almost eliminates information 
loss in message transit. Furthermore, future and past sentences 
can be examined almost concurrently. This behaviour also 
exists in Bidirectional RNN and Bidirectional LSTM, but both 
need two times computation [1], whereas Transformer only 
needs one time computation. Furthermore, Transformer 
happens to be non-recurrent, which makes training runtime 
much faster. 

Even though the success of Transformer networks in 
classifying different problems is impressive, network training 
is strongly dependent on a collection of hyperparameters that 
control many elements of the specific model. There is no 
universal hyperparameter configuration for all tasks [2]. The 
hyperparameters need to be optimized span from the number 
of hidden neurons, batch size, the constant of dropout and
learning rate, even weight-related hyperparameters. 

Emotional variability has been demonstrated in some 
previous studies to significantly affect SER performance [3]. 
Deep Learning model optimization for detecting the presence 
of emotion could assist increase the robustness of SER 
systems. The purpose of this paper is to investigate the impact 
of hyperparameters in the Transformer network in order to 
determine which hyperparameter configuration is most suited 
for SER systems. Furthermore, a total of four encoder and 
decoder networks are integrated with a CNN in the 
Transformer network. 
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This paper is organized as follows: Section 1 discusses the 
significance of employing hyperparameter optimization for 
SER by Transformer. Section 2 explains the human emotion 
concept from speech features. Section 3 extensively explains 
the need and architecture of Transformer-CNN for this work, 
as well as the Naïve Bayes Optimization framework for 
hyperparameter optimization. Results of the Sensitivity, 
Specificity, Accuracy and Confusion Matrix are presented in 
Section 4, along with a fine-tuned hyperparameter value and 
comparisons to previous studies. Section 5 concludes our 
Transformer-CNN optimization. 

II. EMOTIONAL SPEECH 

A. Human Emotion Concept 

Classifying emotions and defining the boundaries 
between them, affect, and mood have been the subject of 
numerous initiatives in an effort to make it easier for 
computer programs to recognize and evaluate them. 
Automated emotion recognition and rating complicates the 
analysis of so many different feelings. When Feidakis et al. 
classify emotions according to basic models [4], they find that 
there are 66 different types of feelings: ten basic emotions 
(anger, anticipation, distrust, fear, happiness, joy, love, 
sadness, surprise, trust) and 56 secondary emotions, which 
can be further divided into two categories. 

 
Fig. 1. Emotion Categorization using Arousal-Valence Paradigm 

To address this difficulty, most studies on emotion 
evaluation rely on alternative classifications [5], which 
contain aspects of emotions and analyze only basic emotions 
that are more simply described. In most studies, many 
researchers employ versions of Russel's circumplex model of 
emotions, as shown in Fig. 1, which provides a two-
dimensional representation of basic emotions in terms of 
valence (activation: negative/positive) and arousal (high or 
low) [6]. After a network model has been constructed, the 
next crucial issue is acquiring labelled data for training and 
testing that conforms to the selected emotion representation 
model [7]. The relatively high level of subjectivity and 
uncertainty in the target labelling is, without a doubt, a 
complex subject to tackle. Luckily, public datasets like 
RAVDESS labeled its dataset for reproducible research [8]. 

B. Prosodic Features 

In vocal tract-based categories, MFCC is a common 
cepstral coefficient associated with prosodic features. 
Formant features become other cepstral coefficients because 

these properties typically indicate energy distribution in the 
frequency range of speech [7]. A depiction of the short-term 
power spectrum, MFCCs is averaged over surrounding 
frequency bands, and the frequencies are scaled to mimic the 
psychoacoustic characteristics of the human ear. When it 
comes to determine pitch distances, the Mel-scale, a scale of 
pitches deemed by listeners to be equal in distance from one 
another, might be utilized. In this experiment, we use acoustic 
features such as the Mel-Frequency Cepstral Coefficient 
(MFCC), Jitter, Shimmer, and Fundamental Frequency (F0). 
Furthermore, these features are extracted with Librosa 0.7.1 
[9]. 

The MFCC approaches employs a filter bank approach. A 
Discrete Cosine Transform is utilized in order to obtain the 
required quantity of cepstral coefficients once the spectrum 
of each Hamming-windowed signal has been segmented into 
Mel-spaced triangular frequency bins. F0, on the other hand, 
can be detected simply by repeating   samples. Eq. (1) 
depicts the MFCC calculation formula, where  is the 
frequency being converted to the Mel scale. 
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We employ the Jitter and Shimmer features to represent 

voice quality characteristics in an emotional speech. Jitter is 
a measure of F0 fluctuations from one period to the next. By 
computing F0 variations from one cycle to the next, Jitter 
may be measured and characterized in terms of absolute and 
Relative Average Perturbation (RAP) values [10]. Eq. (2) 
depicts the Jitter calculation formula, where $  is the total 
number of voiced frames from F0 and %&  is the time instant at 
the F0 period length. 

Shimmer is a calculation of amplitude fluctuations' 
period-to-period variability [10]. F0 does not provide peak-
picking in time-domain scenarios such as speech recognition 
[11]. Using Shimmer, peak-picking is possible without being 
restricted by the F0 constraint. Furthermore, Eq. (3) depicts 
the Shimmer calculation formula, where '&  is the peak-to-
peak amplitude at the F0 period. These traits are also utilized 
in speech and expression recognizers to depict emotions. 
Jitter and Shimmer are extracted systematically, needing 
information on how the F0 is achieved [12]. Jitter and 
Shimmer characteristics, in essence, can capture emotional 
speech evidence such as jitters, stuttering, and disturbance. 

III. MODELS FOR SPEECH EMOTION RECOGNITION 

A. Transformer Model 

There is an attempt to multiply self-attention network 
(referred in Eq. (4)): the multi-head self-attention. 
Transformer architecture encodes an input sequence's context 
vectors as a set of key-value (K, V) pairs with the same 
dimension as the input sequence length. Both the keys 
(inputs) and values (inputs' hidden states) comprise the 
encoder's hidden states. The output predicts at the previous 



timestep by the decoder is computed into a "query", and the 
next term in the decoder's output sequence is a mapping from 
the key-value pairs plus query: (Q,K,V). 

 

'(, *,+ = ,-"./
0×23

√5
+ (4) 

 
Each output term of the decoder is a weighted sum of all 

values from the (K,V) encoded representation of an input - so, 
like a regular attention mechanism which decodes a weighted 
sum of hidden states, but self-attention assigns the 
(alignment) weights to each value (hidden state) as a 
sequence-length-scaled dot-product of the query with all the 
keys. That is, the weighted sum of all the inputs' hidden states 
is computed 6 ×  ×  from the previous (last) term in the 
output sequence and the entire input sequence. This is where 
the global attention ability of the Transformer originates. 

According to Vaswani et al., the scaled dot product self-
attention (, *,+ is computed over multiple "representation 
subspaces". Therefore, each query, key and value has its own 
weight matrix associated [13]. In result, multi-headed (multi-
layer) self-attention can compute a term in the output 
sequence weighted differently according to a region
(subspace) of the input sequence. 

 
7(, *,+ = 8ℎ.9:;⋯ ;ℎ.9=> × ?@ (5) 
 
ℎ.9& = '( × ?&

0, * × ?&
2 ,+ × ?&

A (6) 
 
Each attention head in multi-headed self-attention still 

computes a scaled dot product over the entire *,+ encoded 
input, just weighted differently 6 ×  ×   the input values. 
Complete multi-head self-attention equation is shown in Eq. 
(5). Eq. (5) needs different representation of attention, which 
is shown in Eq. (6), with ?&

0 , ?&
2 , ?&

A , and ?&
@ are 

parameters of matrices to be learned. 

The output of all the attention heads is concatenated and 
multiplied with a weight matrix which puts the dimension of 
the encoded state back to that of a single attention head; then 
a single feedforward layer can operate on the encoded latent 
space regardless of the number of attention heads, and a 
softmax prediction is computed from a weighted sum of all 
layers in the multi-headed attention architecture. 

B. CNN Model 

In the recent developments for image processing, CNNs 
with 2D convolutional layers become robust. In this 
experiment, we need to transform speech data into 
spectrogram data to get the most out of CNNs capabilities. 
Input feature maps for two-dimensional spectrograms image 
convolution layers might be in the $, B, 7, ? or batch size, 
channel, height, and width formats, respectively. There are 
4,320 plots in the form of MFCC plots: 1,440 native and 
2,880 Gaussian Noise augmented. Each MFCC plot is 40 x 
282 and represents one Mel coefficient pitch range with 282-
time steps. Before training, the MFCC input feature tensor 
will have a shape of (4,320, 1, 40, 282).  

In both CNN blocks, we are employing 3 × 3 kernels in 
all three layers. One input channel in the first layer creates a 
133 filter, with 16 output channels requiring 16 identical 133 

filters with nine weights each. There are 16 input channels 
and 32 output channels for 16 × 3 × 3 filters that each have 
144 weights. A total of 22 maxpooled output from the first 
layer is fed into the second layer, resulting in a 32 × 35 × 35 
output feature map after 4 × 4 stride 4 maxpooling, which 
applies 32 different weights to the 16 × 3 × 3  filters. 64 
distinct filters with 288 weights each make up the final layer's 
32 × 3 × 3  filtering structure. After 4 × 4  stride four 
maxpooling, the final layer gives an output feature map of 
6,418. To achieve the most expressive hierarchical feature 
representation at the lowest computational cost, we intend to 
expand filter depth/complexity simultaneously and reduce 
feature map volume. 

C. Naïve Bayes Optimization 

One issue with the vanilla model is the substantial number 
of defining hyperparameters, which can range from a hundred 
to a thousand. Manually adjusting these hyperparameters is 
also costly in terms of experiment trials. According to Yang 
and Nam, there is a 20,480,000,000 hyperparameter-adjusting 
possibilities for Transformer to achieve maximum accuracy 
[14]. Many prior studies show that fiddling with the Deep 
Learning model's hyperparameters is effective [15]. We 
consider the most basic hyperparameter optimization learner, 
the well-known Naïve Bayes (hereinafter will be referred as 
NBO or Naïve Bayes Optimization). 

 
FG, GH: ΘK → M (7) 
 
NOG = FG8* + PKQ>:R (8) 
 
SO

KG = FG, G − FG8* + PKQ>:FG (9) 
 
GOU: = arg max

[∈]
ÔG;  O (10) 

 
In this study, NBO is generally made as black-box 

function and to solve global optimization problems. The 
search space Θ can be a compact subset of M_, but the NBO 
can be applied also to search spaces involving categorical or 
numerical input. The NBO framework consists of two 
important components: (1) a probabilistic surrogate model 
consists of a prior distribution that models the unknown 
objective function, and (2) an optimized acquisition function 
for determining next sample. The surrogate model generates a 
posterior probability distribution which describes potential for 
H(θ) at a candidate configuration θ. The basic idea is every 
observation of H at a new point θ, NBO updates its posterior 
distribution. We use the Gaussian Process (GProc) as 
surrogate model. GProc is completely specified by a mean 
function μ(θ):Θ → R and a definite positive covariance 
function, as given in Eq. (7). 

NBO begins with an initial set of F  hyperparameter 
configurations `G&a&b:

c  and their associated function values 
`R&a&b:

c , with R& = 7G&. At iteration of  ∈ `F + 1,⋯ , $a, 
NBO retains past evaluated configurations, and then update 
the GProc model to obtain posterior distribution on the current 
training set of  O = `G, R&a&b:

O . For any configurations G ∈
Θ, the posterior mean NOG and the posterior variance SO

KG 
of the GProc (conditioned on  c) is denoted in Eq. (8) and Eq. 
(9). In Eq. (8) and Eq. (9), K is the  ×  matrix with entries of 
*&,e = FfG&, Geg, FG is the  × 1 vector of covariance terms 
between G and `G&a&b:

O , y is the  × 1 vector, with O= entry is 
R&  and PK  is the noise variance. By solving an auxiliary 



optimization problem in Eq. (10), the next candidate points to 
assess are chosen. In Eq. (10), Ô is the acquisition function to 
be maximized. 

IV. THE EXPERIMENT DESIGN 

A. Speech Emotion Dataset and Augmentation 

The Ryerson Audio-Visual Database of Emotional Speech 
and Song (RAVDESS) is a validated public database of 
American English-spoken emotional speech and song. 
RAVDESS has eight emotion classes of Surprised, Neutral, 
Calm, Happy, Sad, Angry, Fearful, and Disgust, with 7.356 
files. RAVDESS contains voice and song files in two different 
audio-only properties, audio-video properties, and one video-
only properties. RAVDESS employs 24 professional actors, 
who has performed two statements, “Kids are talking by the 
door” and “Dogs are sitting by the door”.  

The performance of a deep learning model is dependent on 
a huge dataset. However, we may enhance the model's 
performance by adding additional data using Gaussian Noise. 
First, the original data set is perturbed to generate extra 
datasets, and then the additional datasets are included into a 
larger dataset as a regularization approach. The built-in data 
augmentation utilities in deep learning frameworks can be 
inefficient or lacking in some needed features. While there are 
several data augmentation strategies for speech classification 
task available in the literature.  

 
/ = Sfg + / (11) 
 
In this work, augmentation is done by incorporating 

Gaussian noise into the speech audio data samples to smooth 
out the input space. Given that the mean and variance of 
Gaussian noise  are both zero and one, it is simple to 
create using a pseudo-random number generator. The 
amplitude of the noise is a significant aspect in noise. When 
the noise amplitude (S) is too tiny, it is difficult to perturb the 
classifier. When S value is too big, it is difficult for classifier 
to learn. We establish a reasonable range for it / is the raw 
signal, and the range is 80.001, 0.015>  and it follows the 
uniform distribution. The freshly generates sample following 
the addition of noise can be stated in Eq. (11). 

B. Transformer-CNN Architecture 

Each three-layer of deep 2D-CNN is extremely similar to 
the classic LeNet. We use small-stacked filters of three 3 × 3 
kernels on top of each other, the second layer has a 5 × 5 view 
of the original input volume, and the third layer a 7 × 7 view. 
Non-linearities between each smaller layer, on the other hand, 
expresses more complicated feature representations. 
Meanwhile, we try to keep Transformer as vanilla as possible, 
save that we utilize four encoders rather than the original six 
encoders. Fig. 2 shown a complete architecture overview of 
our Transformer-CNN. 

NBO's best-fit model will be applied automatically in 
Transformer-CNN. Furthermore, any result of 
hyperparameters configuration is limited to 100 iterations (no 
early stopping) to avoid hardware overburdening. An 
independent test is performed by optimal Transformer-CNN 
model after the hyperparameter optimization process by NBO. 
Sensitivity, Specificity, Accuracy, and the Receiver Operating 
Characteristic (ROC) curve have all been used to validate the 
performance of our Transformer-CNN model. 

 
Fig. 2. Architecture Overview of our proposed Transformer-CNN 

V. RESULT AND DISCUSSION 

Using our tuned Transformer-CNN, we are able to reach 
10 hours and 40 minutes of tuning runtime, while learning 
runtime reached 3 hours, 1 minute, and 26 seconds. 
Furthermore, Table I shown an optimal configuration of 
hyperparameter from our tuned Transformer-CNN. 
According to NBO, 200 epochs is best number for this 
experiment. Although CNN and Transformer took data 
directly from 2D spectrogram ( 40 × 282 ), the dropout 
hyperparameter thought to be best if set respectively.  

TABLE I.  OPTIMAL HYPERPARAMETERS CONFIGURATION  
FOR TRANSFORMER-CNN 

Hyperparameters Value 

Activation Function relu 

CNN Filter 77 

Data Test Size 0.1 

Data Train Size 0.9 

Dropout (CNN) 0.2159447275666912 

Dropout (Transformer) 0.11516595022108196 

Epoch 200 

Learning Rate 0.09583585446450836 

Loss Function categorical_cross_entropy 

Optimizer Function adadelta 

Weight Initialization xavier_uniform 



 
Fig. 3. Validation of Confusion Matrix using our Transformer-CNN  

 
Fig. 4. Accuracy Validation level  

 

Fig. 5. Loss Validation level  

 

Fig. 6. Sensitivity Validation chart 

 

Fig. 7. Specificity Validation chart 

 
Fig. 8. ROC-AUC Validation chart 

Fig. 3 shown a Confusion Matrix of different emotional 
speech classes from RAVDESS. According to Fig. 3, the 
“Surprised” class achieves better result by predicting 30 out 
of 30 test speech samples correctly. Practically, the 
“Surprised” class should reach accuracy of 100%, but 
because Accuracy is calculated from whole data and whole 
classes, our Transformer-CNN reached 97.3%.  

Without hyperparameter optimization, our Transformer-
CNN is able to achieve only 86% of accuracy. The Accuracy 
chart is shown in Fig. 4, alongside with other validations of 
Loss validation in Fig. 5, the Sensitivity validation in Fig 6, 
the Specificity validation in Fig. 7, and ROC-AUC results of 
our automatically tuned Transformer-CNN is shown in Fig. 
8. 

According to Fig. 3, the “Surprised” class is indeed 
classified easier using our tuned Transformer-CNN. Second 
best classification is done for “Disgust” emotion with 29 
correctly predicted instances out of 30. However, “Neutral” 
emotion class have worse classification result, with only 13 
correctly predicted instances out of 30. This finding may occur 
because “Neutral” emotion class have subjectively ambiguous 
emotion class rather than other classes. This result shown 
RAVDESS really has excellent data (except for “Neutral” 
class), and our Gaussian Noise performs excellently in adding 
needed noise. Referring to Fig. 6, best Sensitivity reached 
0.99, best Specificity from Fig. 7 reached 0.992, best ROC 
reached 0.99 as shown in Fig. 8. 

The Sensitivity and Specificity results are steady with the 
Accuracy result of 0.973 (or 97.3%). However, all other 
classes also performes excellently, as the number of correctly 
predicted instances in Fig. 3 differs not too much from each 
emotion classes. It is clear that adding CNN does not give any 
trouble in learning at all, as long as hyperparameter 
optimization is employed, whatever model may be used. 
Furthermore, in Table II, our proposed work of optimized 



Transformer-CNN by NBO reaches the best accuracy from 
previous works. 

TABLE II.  RESULT COMPARISON WITH PREVIOUS WORKS 

Author Model 
Best 

Accuracy 

[16] Tarantino et al. (2019) Transformer 64.7% 

[17] Wang et al. (2021) Transformer 76.8% 

[18] Han et al. (2021) Transformer-CNN 80.8% 

[19] Zhang et al. (2021) Transformer 91% 

[20] Gong et al. (2021) Transformer-CNN 97% 

Our Proposed Work 
(2022) 

Transformer-CNN 86% 

NBO-optimized 
Transformer-CNN 

97.3% 

VI. CONCLUSION 

In this study, our tuned Transformer-CNN is able to 
perform SER task excellently. Accuracy reached 97.3% for 
eight emotion classes. Sensitivity, Specificity, and ROC 
reached 99%, 99.2%, and 99%, respectively. Steady result 
between Sensitivity and Specificity means the result of our 
Transformer-CNN is valid, and the use of Gaussian Noise to 
reduce data overfitting has worked. Meanwhile, ROC result 
above 50% means the model has no trouble in classifying 
instances between classes. This study has proved that the 
usage of hyperparameter optimization using NBO for 
Transformer-CNN in SER task is highly beneficial. After best 
fit hyperparameter configuration is applied on our 
Transformer-CNN, our model does not have to struggle in 
learning, while still retaining quick computation time. The 
optimization runtime is slower than learning runtime, which is 
expected, because in tuning process, all probability of best fit 
hyperparameter configuration is computed thoroughly. 
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