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Abstract—Emotions are crucial in understanding the human 

psychological state and can influence social interactions and 

decision-making. The integration between emotion processing 

and computational systems enables the creation of more natural 

and adaptive interfaces. This research focuses on Speech 

Emotion Recognition (SER), which aims to identify human 

emotions through voice signal analysis. Many previous studies 

have been limited to unimodal approaches, and just few have 

explored multimodal approaches that combine voice and text 

simultaneously. Furthermore, there is a lack of research that 

directly integrates Automatic Speech Recognition (ASR) for text 

as well as voice feature extraction in one step and applies data 

augmentation to improve model generalization. This research 

contributes to the improvement of accuracy for emotion 

recognition tasks using the IEMOCAP dataset with total 5797 

voices and text that contain angry, sad, happy, and neutral by 

incorporating the Wav2Vec model as a multimodal feature 

extractor (voice and text), and by applying SpecAugment to 

enrich the data variety. Structurally, our proposed architecture 

consists of two branches: a voice branch and a text branch. 

Features extracted from Wav2Vec are sent to the voice branch 

using an ECAPA-TDNN model, and to the text branch using a 

BERT model. These two branches are then combined using fully 

connected layers for final classification. Experiments show that 

this multimodal approach can achieve high performance, 

namely weighted accuracy of 90.28% and unweighted accuracy 

of 90.62%, with requiring special fine-tuning of the text model. 

These results indicate that the integration of multimodal with 

pretrained and data augmentation approaches can significantly 

improve the performance of SER systems. 

Keywords—voice signal analysis, speech emotion recognition, 

multimodal, feature extraction, Wav2Vec 

I. INTRODUCTION 

 Emotions play a crucial role in human life, influencing 
cognitive processes, behavior, and social interactions [1]. The 
ability to perceive and respond to the emotions of others 
enhances the quality of communication [2] and supports better 
decision making [3].  In the context of human-computer 
interaction, recognizing emotions can facilitate more natural 
and effective communication, thereby improving user 
experience in a wide range of applications [4].  

In order to understand and analyze these emotions through 
voice, the development of Speech Emotion Recognition 
(SER) systems is becoming increasingly relevant, especially 
in supporting various applications, such as virtual assistants, 
automated customer service, and AI-based health technology 
[5]. However, one of the core challenges in SER is that human 
emotions are often expressed through multiple modalities 

simultaneously, including vocal characteristics, linguistic 
content, facial expressions, and body gestures [6]. This 
complexity makes it difficult to achieve high accuracy using a 
single modality alone. Previous studies have shown that 
unimodal approaches particularly those using only audio 
typically achieve weighted and unweighted accuracy between 
70%-77% [7], [8], [9], [10]. This limitation arises from the 
difficulty in distinguishing between emotions such as anger, 
happiness, and sadness based solely on vocal tone, and the 
challenge of identifying emotions like sadness using only 
textual content  [11]. 

 To address these issues, this research proposes a 
multimodal approach to SER by combining both speech and 
text modalities. Traditionally, features have been extracted 
from audio using methods such as Mel-spectrogram [12], 
Mel-frequency cepstral coefficients (MFCCs)[13], Glove 
[14], and Hubert [15].  These approaches often required 
separate Automatic Speech Recognition (ASR) systems to 
transcribe audio into text for linguistic analysis [15]. 
Therefore, a method is needed to convert voice into text and 
retrieve voice features at one time to generate emotion 
predictions [16], and the next problem is that there are very 
few labeled speech emotion recognition datasets that can 
affect the model training process  [5], [17] . 

The primary contribution of this work is to enhance 
emotion recognition performance, specifically for the 
emotions of angry, sad, happy, and neutral, through an 
integrated multimodal architecture. Previous multimodal 
study predicting these four emotions has achieved weighted 
accuracy and unweighted accuracy of 78% using ResTDNN 
for voice model and BERT for text [14].  

This research aims to evaluate the performance by 
combining two branch models containing BERT model for 
analyzing text and ECAPA-TDNN model for analyzing 
speech data and investigate the performance improvement of 
the dataset with the addition of augmentation data using 
SpecAugment. The two branches’ data will be obtained from 
Wav2Vev to extract speech features and to transcribe text at 
the same time. To address the gap, this research applies 
augmentation with SpecAugment to increase the variety of 
data [18] and uses Wav2Vec as a model to extract more 
representative speech and text features [19]. The dataset to be 
used is IEMOCAP, which specifically contains speech 
emotion data. 

The idea in this research begins with training and 
evaluating a speech model using ECAPA-TDNN, applied 
separately to four types of datasets: IEMOCAP, IEMOCAP 

2025 International Conference on Data Science and Its Applications (ICoDSA)

979-8-3315-9854-9/25/$31.00 ©2025 IEEE 908

20
25

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 D

at
a 

Sc
ie

nc
e 

an
d 

Its
 A

pp
lic

at
io

ns
 (I

C
oD

SA
) |

 9
79

-8
-3

31
5-

98
54

-9
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

oD
SA

67
15

5.
20

25
.1

11
56

96
7

Authorized licensed use limited to: Arizona State University. Downloaded on September 17,2025 at 09:56:36 UTC from IEEE Xplore.  Restrictions apply. 



with augmentation, RAVDESS, and RAVDESS with 
augmentation. This is followed by training and evaluating a 
text model using BERT on two types of datasets: IEMOCAP 
and a combination of IEMOCAP and ISEAR. Finally, the 
integration of both modalities—speech and text—is 
performed using two types of datasets that include IEMOCAP 
and its augmented versions. For each dataset, four types of 
integrated models are trained and evaluated: (1) without any 
pretraining, (2) using text pretrained weights, (3) using speech 
pretrained weights, and (4) using both speech and text 
pretrained weights. The pretrained weights are selected based 
on the best-performing single-modality models. 

This research not only demonstrates improved accuracy 
over previous multimodal approaches, but also shows that 
Wav2Vec-based multimodal representation combined with 
data augmentation significantly enhances emotion 
recognition, providing a more unified and efficient pipeline 
for real-world SER applications. 

II. RELATED WORK 

Several previous studies related to speech emotion 
recognition with singe-modality have been conducted using 
IEMOCAP dataset. For example, E. Morais et al. [10] 
conducted research using voice only with Wav2vec/Hubert as 
the feature extraction model to detect four emotions (happy, 
sad, angry, neutral) using so-called Emphasized Channel 
Attention, Propagation and Aggregation in Time Delay Neural 
Network (ECAPA-TDNN). The results obtained unweighted 
accuracy of 77.76% and weighted accuracy of 77.36%. These 
results show that wav2vec can do feature extraction quite well 
and the ECAPA-TDNN accuracy is quite good as well. J. 
Wang et al. [8] conducted research with single modality (voice 
only) using MFCCs and Mel-spectrograms as feature and 
using Dual LSTM model. Their research provides unweighted 
accuracy of 73.30% and a weighted accuracy of 72.70%. The 
shortcoming in their study is that audio signals are converted 
into MFCC and Mel-spectrograms is not enough to achieve 
the highest potential due to loss of emotional information. Z. 
Huijuan et al. [20] conducted research of voice only using 3D 
log-Mel as feature and CNN blocks with RNN attention 
module for the model. Their research provides the best model 
3D-HTML with unweighted accuracy of 46% and weighted 
accuracy of 47%. Z. Yao et al. [12] conducted research of 
voice only using Mel-spectrogram as the input and fused three 
models deep learning contains HSF-DNN, MS-CNN and 
LLD-RNN. Their research provides unweighted accuracy of 
58% and a weighted accuracy of 57%. Md Shah et al. [21] 
conducted voice only research using MFCCs and epoch-based 
features that yield unweighted accuracies of 64.2%. Mingke 
Xu et al. [22] conducted voice only research also using 
MFCCs for input and ACNN model that yield unweighted 
accuracies and weighted accuracies of 76% each. 

Several previous studies related to speech emotion 
recognition with multi-modality have been conducted using 
IEMOCAP. For example, G. Sahu [11] conducted research 
voice only, text only and voice and text using random forest, 
XGBoost, SVM, Multinomial Naïve Bayes, Logistic 
Regression, Multi Layer Perceptron dan LSTM to detect four 
emotions (happy, sad, angry, and neutral). The results 
accuracy are in a range from 56 to 70%, which are not much 
different from accuracy obtained using other deep learning 
methods. Using only voice, it is very difficult to detect happy, 
sad and angry emotions. If using only text, it is difficult to 
detect sad emotions. W. Wu et al. [14] conducted research 

using both voice and text and using Glove as well as 
transcription with no ASR and Residual Time Delay Neural 
Network (ResTDNN) as voice model and BERT as text 
model. Two models will then be combined using a fully 
connected network. The results obtained are the best with an 
unweight accuracy of 78.41% and weighted accuracy of 
77.57%. However, the drawback in their research was that it 
extracts text and voice features separately. Y. Wang et al. [23] 
conducted similar research but using Mel-Frequency Ceptral 
Coefficients (MFCC), chroma, pitch, zero-crossing rate, 
spectral and statistical measures as the feature and using 
Multimodal Transformer augmented fusion model. The 
results obtained unweighted accuracy of 72% and weighted 
75%. Seunghyun Yoon et al. [24] conducted research on voice 
and text using dual recurrent neural networks (RNNs) and 
then combined the information from these sources to predict 
the emotion classes. The results accuracies obtained ranging 
from 68.8% to 71.8%.  

III. METHODS 

We propose a method that require five steps in the 
development of the model for integrating text and speech for 
predicting emotion through speech. Those steps, as shown in 
Fig. 1, are data collection, augmenting and preprocessing, 
modeling, training, and evaluating. 

 

Fig. 1. Steps in the development of the model for integrating text and 
speech. 

A. Data Collection 

This is the first step in this research to obtain the datasets 
that will be used in model training and evaluation using 
English-language data only. This study uses two main 
datasets, namely IEMOCAP and RAVDESS for the speech, 
which are collected from sail.usc.edu [25] and kaggle [26], 
and ISEAR for additional dataset for training text model 
which are collected from kaggle [26]. 

B. Augmenting and Preprocessing  

Before the dataset is used for training, it is necessary to 
augment & preprocess the dataset to ensure the data is more 
varied, cleaner, consistent, and ready to be processed. The 
augmentation stage is the process of adding new variations to 
existing data artificially to increase the robustness of the 
model. The augmentation dataset will be used SpecAugment, 
which is applied only to the audio data. 

The preprocessing stage is essential to ensure data 
consistency and prevent issues such as null values that may 
cause errors during model training. This stage begins with 
filtering the RAVDESS and IEMOCAP datasets, which 
originally have seven emotion categories, down to four key 
emotions: angry, sad, happy, and neutral, based on the scope 
of this research. No speaker overlaps over RAVDESS and 
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IEMOCAP. For the IEMOCAP dataset specifically, the 
"excited" label is grouped under the "happy" category.  
Wav2Vec is then used for feature extraction—converting 
audio into latent features for the speech model, while also 
transcribing the audio into text for the text-based model. 

Especially for the transcribe results of this extracting will 
be processed again. The text preprocessing stage will involve 
cleaning the text from HTML tags, digits, underscores, and 
stop words. Removal of links, special characters, non-ASCII 
characters, emails, and punctuation. As well as converting all 
text to lowercase to equalize formatting. 

C. Modelling 

There are three types of models that will be used for 
training, which are text model, voice model, and text and voice 
model. 

a) Voice Model: The process begins with the extraction 

of voice feature vectors from wav2vec, which are directly 

processed by the ECAPA-TDNN model. The model analyzes 

the acoustic features to generate an emotion prediction output 

based on the audio input. 

b) Text Model: In Fig. 2, the process begins with the 

transcription input, represented as input IDs and attention 

masks in matrix form. These inputs are passed to the BERT 

model, where token-level analysis of the text is performed. 

The resulting hidden states from the BERT model are then 

dimensionally transformed to enable processing through 

three one-dimensional convolutional layers, each with kernel 

sizes of 3, 4, and 5. After the convolution operations, a 

pooling operation is applied, and the resulting feature maps 

are concatenated. This concatenated output is then passed 

through two fully connected layers, followed by a dropout 

layer for regularization. The text model used in this 

architecture was already fine-tuned using the ISEAR dataset 

specifically for emotion recognition. 

 
Fig. 2. Model text architecture. 

c) Text and Voice Model: In Fig. 3 the process begins 

by extracting textual data from speech using Wav2Vec, 

which is then fed into the BERT model to predict emotions 

based on textual content. Simultaneously, acoustic features 

are also extracted from the same Wav2Vec output and passed 

to the ECAPA-TDNN model to predict emotions from the 

audio signal. Once both voice and text have been analyzed, 

the next step is the integration stage, where the embeddings 

from the two modalities are combined and passed through a 

dropout layer. The resulting representation is then input into 

a fully connected layer, which produces the final emotion 

predictions in the form of logits. This approaches its called 

single-pass Wav2Vec for dual features [27]. It uses a fully 

connected layer concatenation of BERT and ECAPA-TDNN 

embeddings before the final classifier , design choice made 

to reduce complexity and training time while still allowing 

the model to learn joint representations effectively. 

 
Fig. 3. Integrating voice and text architecture. 

D. Training 

The dataset was initially divided into two subsets: 80% for 
training and 20% for testing. To ensure a fair evaluation and 
prevent data leakage, we confirmed that there was no speaker 
overlap between the training and testing sets. Since this study 
conducts experiments separately on the RAVDESS and 
IEMOCAP datasets, each dataset was split independently. For 
both datasets, we ensured that speakers in the training set do 
not appear in the test set. The training process was conducted 
over 50 epochs using a batch size of 64. Each batch underwent 
several key stages. First, a forward pass was performed, where 
the model processed the input to generate predicted outputs. 
Subsequently, the CrossEntropy Loss function was used to 
compute the loss by measuring the difference between the 
predicted output and the ground truth labels. Backward 
propagation was then applied to calculate gradients, which 
were used to update the model's weights. Optimization was 
carried out using the Adam optimizer with a learning rate of 
0.001, enabling the model to adjust its parameters for better 
pattern recognition. After each parameter update, the training 
accuracy was computed to evaluate the model's performance 
during the training phase. Following each epoch, the model 
was validated using the testing set to assess its ability to 
generalize to unseen data. An early stopping mechanism was 
employed to prevent overfitting, which halted training if no 
improvement in validation loss was observed. Specifically, 
early stopping was triggered if the validation loss did not 
improve by at least 0.01 over three consecutive epochs. The 
model with the best validation loss was saved as a .pth file to 
the designated path.  

E. Validation 

The validation process is conducted using the test data that 
was previously set aside during the dataset split. The predicted 
emotion labels are evaluated using both weighted accuracy 
and unweighted accuracy metrics, as the dataset contains 
imbalanced emotion classes. Additionally, a confusion matrix 
is used to compare the predicted labels against the true labels, 
providing further insight into the model’s performance in 
detecting emotions from speech.  

IV. EXPERIMENTAL RESULTS 

In this section, we present the results of the training and 
testing processes for three models: the Voice model, the Text 
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model, and the Integrated Voice and Text model, all trained 
using English-language data only from IEMOCAP . 

TABLE I.  TRAINING PERFORMANCE 
 

Datas

et 

Type Epoch Loss WA 

 

UA 

a RAV AO 14 0,02 99.63% 99.68% 

b 

RAV 

+ 

AU 

AO 

9 0.03 99.35% 99.35% 

c IEM AO 8 0,87 71.74% 72.30% 

d 

IEM 

+ 
AU 

AO 
7 0,98 63.71% 64.24% 

e IEM TO 10 2,73 51.26% 13.89% 

f 
IEM 

+ 

ISE 

TO 

11 2,70 54.25% 21.66% 

g 

IEM 

AT+NP 7 0,32 89.31% 89.50% 

h AT+VP 5 0,77 79.75% 79.82% 

i AT+TP 6 0,33 89.66% 90.07% 

j AT+VP+TP 4 1.18 73.97% 73.68% 

k 

IEM 
+ 

AUG 

AT+NP 5 0,33 89.31% 89.48% 

l AT+VP 8 0,46 88.08% 88.13% 

m AT+TP 8 0,24 92.13% 92.25% 

n AT+VP+TP 10 0,44 88.38% 88.42% 

a.
 AO: audio-only,TO: text-only,AT: Audio + Tex, NP: no pretrained, VP: voice pretrained, TP: Text 

pretrained , VP+TP: voice and text pretrained, AU: augmentation, IEM: IEMOCAP, RAV: 
RAVDESS, ISE: ISEAR 

A. Voice model 

The training results for the voice-based emotion 
recognition models are summarized in Table I (rows a - d). 
The training process for each configuration was terminated 
early once the model achieved a training accuracy above 80%, 
before 14 epochs. The best training performance was observed 
in the RAVDESS dataset (row a), where the model achieved 
exceptionally high weighted accuracy (WA) and unweighted 
accuracy (UA) of approximately 99% after 14.  

TABLE II.  VALIDATION PERFORMANCE 

 Dataset Type Loss 
WA 

 
UA 

a RAV AO 0,95 77.04% 75.83% 

b RAV+AU AO 0,45 88.48% 88.24% 

c IEM AO 1.68 58.35% 58.21% 

d IEM+AU AO 1,42 62.12% 63.05% 

e IEM TO 2,03 69.48% 69.91% 

f IEM+ISE TO 2,12 72.65% 71.91% 

g 

IEM 

AT+NP 0,94 72.54% 72.97% 

h AT+VP 1,14 70.28% 70.92% 

i AT+TP 0,57 84.72% 84.99% 

j AT+VP+TP 0,62 84.72% 83.90% 

k 

IEM+AU 

AT+NP 0,39 87.27% 87.96% 

l AT+VP 0,70 87.40% 87.84% 

m AT+TP 0,33 90.28% 90.62% 

n AT+VP+TP 0,47 90.24% 90.22% 

b.
 AO: audio-only,TO: text-only,AT: Audio + Tex, NP: no pretrained, VP: voice pretrained, TP: Text 

pretrained , VP+TP: voice and text pretrained, AU: augmentation, IEM: IEMOCAP, RAV: 

RAVDESS, ISE: ISEAR 

After the training process was completed, the trained 
model was validate using test data. The model validated using 
voice data achieves a validation accuracy between 59% - 88%, 
which can been seen in Table II rows a - d. The best 
performance in audio-only is RAVDESS dataset with 
augmentation (row b) because RAVDESS is easier to learn 
due to its clean and consistent data structure. Also with 
augmentation, it can learn more general. 

In Table II, IEMOCAP presents greater challenges due to 
high variation in emotions, noise, and natural interactions 
between speakers. As a result, the model trained on 
IEMOCAP (row c) exhibited lower validation performance, 
with WA dropping to 58.35% and UA as low as 58.21%. 
However, after applying data augmentation (row d), 
validation UA improved to 63% and WA improved to 62%, 
highlighting the benefit of augmentation techniques in 
handling imbalanced and noisy data. 

B. Text Model  

The training results for the text-based emotion recognition 
models are summarized in Table 1 (rows e - f). The training 
process for each configuration was terminated early once the 
model achieved a training accuracy above 50%, before 11 
epoch. The best training performance was observed in the 
IEMOCAP and ISEAR combination dataset (row e), where 
the model achieved exceptionally high weighted accuracy 
(WA) and unweighted accuracy (UA) of approximately 54% 
and 21% after 11.  

After the training process was completed, the trained 
model was validate using test data. The model validate using 
text data achieved a validation accuracy above 72% which can 
been seen in Table II rows e - f. The best performance in text-
only is IEMOCAP and ISEAR combination dataset (row e) 
indicating that the inclusion of the ISEAR dataset contributed 
to improved generalization. 

C. Integrating Voice and Text Model 

The training results for the integrating voice and text  
emotion recognition models are summarized in Table I (rows 
g - n). The training process for each configuration was 
terminated early once the model achieved a training accuracy 
above 70%, before 11 epoch. The best training performance 
was observed in the IEMOCAP with augmentation dataset 
(row m) using text pretrained, where the model achieved 
exceptionally high weighted accuracy (WA) and unweighted 
accuracy (UA) of approximately 90% and 90% at 8 epoch.  

After the training was completed, the trained model was 
validated using test data. The model validation using voice 
and text data achieved a validation accuracy above 70% for no 
augmentation and above 88% for additional augmentation 
which can been seen in Table II rows g - n. The best 
performance in integrating voice and text is IEMOCAP with 
augmentation and using text pretrained (row m) indicating that 
augmentation makes data more divers and robust. 

However, some misclassifications were observed, 
particularly between neutral, sad, and happy emotions (see 
Fig. 4 bottom left). For instance, in several cases, calm or low-
energy happy speech (e.g., soft laughter or mild joy) was 
incorrectly classified as neutral due to its subtle vocal cues. 
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Similarly, soft-spoken sadness with minimal prosodic 
variation was occasionally labeled as neutral. In a few edge 
cases, emotionally ambiguous utterances such as a neutral 
sentence spoken with a slightly upbeat tone led the model to 
predict 'happy' instead of 'neutral.' These examples highlight 
the difficulty of distinguishing between low-intensity 
emotions and emphasize the need for richer contextual cues or 
more fine-grained emotion categories. 

V. DISCUSSION 

Our results demonstrate that the proposed multimodal 
model achieves approximately an 8% improvement in 
emotion recognition accuracy compared to previous research 
[23] by leveraging augmented datasets and pretrained text 
models (row m). The model’s ability to extract features using 
Wav2Vec captures both latent voice characteristics and 
simultaneous transcription before processing by ECAPA-
TDNN and BERT, contributing to robust and varied data 
representation. This is reflected in strong per-emotion F1 
scores, with Angry reaching 0.9421, Happy 0.9140, Sad 
0.8968, and Neutral 0.8725, highlighting consistent 
performance across all classes. The model’s training time was 
423 minutes, with a size of 450 MB, and an average inference 
speed of 1 minute 3 seconds, demonstrating a practical 
balance between accuracy and computational efficiency 
suitable for real-time applications. 
       However, using Wav2Vec as a feature extractor for 
single-modality input either text or audio led to signs of under 
70% accuracy, as shown in Table I and Table II (rows a - d). 
This limited performance can be attributed to the inherent 
ambiguity in emotional cues when relying on only one 
modality. For example, vocal features alone may not fully 
capture the semantic intent behind emotionally neutral words, 
while textual input may miss the prosodic and tonal variations 
essential to interpreting emotions. In contrast, when the text 
and voice modalities were combined, overall model 
performance improved significantly in terms of both weighted 
and un-weighted accuracy.  

As illustrated in Fig. 4, which presents the confusion 
matrix results, the audio-only model struggled to distinguish 
between similar emotions, particularly happy and sad with 
neutral in Fig. 4c and Fig. 4d, due to overlapping acoustic 
patterns. Meanwhile, the text-only model is often 
misclassified as happy and angry emotions in Fig. 4f. This 
limitation arises from the fact that text data cannot capture 
intonation, pitch, and vocal intensity, which are crucial for 
distinguishing such emotional nuances resulting in angry 
being frequently misclassified as happy.  

When the model integrated both audio and text features, 
the combined strengths of each modality helped to reduce 
misclassification errors in Fig. 4m. The text provided semantic 
context, while the audio conveyed prosodic cues, leading to a 
more robust and accurate emotion recognition system. 
Deploying ASR-based Speech Emotion Recognition (SER) 
systems in real-world settings raises privacy concerns, as 
sensitive spoken data may be captured and processed, 
requiring strong data protection and anonymization measures. 
Despite this, the fusion of Wav2Vec and BERT achieves an 
average inference latency of just over one minute, 
demonstrating promising potential to meet real-time 
constraints with further optimization. Additionally, if used in 
another language, the results may differ and fall outside the 
scope of this study, which is based on English. 

 

 

 

 
Fig. 4. Confusion matrix for voice only (a-d),text only (e-f) , and integrating 
voice and text (g-k). 
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VI. CONCLUSIONS 

In this paper, we proposed a multimodal approach to 
Speech Emotion Recognition (SER) by integrating both voice 
and text modalities. Leveraging Wav2Vec for joint feature 
extraction, we demonstrated that using Wav2Vec as a 
common backbone for both audio and textual inputs can yield 
strong performance when combined with SpecAugment, 
which enhances data robustness and variability. Our 
experiments on the IEMOCAP dataset show that while 
Wav2Vec alone is suboptimal for unimodal emotion 
recognition, its effectiveness significantly improves when 
integrated with BERT for text and ECAPA-TDNN for audio. 
This study achieved state-of-the-art performance by 
combining text-pretrained models with data augmentation, 
achieving a weighted accuracy of 89.21% and an unweighted 
accuracy of 89.98%, demonstrating the effectiveness of our 
multimodal approach. These results highlight the importance 
of multimodal learning and data augmentation in improving 
the performance and generalizability of SER systems. Future 
work may explore the use of cross-modal transformers or 
fusion strategies to further enhance emotion recognition 
across diverse datasets and real-world scenarios.  
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