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ABSTRACT

Deep-plan buildings limit daylight use in spaces far from the building perimeter, leading to
uneven daylight distribution. Integrating a Horizontal Light Pipe (HLP) as an optical daylighting
system, reflective light shelves, and blinds as shading systems can reduce excessive daylight
levels at the perimeter area of a building and improve daylight uniformity. Earlier investigations
of HLP daylight performance concentrated on fixed building geometries, but few studies
focused on the building aspect ratio, one of the design variables of building geometry that
greatly influences daylight performance. This study aims to investigate the impact of the aspect
ratio of buildings implementing HLP and shading systems on daylight performance. The
research method was experimental, using IES-VE simulation as a tool. The daylight factor
(DF), uniformity daylight factor (UDF), and useful daylight illuminance (UDI) of various aspect
ratios and depths of office buildings implementing HLP and shading systems were analyzed.
The results show that increasing the building aspect ratio from 1:1 to 2.1:1 sequentially
increased the average DF and UDF values by 18.47% and 17.2%, respectively. Improving the
building aspect ratio from 1:1 to 2.1:1 along the east-west axis improved the UDI by 3%,
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whereas the north-south axis decreased it by 10.2%.

1. Introduction

Daylight use can reduce the energy consumption of
a building and decrease the cooling load and peak
demand. Proper daylighting use in buildings can
decrease the energy used for electric lighting and the
energy consumption of the entire building (Chen et al.
2014; Chi, Moreno, and Navarro 2018; Wong 2017).
Natural daylight also reduces the sensible cooling
load amount due to electric lighting (Li, Lam, and
Wong 2005) and lowers the cooling load of buildings
(Boubekri 2014). Proper daylighting design lowers the
air-conditioning system'’s (Alrubaih et al. 2013) and the
building’s peak power demand (Li, Lam, and Wong
2005). Reducing peak demand is necessary for office
buildings occupied in the daytime. Peak demand
usually occurs when daylight is most abundant
(Boubekri 2014).

Daylight also positively affects human comfort
and health. Daylight is the best source of light
and is the most probable equivalent to the human
visual response (Alrubaih et al. 2013). It also makes
the interior space appear livelier and more attrac-
tive. Building users prefer good daylighting in their
working and living environments (Li and Lam 2003).
Daylight is also associated with serotonin and mel-
atonin hormone production, which regulate

circadian rhythms. Inadequate daylight exposure
and serotonin or melatonin cycle disturbances can
cause seasonal affective disorder (SAD) (Boubekri
2014). Daylight has also become one of the most
effective antidepressants available (Boubekri 2008).
Therefore, buildings should provide human expo-
sure to sunlight to facilitate cutaneous photosynth-
esis, which provides most or all human vitamin
D needs (Boubekri 2008).

Other essential aspects of daylighting include user
productivity and economic value. Daylighting improves
productivity in workplaces (Ander 2003). Tenants spend
5-6% more on office areas with high daylight than those
with low daylight presence (Turan et al. 2020). Spaces
with high view and daylight access also have a 6%
effective rent premium over areas with inadequate
access to view and daylight (Turan et al. 2021).

The potential for daylight utilization in the tropics is
high. Daylight is abundant in this area because of the
high sun intensity and long illumination period during
the daytime (Roshan and Salisu 2016). Studies of day-
lighting in the tropics need to consider inconsistent
cloud formation of intermediate skies, which are
neither clear nor overcast (Lim and Heng 2016).
Global illuminance at noon reached 80 Klux in March
and 60 Klux in December (Zain-Ahmed et al. 2002).
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From the architectural design standpoint, a building
should have a narrow plan to optimize daylighting
(G-Hansen 2006). Nevertheless, deep-plan buildings are
commonly developed to maximize the net floor area
(G-Hansen 2006; Mayhoub 2014). A deep-plan building
design limits the daylight level in spaces far from side
windows. The daylight intensity reduces as the distance
from the side window increases (Urbano Gutiérrez et al.
2019), leading to uneven daylight distribution and glare
problems (Heng, Lim, and Remaz Ossen 2020; Mayhoub
2014). A core daylighting system is required to bring
daylight in spaces around the building perimeter
(Friedrich, Wittkopf, and Louis Scartezzini 2010).

A Horizontal Light Pipe (HLP) is one of the core
daylighting systems that can bring daylight further
into a building’s interiors. The HLP consists of an aper-
ture, a pipe, and an opening distribution. The aperture
collects, redirects, and occasionally concentrates or
collimates the incoming light flux (Canziani, Peron,
and Rossi 2004). Pipe transports and opening distribu-
tion distributes daylight to the deep area of the build-
ing. HLP is placed in the plenum above the ceiling
(Canziani, Peron, and Rossi 2004). HLP increases the
daylight factor (DF), and estimated indoor illuminance
reaches 25% and 24%, sequentially, in deep office
spaces (Heng, Lim, and Remaz Ossen 2020).

The aperture is located at the building facade, with
a flat capturing system to minimize the protrusion of
the building facade (Canziani, Peron, and Rossi 2004).
The aperture is equipped with reflectors to redirect the
incoming sunlight to minimize inter-reflections within
the pipe and to maximize the system efficiency
(Canziani, Peron, and Rossi 2004; G-Hansen 2006),
especially the oblique sunbeam in cases of solar posi-
tions not in axis with the pipe (Canziani, Peron, and
Rossi 2004). Material of reflectors is a highly reflective
specular material, such as an aluminum sheet
(Canziani, Peron, and Rossi 2004; Duc Hien and
Chirarattananon 2009; Obradovic and Matusiak 2021),
silver, mirror folium with a reflectivity of 99%
(Obradovic and Matusiak 2021). The aperture is cov-
ered by clear glazing (Duc Hien and Chirarattananon
2009) with a visible transmittance of 88%.

The pipe transports the light with the principle of
multiple specular reflections. The efficiency of a mirror
Light Pipe depends on the area, the pipe’s geometric
form, the material’s reflectivity, and the light sources’
directional properties (Hansen and Edmonds 2003).
The pipe materials are highly specular, such as specular
reflective film with a reflectance of 95% (Beltran, Lee,
and Selkowitz 1997; Canziani, Peron, and Rossi 2004),
polished aluminum with a reflectivity of 85%, or silv-
ered aluminum with a reflectivity of 95%. In cross-
section, the pipe is tapered toward the rear of the
room (Beltrdan and Mogo 2007).

The opening distribution or diffuser transmits day-
light to the deep area of the building. The opening

distribution is located at the ceiling plane (Figure 1), at
4.5 m from the side window to the building depth, to
optimize the light pipe efficiency (Beltran, Lee, and
Selkowitz 1997). The material of opening distribution
is translucent sheets (Chirarattananon, Chedsiri, and
Renshen 2000), clear glass with egg-crate reflectors
(Elsiana, Soehartono, and Kristanto 2020), clear glazing
(Elsiana, Nastiti N Ekasiwi, and Gusti Ngurah Antaryama
2021), and laser-cut panels (Hansen and Edmonds
2003; Kwok and Chung 2008).

The HLP obtains daylight from half of the hemi-
sphere in front of the aperture (Duc Hien and
Chirarattananon 2009). HLP captures and utilizes direct
sunlight. HLP can be installed on any building floor
(Duc Hien and Chirarattananon 2009), supplement the
daylight provided by a side window, and become the
primary daylight source in deep areas of the building
(Beltran, Lee, and Selkowitz 1997).

In the tropics, HLP should be combined with shading
systems (Elsiana, Nastiti N Ekasiwi, and Gusti Ngurah
Antaryama 2021) to reduce high daylight intensity adja-
cent to the perimeter window (Heng, Lim, and Remaz
Ossen 2020; Kim et al. 2015) and improve daylight uni-
formity (Elsiana, Nastiti N Ekasiwi, and Gusti Ngurah
Antaryama 2021). In addition to controlling excessive
daylight (Lim and Heng 2016), shading systems can
protect buildings from direct sunlight and reduce glare
problems (Luca, Sepulveda, and Varjas 2022). Internal
shading consisting of reflective light shelves and blinds
was used in this study. Reflective light shelves can redir-
ect daylight to the ceiling and improve daylight distri-
bution (Hashemi 2014), whereas blinds can reduce
luminance contrast. The combination of LS and partial
blinds at a height of 1.20m is an effective shading
design for office buildings in the tropics (Lim, Hamdan
Ahmad, and Remaz Ossen 2013).

Figure 1 shows the design of an office room with an
HLP, light shelves, and blinds. The aperture captures
sunlight and daylight using a fixed mirror system. The
pipe transports daylight through multiple specular
reflections, and the opening distribution distributes
daylight through the translucent glass. Internal shad-
ing consists of light shelves that redirect sunlight to
the ceiling for better daylight distribution (Kontadakis,
Tsangrassoulis, and Doulos 2018) and blinds that con-
trol direct sunlight (Gomes, Santos, and Calhau 2022).

Previous research on HLP has mainly focused on
improving its efficiency in capturing, transporting,
and distributing daylight. This research includes mod-
ification of the HLP geometry and utilization of reflec-
tors (Beltran and Mogo 2007; Beltran, Lee, and
Selkowitz 1997); laser cut panels at the aperture and
opening distribution (Hansen and Edmonds 2003;
Kwok and Chung 2008); anidolic daylighting systems
(Heng, Lim, and Remaz Ossen 2020; Roshan and Salisu
2016), active reflectors (Canziani, Peron, and Rossi
2004), egg-crate reflectors (Elsiana, Soehartono, and
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Figure 1. Office room with horizontal light pipe and shading systems (a) perspective (b) plan and (c) section (Elsiana, Nastiti
N Ekasiwi, and Gusti Ngurah Antaryama 2021).
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Kristanto 2020), and mirror systems (Duc Hien and
Chirarattananon 2009). In this research, building geo-
metry, which is one of the design aspects that signifi-
cantly affects the daylight and energy performance of
a building (Fang and Cho 2019), is studied.

Building geometry is one of the most essential
architectural decisions made in the early design stage
(Fang and Cho 2019). Exploring design possibilities in
the early design stages, including building geometry, is
important. Building geometry and fenestration selec-
tions significantly impact energy uses, making them
a key area of attention for performance enhancements
to reach low or zero-net energy buildings (Konis,
Gamas, and Kensek 2016). Building geometry deter-
mines the quality of light distribution (Egan and
Olgyay 2002).

Earlier studies on building geometry commonly
focused on thermal performance (Inanici and Nur
Demirbilek 2000; Jiayu et al. 2022; Yang et al. 2021)
and energy performance (Chen, Janssen, and Schlueter
2018; Mckeen and Fung 2014). Earlier investigations
concerning daylight performance concentrated on
fixed building geometries. The design variables of
these studies included the window-to-wall ratio, win-
dow orientation, wall reflectance (Mangkuto, Rohmabh,
and Dian Asri 2016), window type, and window-to-wall
ratio (Lartigue, Lasternas, and Loftness 2014).

Previous studies on daylight performance evalua-
tion and building geometry have focused on buildings
with skylights (Fang and Cho 2019), side window stra-
tegies (Lee, Boubekri, and Liang 2019), and shading
(Maltais and Gosselin 2017; Sepulveda et al. 2020) in
non-tropical areas. Building geometry influences day-
light performance differently for different climate
zones (Fang and Cho 2019). Studies on building geo-
metry concerning daylight performance in the tropics
are limited, particularly those integrating HLP as a light
transport system.

This study focuses on building aspect ratio, the ratio
between the building length and width (Inanici and
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Nur Demirbilek 2000), as one of the design variables of
building geometry. Building aspect ratio is one of the
most important factors influencing daylight perfor-
mance (Fang and Cho 2019; Kibert 2008). The study
location is Surabaya (7°21° S, 112°36' E), a city in the
Tropics. This study evaluates the impact of the aspect
ratio of buildings implementing HLP and shading sys-
tems on daylight performance in the tropics. The opti-
mum aspect ratio of buildings implementing HLP and
shading systems in the tropics with the highest day-
light performance was also presented. The findings will
provide information for architects in designing the
aspect ratio of buildings integrating HLP and shading
systems in the early design stages.

2. Sky condition of Surabaya

Surabaya, Indonesia, is one of the cities in the Tropics.
The tropical sky is predominant with the intermediate
sky, which means it is neither overcast nor clear (Lim
and Heng 2016; Roshan and Salisu 2016). The following
section focuses on the determination and classification
of three sky conditions: overcast, intermediate, and
clear sky in Surabaya, using the sunshine duration
method (Rahim and Mulyadi 2004).

Sunshine duration data from 2016-2020 measured
at the Tanjung Perak Il Station of Indonesia’s
Meteorological, Climatological, and Geophysical
Agency in Surabaya were analyzed. Figure 2 shows
Surabaya’s solar radiation data profile from 2016-
2020. The profile indicates that the shortest average
sunshine duration occurred in December, as high as
49.3%. The longest average sunshine duration was
observed in August, as high as 92%. The average sun-
shine duration in Surabaya from 2016-2020 was 72.3%.

Relative sunshine duration is the ratio of the sun-
shine duration to the maximum possible duration in
a certain period (Rahim and Mulyadi 2004). The
monthly mean value of the relative sunshine duration
(om) is employed to estimate the probability of

Jul

Jun Oct

...... 2019

Aug Sept Nop Dec

Average

Figure 2. Average sunshine duration of Surabaya (Meteorological, Climatological, and Geophysical Agency of Surabaya).
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Figure 3. The average sunshine duration and the estimated probability of occurrence of clear, intermediate, and overcast sky

conditions.

occurrence of the clear (Pcl), intermediate (Pin), and
overcast sky (Poc). The equations for the monthly
probabilities of the occurrence of clear, intermediate,
and overcast skies are:

5.689
Pl = 5397 (1)
1.054— om
100 — 5.689 78.629

Pin = - 2)

1.054 —om/100 0.551+ 90

78.629

Poc = ~50.649 (3)

0.551 + om/100

where:

Pcl (%)= monthly probability of occurrence of
clear sky

Pin (%) = monthly probability of occurrence of inter-
mediate sky

Poc (%) = monthly probability of occurrence of
overcast sky

om (%) = monthly mean value of relative sunshine
duration

Figure 3 shows the average sunshine duration and
the estimated probability of occurrence of clear, inter-
mediate, and overcast sky conditions. The yearly relative
frequency of occurrence of overcast (Poc), intermediate
(Pin), and clear sky (Pcl), corresponding to the working
period in Surabaya, were 11.9%, 72.1%, and 16.1%,
respectively. The intermediate sky had the highest prob-
ability of occurrence of sky conditions in Surabaya.
These results align with the previous study about sky
conditions in the Tropics (Lim and Heng 2016).

3. Methodology

The method of the research was experimental,
using simulation as a tool. Building performance
simulation is a useful tool for evaluating design
options and their environmental performance

(Brembilla, Drosou, and Mardaljevic 2022).
Integrated Environment Solution-Virtual
Environment (IES-VE) daylight simulation was used
to study the daylight performance of various aspect
ratios of buildings implementing HLP and shading
systems. The IES-VE is based on radiance, which
uses a raytracing calculation method and considers
surface transmission, reflection, and refraction
values (Heng, Lim, and Remaz Ossen 2020; Lim
and Heng 2016). Radiance has been extensively
validated and is an unbiased daylight simulation
tool (Ayoub 2020). IES-VE is stable, tested, and
based on validated Building Performance
Simulation results (Negendahl 2015). IES-VE is
widely used worldwide and can simulate various
daylighting systems and lighting design features.

IES-VE has been validated in previous research
on HLP (Heng, Lim, and Remaz Ossen 2020),
dynamic internal light shelves (Lim and Heng
2016), light shelves, anidolic systems, translucent
materials, light shelves with external reflectors
(Freewan and Al Dalala 2020), light shelves, external
horizontal louvers, internal horizontal blinds (Reffat
and Ahmad 2020), and anidolic daylighting system
(Roshan and Salisu 2016). The correlation of the
daylight factor and daylight ratio of IES-VE simula-
tion results and physical scaled model 1:10 mea-
surements results focusing on HLP, and dynamic
internal light shelves were in the range of 0.92 to
0.95 (Heng, Lim, and Remaz Ossen 2020) and 0.83-
0.99 (Lim and Heng 2016), sequentially. The root
mean square error of real measurements and IES-
VE simulation was less than 10% (Freewan and Al
Dalala 2020). Validation studies showed that the
IES-VE software is reliable for calculating daylight
performance from various daylighting systems
such as light pipes, light shelves, and anidolic day-
lighting systems in tropical areas using daylight
ratio and daylight factor.
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3.1. Experimental with simulation as a tool consisted of average daylight factor (DFav), unifor-
mity daylight factor (UDF), and useful daylight

Experimental with IES-VE simulation was employed illuminance (UDI).

to study the impact of geometry of building
implementing HLP and shading system on day-
light performance. The daylight performance of  Table 1. Radiance parameters in IES-VE simulations.

the base case, an office building implementing Parameters Values
HLP and shading systems with an aspect ratio of Ambient bounces (-ab) 5
. . . Ambient divisions (—ad) 2048

1:1, was compared with various aspect ratios of Ambient accuracy (~aa) 02
office buildings implementing HLP and shading Ambient resolution (~ar) 64
Ambient super-samples (—as) 512

systems. The evaluated daylight performance
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Figure 4. Configuration of the base-case office building implementing horizontal light pipe and shading systems.
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The simulation employed the weather file of Juanda
International Airport and used the radiance para-
meters, as displayed in Table 1.

Figure 4 shows the office building configuration
that implements HLP and shading systems. The base
case was rectangular in the floor plan and had an area
of 1.600 m%. The building length and leasing depth
span were 40 m and 10 m, respectively, representing
a typical office building with medium-depth space
(Gero and Fay 1998). The floor-to-ceiling height was
2.7 m, based on the office floor-to-floor height consid-
eration of Kohn and Katz (Kohn and Katz 2002). The
office building had a single zone, a central core area of
400 m?, and an open-plan work area of 1200 m?. The
office building was oriented to the north.

A typical office building floor was divided into smaller
rentable units for different tenants, consistent with pre-
vious research on high-rise offices (Lim and Ahmad 2013).
The smallest office room had an area of 60 m? and
employed 10 workers with a minimum floor area per
workstation of 6 m? (Meel, Martens, and Jan 2010). The
building core functions as a service and circulation area
and was excluded from the daylight performance
analysis.

There are three types of office rooms in terms of day-
lighting access: an office room with a side window, HLP,
and shading systems; an office room with two side win-
dows, HLP, and shading systems; and an office room with
a side window and shading systems (Figure 4). The office
room with a side window, HLP, and shading systems
facing the east or west, whereas the office room with
two side windows and shading systems facing the north
or south.

The side window in the office building had a window-
to-wall ratio of 67%. The window glazing material was
clear glass with a visible transmittance (VT) of 0.76.
Shading systems consisting of two refective light shelves
with 0.6 m in width and partial blinds (Figure 5) were
integrated into office buildings as effective internal shad-
ing in the tropics (Lim, Hamdan Ahmad, and Remaz Ossen
2013). Following previous study results from Lim et al (Lim

‘ APERTURE (INLET):
CLEAR GLASS

PIPE
REFLECTORS

PIPE
CEILING

LIGHT SHELF
I
=3
e

SIDE WINDOW
BLINDS

Figure 5. The aperture of horizontal light pipe and shading
systems.

etal. 2012), modifying tinted glazing to clear glass VT 0.75,
external shading devices, light shelves, and blinds can
significantly increase the daylight quantity and quality in
office buildings in the tropics.

HLP was integrated into the building with an aperture-
oriented east or west, following its best orientation in the
tropics (G-Hansen 2006). The width, length, and height of
HLP were 2 m, 10 m, and 0.7 m, respectively. The aperture
of HLP collects sunlight from the building facade
(Figure 5) and transfers it through the pipe with a highly
specular material on its inner surface. The aperture is
equipped with reflectors to redirect the incoming sun-
light to minimize inter-reflections within the pipe and to
maximize the system efficiency (Canziani, Peron, and
Rossi 2004; G-Hansen 2006). The opening distribution
emits daylight through a transparent glass. No daylight
is distributed through the HLP at a distance of 0 to 4.5 m
from the side window to maximize its efficiency and day-
light distribution within the space. The HLPs were placed
every 6 m to uniformly illuminate the open-plan office
space, in line with previous research by Beltran (Beltran,
Lee, and Selkowitz 1997).

For the same building, core, and work area, the build-
ing aspect ratio varied from 1:1 to 2.1:1 (Table 2). The
maximum aspect ratio was 2.1:1, considering the max-
imum lease span for office function without a single
tenant group (Sev and Ozgen 2009) and daylight attenua-
tion by increasing HLP length with a static reflector
(Roshan and Salisu 2016). Cases AR 1.1:1 to AR 2.1:1
were buildings with an increased aspect ratio along the
east-west axis, whereas cases AR 1:1.1 to 1:2.04 were
buildings with an increased aspect ratio along the north-
south axis (Figure 6).

Figure 7 shows the location of sensor points in the
building plan. The height of sensor points is 0.8 m above
the floor (work plane) with a grid of Tm x 1m. UDI is
based on work-plane illuminances (Nabil and Mardaljevic
2006) and considers daylight “useful” if all work-plane
sensor points are simultaneously within the 100-2000 Ix
range (Nabil and Mardaljevic 2006). The occupancy hours
used are 3650 for the period of 8:00-18:00 for the
entire year.

The materials and surface properties of the office
room, side window, HLP, and shading systems are sum-
marized in Table 3. The impact of the aspect ratio of
building implementing HLP and shading system on day-
light performance was then analyzed using regression
analysis through SPSS software.

3.2. Daylight metrics

Three daylight metrics were evaluated to study the
impact of the aspect ratio of buildings implementing
HLP and shading systems. The daylight performance
analysis included the average daylight factor (DFav),
uniformity daylight factor (UDF), and useful daylight
illuminance (UDI). DFav was used to evaluate the
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Table 2. The configuration of base case and cases.
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ding aspect ratio, one of the  a strong relationship with visual comfort and describes

building geometry parameters, impacts DF (Reinhart, daylight quality (Galatioto and Beccali 2016), is essential.
Mardaljevic, and Rogers 2006). In an office building,  The daylight distribution was assessed by using the
the evaluation of daylight distribution, which has  uniformity of light. UDI, one of the dynamic daylight
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Table 3. Materials and surface properties in [ES-VE simulation.
Elements Materials Reflectance (%) Specularity Roughness Visible Transmittance
Interior wall Plastic: white paint 0.75 0.00 0.02 N/A
Interior ceiling Plastic: white paint 0.75 0.00 0.00 N/A
Interior floor Plastic: light grey 0.45 0.00 0.03 N/A
Light pipe inner surfaces Metal: mirror acrylic 0.85 0.90 0.02 N/A
Light pipe’s aperture Clear glass N/A N/A N/A 0.88
Light Clear glass N/A N/A N/A 0.85
pipe’s opening distribution
Light shelf Metal: mirror acrylic 0.85 0.90 0.02 N/A
Blinds Plastic 0.40 0.04 0.03 N/A
Side window Clear glass N/A N/A N/A 0.76

performance metrics, was then used to evaluate day-
light sufficiency during occupied hours in the year.
The DF (Equation (4)) is the ratio between indoor (Ei)
and exterior illuminance (Eo) in an unshaded area
under CIE standard overcast sky conditions (Reinhart
and Weissman 2012). The average daylight factor
(DFav) is the mean DF at all sensor points placed on
the work plane height, 0.8 m above the floor. The
recommended DF range for workspaces is 2-5%
(British Council for Offices Guide in 6). Rooms with an
average DF of less than 2% will look gloomy, and
a room with a DF of more than 5% appear very bright
(Mcmullan 2007).
Ei
DF =—x100% (4)
Eo
The uniformity DF (Equation (5)) shows the degree of
homogeneity in the light distribution (Michael,
Gregoriou, and Kalogirou 2018). UDF value is deter-
mined by dividing the minimum DF value (DF min)
by the average DF value for the entire room (DFav).

The UDF required for the working environment should
be a minimum of 0.4 (BREEAM 2023).

B DF min

UDF =
DF avg

(5)

Useful Daylight llluminance (UDI);g0-2000 1x iS the per-
centage of occupied hours in the year with daylight
illuminance within the range of 100-2000 Ix (Equation
(6)) (Nabil and Mardaljevic 2006). UDI is a climate-
based daylight analysis based on daylight due to multi-
ple sky conditions in the occupied hours of the year in
specific geographical locations (Mangkuto, Siregar,
and Handina 2018).

t100Ix < E < 2000Ix

UDIT00 — 2000Ix = T

x100% (6)

where t is the duration of daylight illuminance (E)
ranging from 100-2000 Ix, and T is the total number
of occupied hours in the year.

Daylight illuminances higher than 2000 Ix (UDI
exceed) tend to produce thermal or visual discomfort,
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Figure 9. Percentages of average daylight factor improvement of office buildings with a different aspect ratio.

whereas illuminances lower than 100 Ix are considered
insufficient as the only source of illumination (Boubekri
2014). Daylight illuminances in the range of 100-500 Ix
(UDI supplementary) and 500-2000 Ix (UDI autono-
mous) are considered effective in complementing elec-
tric lighting and are sufficient as a main source of
illumination, sequentially (Reinhart, Mardaljevic, and
Rogers 2006). The minimum criteria of UDI;00-2000 Ix
are 50% (Berardi and Anaraki 2015; Mangkuto,
Rohmah, and Dian Asri 2016).

4. Results and discussion
4.1. Daylight performance results and analysis

4.1.1. Average daylight factor analysis
The simulation results showed that all cases had a DFav
level of 3.14% to 3.74%. The base case, with a building

aspect ratio of 1:1, exhibited the lowest average DF level
of 3.14%. Office building AR 1:2.04 had the highest aver-
age DF level of 3.74% (Figure 8). The average DF level of all
cases was within the recommended DF range for work-
spaces of 2-5%.

Figure 9 shows the percentage of the DFav
improvement in the cases compared to the base
case. The results showed that buildings implementing
HLP and shading systems with higher aspect ratios had
a higher DFav level. A higher building aspect ratio
implies that the building perimeter form is extended,
allowing daylight to reach most building spaces and
increasing the total daylighting area. These results
align with previous research (Fang and Cho 2019),
showing that larger building aspect ratios have
a higher daylight performance in a hot climate.
Following a previous study (Roshan and Salisu 2016),
the increase in the building aspect ratio also indicates
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Table 4. Daylight factor comparison between the base case and all cases.

Base Case AR 1.1:1 AR 1.2:1 AR 1.3:1 AR 1.4:1 AR 1.56:1
Daylight Factor (DF) maximum 9.7 10.2 10 9.9 10.7 10.2
minimum 0.8 0.8 0.8 0.8 0.9 0.9
average 3.14 332 3.38 3.39 3.43 3.48
uniformity 0.36 0.35 0.35 0.35 0.39 0.38
Percentage of changes in DF maximum 0 5.15 3.09 2.06 10.31 5.15
minimum 0 0 0 0 125 125
average 0 5.73 7.64 7.96 9.24 10.83
uniformity 0 -2.78 -2.78 -2.78 833 5.56
Percentage of sensor points with DF level 2-5% 45.6 44.2 429 44 441 4534
AR1.68:1 AR 1.8:1 AR 1.96:1 AR 2.1:1 ART:1.1 AR1:1.2
T — ‘
- -8
Daylight Factor (DF) maximum 10.6 10.6 10.5 10.3 10.5 103
minimum 0.9 0.9 0.9 1 0.8 0.8
average 3.61 3.67 3.68 3.72 337 337
uniformity 0.38 0.41 0.40 0.41 033 0.34
Percentage of changes in DF maximum 9.28 9.28 8.25 6.19 8.25 6.19
minimum 12.5 12.5 12.5 25 0 0
average 14.97 16.88 17.20 18.47 7.32 7.32
uniformity 5.56 13.89 1.1 13.89 -8.33 -5.56
Percentage of sensor points with DF level 2-5% 46.9 49.24 50.1 50.3 43.61 4512
AR 1:13 AR1:147 ART:156  AR1:1.67  ART:1.79 AR 1:1.89 AR1:2.04
Daylight Factor (DF) maximum 10.2 10.7 10.1 10.3 10.1 10.6 10.8
minimum 0.8 0.8 1 0.9 0.9 1 1
average 3.36 3.42 3.48 3.49 3.52 3.70 3.74
uniformity 0.35 037 0.38 0.38 0.38 0.40 0.40
Percentage of changes in DF maximum 5.15 10.31 4.12 6.19 412 9.28 11.34
minimum 0 0 25 12.5 12.5 25 25
average 7.01 8.92 10.83 11.15 12.10 17.83 19.11
uniformity -2.78 2.78 5.56 5.56 5.56 14 111
Percentage of sensor points with DF level 2-5% 45.05 45 45.2 46.8 48.7 49.8 47.9

a reduction in the HLP length in rooms oriented east
and west, improving daylight levels within the space.

Increasing the aspect ratio of the building implement-
ing HLP and shading systems along the north-south axis
resulted in a more significant improvement in DFav than
that along the east-west axis. The percentage of DFav
improvement ranged from 5.73% to 18.47% in buildings
elongated along the east-west axis and from 7.32% to
19.11% in buildings elongated along the north-south axis.
Building AR 1:2.04, which was elongated along the north-
south axis, significantly improved the DFav more than
building AR 1.96:1, which was elongated along the east-
west axis. The improvements in the DFav of buildings AR
1:2.04 and AR 1.96:1 were as high as 19.11% and 17.2%,
respectively. With a similar building aspect ratio, building
AR 1:2.04 has a higher perimeter area that receives day-
light from the east and west and a higher HLP integrated
into buildings than building AR 1.96:1.

Table 4 summarizes the DF comparison between
the base case and cases. Office building AR 2.1:1,
which had an aspect ratio of 2.1:1, had the highest
percentage of sensor points with a DF level of 2-5%,
which reached as high as 50.3%. The lowest percen-
tage of sensor points with a DF level of 2-5% was in the
base case, which reached 31.34%.

The increase in the building aspect ratio along the
east-west axis results in a slightly higher percentage of
sensor points with a DF level of 2-5% than along the
north-south axis. With a similar building aspect ratio,
office building AR 1:2.04, which was elongated along
the north-south axis, had a lower percentage of sensor
points with a DF level of 2-5% than building AR 1.96:1,
which was elongated along the east-west axis. The per-
centage of sensor points with a DF level of 2-5% for
buildings AR 1:2.04 and AR 1.96:1 were 47.9% and
50.1%, respectively. With a similar building aspect ratio,
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Figure 10. Uniformity daylight factor of office buildings with different aspect ratio.
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Figure 11. Useful daylight illuminance of office buildings elongated to the east-west axis.

building AR 1:1.96 has a higher perimeter area that
receives daylight from the north and south than building
AR 1:2.04.

4.1.2. Uniformity daylight factor analysis

Figure 10 shows the UDF values of office buildings with
different aspect ratios. The results showed that the
base case had a UDF value of 0.36, below the required
UDF for the working environment, which should be at
least 0.4. Only five buildings had UDF = 0.4, ie, build-
ings AR 1.8:1, AR 1.96:1, AR 2.1:1, AR 1:1.89, and
AR1:2.04.

Buildings implementing HLP and shading systems
with UDF = 0.4 had a high building aspect ratio. A high
building aspect ratio results in a higher daylight level
(Lee, Boubekri, and Liang 2019). The contrast between

the daylight level in the area far from the side window
and the area near the side window decreased, redu-
cing the visual problem.

Increasing the building aspect ratio along the east-
west axis resulted in a more significant improvement
in UDF than the north-south axis. The UDF improve-
ment in buildings elongated along the east-west axis
was 8.33% to 13.89% for buildings AR 1.4:1 to AR
2.1:1, respectively. The percentages of UDF improve-
ment of buildings elongated along the north-south
axis were 2.78% to 11.11% for buildings AR 1:1.47 to
AR1:2.04, repectively. The building elongated along
the east-west axis has a larger perimeter area that
receives daylight from the north and south.
Following previous research (Lim and Ahmad 2013),
diffused illuminance was the primary daylight source
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for the north and south-facing side windows, result-
ing in a more uniform daylight distribution.

4.1.3. Useful daylight illuminance analysis

Figure 11 shows the UDI of office buildings extended
along the east-west axis. Figure 12 shows the UDI of
office buildings elongated along the north-south axis.
All office buildings with different aspect ratios had
a UDI 002000 1x in the 83-95% range and were above
the minimum criteria of UDljgg-2000 Ix. These results
showed the reliability of HLP and shading systems in
maintaining room lighting with UDI g 2000 1x for over
50% of occupied hours in a year. The simulation results
also showed that all buildings had no percentages of
UDI fell-short (<100 Ix) of the working year.

Office building AR 1: 2.04 elongated along the
north-south axis had the lowest UDI;q0-2000 1x Value,
as high as 83% of the work year. Office building AR
2.1:1 elongated along the east-west axis had the
highest UDlg0.2000 1x Value, which reached up to
95% of the working year. With a similar aspect
ratio, office buildings elongated along the east-west
axis had a higher UDI;gg-2000 1x Value than those elon-
gated along the north-south axis. The reason is that
office building AR 1: 2.04, elongated along the north-
south axis, had a larger opening area facing east and
west than office building AR 2.1:1, elongated along
the east-west axis.

With a similar building aspect ratio, office building
AR 1:2.04 elongated along the north-south axis had
a higher UDI exceed (>2000 Ix) than office building
AR 2.1:1 elongated along the east-west axis, as high
as 16.8% and 4.6% of the working year, respectively.
The office building elongated along the north-south
axis had a larger opening area facing east and west
than the office building AR 2.1:1, which elongated
along the east-west axis.

Office buildings implementing HLP and shading
systems had UDl go.5001x in the range of 35-49% of
the working year. At those times, daylight illuminance
is considered adequate as the primary source of room
illumination or in combination with electric lighting
(Nabil and Mardaljevic 2006). Office building AR
1:2.04 elongated along the North-South axis had the
lowest UDl;g0.500 1x» Which reached up to 35% of the
working year. Office building AR 1.1:1 and AR 1:1.79
had the highest UDlpo.500 1x» @5 high as 49% of the
work year.

Office buildings implementing HLP and shading
systems had UDI autonomous (500-20001x) in 43-
54% of the working year. These results indicated that
daylight illuminance was perceived as desirable or at
least tolerable at 43-54% of the occupied hours in
a year. Office building AR 1:1.3 had the highest
UDls50-2000 1xx  Which reached up to 54% of the
work year. Office building AR 1:1.79 had the lowest
UDIs00-2000 1x» @S high as 43% of the working year.

4.2. The impact of building aspect ratio on
daylight performance

The impact of the building aspect ratio on DFav, UDF,
and UDI 02000 1x Was analyzed using regression analy-
sis. Figure 13 shows a regression analysis plot of the
building aspect ratio and daylight performance.
Figure 13 shows the DFav and UDF as a function of
the building aspect ratio.

The regression analysis of the building aspect ratio
with the DFav shows that the building aspect ratio
strongly influences the DFav, with the coefficient of
determination as high as 0.9089 (Figure 13). A linear
relationship between the DFav and building aspect
ratio can be obtained, as follows:
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DFav = 0,463x 42,7731 (7)

With every 0.1 increase in the building aspect ratio, the
average DF is expected to increase by a linear differ-
ence of 2.82%. This equation is valid only in this case,
a building that implements HLP and shading systems.

The analysis also indicated that the building aspect
ratio strongly influences the UDF, with a coefficient of
determination as high as 0.7973. A linear relationship
between the uniformity DF and building aspect ratio
can be obtained as follows:

UDF = 0, 0656x + 0, 2731 (8)

With every 0.1 increase in the building aspect ratio, the
uniformity DF is expected to increase by a linear dif-
ference of 0.28. This equation is valid only in this case,
which is a building that implements HLP and shading
systems.

As one may expect, the results indicated that the
higher the building aspect ratio, the higher the DFav of
the entire building (Figure 13). The higher the building
aspect ratio, the larger perimeter receives daylight.
These results align with Lee et al (Lee, Boubekri, and
Liang 2019). that the longer the building length com-
pared to the building width, the higher the daylight
availability. In office buildings with integrated HLP and
shading systems, increasing the building aspect ratio
from 1:1 to 2.1:1 will increase the average DF of the
entire building by 18.47%.

The regression analysis also showed that the higher
the aspect ratio of the building integrating HLP and
shading systems, the higher the UDF value. Office
building with an aspect ratio of 2.1:1 has a higher
UDF than office building with an aspect ratio of 1:1.
The UDF improvement of office buildings with an
aspect ratio of 2.1:1 reached 17.2% compared to office
buildings with an aspect ratio of 1:1.

The higher aspect ratio means the building becomes
narrower in plan and reduces room depth. The increase
in the UDF level as the building aspect ratio increases

aligns with previous research by Lee et al (Lee, Boubekri,
and Liang 2019), that the smaller the room depth, the
more daylight intensity enters the room. A higher build-
ing aspect ratio results in a higher daylight level (Lee,
Boubekri, and Liang 2019). The contrast between the
daylight level in the area far from the side window and
the area near the side window then decreased, resulting
in a more uniform daylight distribution, which, in this
research, is characterized by an increase in UDF value.

Figure 14 shows the UDI p-2000 1x @S @ function of
the building aspect ratio. The regression analysis for
the aspect ratio of the building elongated along the
east-west axis (Figure 14(a)) with UDI; 002000 1x Shows
that the building aspect ratio has a weak influence on
the UDl490-2000 1 With a coefficient of determination of
0.4052 (Figure 14(a)). A linear relationship between the
building aspect ratio and UDIyo-2000 1x Can be obtained
as follows:

UDly00—20001x= 1.8164x + 89.832 9)

With every 0.1 increase in the building aspect ratio,
UDI400-2000 1x IS €xpected to increase by a linear differ-
ence of 90.01. This equation is valid only in this case,
a building that implements HLP and shading systems.

The regression analysis for the aspect ratio of
a building elongated along the north-south axis
(Figure 14(b)) with UDIg-2000 1x Shows that the building
aspect ratio moderately influences UDl;g0.2000 1x» With
a coefficient of determination of 0.6373 (Figure 14(b)).
A linear relationship between the building aspect ratio
and UDI;gg-5000 Ix iS Obtained as follows:

UD|10072000|X: —7.4997x + 102.28 (1 0)

With every 0.1 increase in the building aspect ratio,
UDI400-2000 1x IS €xpected to decrease by a linear differ-
ence of 101.53. This equation is valid only in this case,
buildings that implement HLP and shading systems.
Unlike the DF trends, improving the aspect ratio of
buildings elongated along the north-south axis
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decreases the UDl gp.2000 1x- The improvement in the
aspect ratio of buildings elongated along the north-
south axis increases the building area’s side window
facing west, which causes an increase in the UDI
exceed (>2000 Ix) and a decrease in the UDI;00-2000 Ix-
In contrast, improving the aspect ratio of buildings
elongated along the east-west axis slightly improves
UDI100-2000 1x» Caused by the reduction of the building
area’s side window facing west.

For daylight to be “useful,” UDI has lower and upper
illuminance thresholds of 100lux and 2000lux (Reinhart
and Weissman 2012). In this research, the UDIl;g9-2000 Ix
trends are influenced more by the percentages of
UDl. 5000 1» Where all office buildings had no percen-
tage of occupied hours in the year with daylight illu-
minance <100 Ix. Area with an illuminance level of
more than 2000 Ix is located on office rooms facing
West. In line with previous research (Boubekri and Lee
2017), a large portion of illuminance values of more

than 2000 Ix are excluded from the UDI;gg-2000 Ix Calcu-
lation and makes the building that has a larger facade
area facing sunlight; in this research, the West has
a lower UDI.

Using linear regression, the building aspect ratio has
a relatively weak and moderate influence on
UDI100-2000 1x- UDl100-2000 1x trends are influenced by
the percentages of UDl.5q00 1x» Where daylight illumi-
nances higher than 2000 Ix tend to produce thermal or
visual discomfort and closely correlate with the
Daylight Glare Probability (Boubekri and Lee 2017).
These results align with previous research using the
Annual Glaring Index, which showed that building
aspect ratios have a minor impact on glaring using
linear regression (Maltais and Gosselin 2017).

In this research, the impact of building aspect ratio
elongated East-West and North-South axes on
UDl100-2000 1x IS Weak and moderate sequentially. The
length of the shading systems in this study changes
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simultaneously with changes in side window length at
different building aspect ratios. Unlike DF and UDF,
which took only overcast sky conditions, UDI involves
the (hourly) sun and sky conditions from annual cli-
mate datasets (Nabil and Mardaljevic 2006). Under
different sky conditions, the role of light shelves and
blinds as shading systems in reducing UDI. 00 1x
appeared more, diminishing the impact of building
aspect ratio on UDl;00-2000 1x» Which makes the correla-
tion coefficient relatively low.

Determination of the optimum building aspect ratio
involving DFav, UDF, and UDIg.2000 1x Showed that the
optimum building aspect ratio is AR 2.1:1, which has
a narrow plan and is elongated to the East-West axis.
The building is 58 m in length and 27.6 m in width. The
building has DFav, UDF, and UDl;g9.2000 1x @5 high as
3.721%; 0.413 and 95% of the working year, sequen-
tially. With a similar building aspect ratio, building
AR1:2.04, elongated to the North-South axis, has
a lower UDlygo-2000 1 @s high as 83% of the
working year. Building elongated along the North-
South axis is not selected for the optimum building
aspect ratio because although it has the highest DFav
and UDF of 0.4, it has a lower UDI;gg_3000 1x. Considering
the daylighting design in tropical climates emphasizes
controlling solar radiation entering the buildings,
building elongated to the East-West axis with a higher
UDI400-2000 Ix than the North-South axis is selected as
the optimum building aspect ratio.

These results can give insight to building designers
in designing the aspect ratio of buildings integrating
HLP and shading systems for daylight performances in
early design stages. Observing various daylight metrics
in this research, DF, UDF, and UDIgg-2000 1 iS important
in the design phase. Observing various daylight
metrics in the design phase is essential since they
influence the design variables differently.

Consideration of other aspects, such as thermal and
energy performances, should be elaborated in future
studies. The relationship between building aspect ratio
and design variables such as window-to-wall ratio and
building orientation should be studied. User percep-
tions of buildings implementing HLP and shading sys-
tems can also be included, considering the importance
of users’ psychological aspects.

5. Conclusion

The impact of the aspect ratio of buildings with HLP
and shading systems on daylight performance was
studied. The results indicated that office buildings inte-
grating HLP and shading systems with an aspect ratio
of 1.1:1 to 1:2.04 had an average daylight factor (DFav)
in the range of 2-5% and UDI; 92000 1x ©f 83-95%. Only
five office buildings had UDF = 0.4, ie, buildings with
an aspect ratio of 1.82:1, 1.96:1, 2.1:1, 1:1.89, and 1:2.04,
sequentially.

The results indicated that improving the building
aspect ratio increased the average daylight factor and
uniformity daylight factor. Increasing the building
aspect ratio along the north-south axis improved the
DFav more than along the east-west axis. Increasing
the building aspect ratio along the north-south axis
reduced the UDI; 02000 1x» While increasing the build-
ing aspect ratio along the east-west axis improved the
UDI100-2000 1x Slightly. The optimum building aspect
ratio involving DFav, UDF, and UDI;qg_3000 1x Showed
that the optimum building aspect ratio is AR 2.1:1,
which has a narrow plan and is elongated to the east-
west axis.

Future research can involve other design variables,
such as building orientation and window-to-floor ratio.
Future studies should also focus on the energy and ther-
mal performance of buildings integrating HLP and shad-
ing systems. The daylight and energy optimization of
buildings implementing HLP and shading systems can
also be investigated. Considering the importance of
users’ psychological aspects, user perceptions of build-
ings implementing HLP and shading systems can also be
included.
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