

The Impact of Aspect Ratio

by FENY ELSIANA

Submission date: 28-Sep-2023 02:51PM (UTC+0700)

Submission ID: 2179392120

File name: ontal_Light_Pipe_and_Shading_Systems_on_Daylight_Performance.pdf (1.72M)

Word count: 11167

Character count: 55176

1 **The Impact of Aspect Ratio of Buildings Implementing Horizontal
2 Light Pipe and Shading Systems on Daylight Performance**

3 Feny Elsiana^{ab}, Sri Nastiti N Ekasiwi^{c*}, IGN Antaryama^c

4 ²³
5 ²⁶ *Doctoral Student, Department of Architecture, Institut Teknologi Sepuluh Nopember,
6 Surabaya, Indonesia; ^bDepartment of Architecture, Petra Christian University,
7 Surabaya, Indonesia; ^cDepartment of Architecture, Institut Teknologi Sepuluh
8 Nopember, Surabaya, Indonesia*

9 *Corresponding author: nastiti@arch.its.ac.id

10 **The Impact of Aspect Ratio of Buildings Implementing Horizontal
11 Light Pipe and Shading Systems on Daylight Performance**

12 Deep-plan buildings limit daylight use in spaces far from the building perimeter,
13 leading to uneven daylight distribution. Integrating a Horizontal Light Pipe
14 (HLP) as an optical daylighting system, reflective light shelves, and blinds as
15 shading systems can reduce excessive daylight levels at the perimeter area of a
16 building and improve daylight uniformity. Earlier investigations of HLP daylight
17 performance concentrated on fixed building geometries, but few studies focused
18 on the building aspect ratio, one of the design variables of building geometry that
19 greatly influences daylight performance. This study aims to investigate the
20 impact of the aspect ratio of buildings implementing HLP and shading systems
21 on daylight performance. The research method was experimental, using IES-VE
22 simulation as a tool. The daylight factor (DF), uniformity daylight factor (UDF),
23 and useful daylight illuminance (UDI) of various aspect ratios and depths of
24 office buildings implementing HLP and shading systems were analyzed. The
25 results show that increasing the building aspect ratio from 1:1 to 2.1:1
26 sequentially increased the average DF and UDF values by 18.47% and 17.2%,
27 respectively. Improving the building aspect ratio from 1:1 to 2.1:1 along the east-
28 west axis improved the UDI by 3%, whereas the north-south axis decreased it by
29 10.2%.

30 **Keywords:** building aspect ratio; **daylight performance;** **horizontal light pipe;**
31 **shading system;** tropics.

32 **1. Introduction**

33 Daylight use can **reduce the energy consumption of a building and decrease the cooling**
34 **load and peak demand.** Proper daylighting use in buildings can decrease the energy used
35 **for electric lighting and the energy consumption of the entire building** [1,2,3]. Natural
36 daylight also reduces the sensible cooling load amount due to electric lighting [4] and
37 lowers the cooling load of buildings [5]. Proper daylighting design lowers the air-
38 conditioning system's [6] and the building's peak power demand [4]. Reducing peak
39 demand is necessary for office buildings occupied in the daytime. Peak demand usually

40 occurs when daylight is most abundant [5].

41 Daylight also positively affects human comfort and health. 34 Daylight is the best
42 source of light that is the most probable equivalent to the human visual response [6]. It
43 also makes the interior space appear livelier and more attractive. Building users prefer
44 good daylighting in their working and living environments [7]. Daylight is also
45 associated with serotonin and melatonin hormone production, which regulate circadian
46 rhythms. Inadequate daylight exposure and serotonin or melatonin cycle disturbances
47 can cause seasonal affective disorder (SAD) [5]. Daylight has also become one of the
48 most effective antidepressants available [8]. Therefore, buildings should provide human
49 exposure to sunlight to facilitate cutaneous photosynthesis, which provides most or all
50 human vitamin D needs [8].

51 Other essential aspects of daylighting include user productivity and economic
52 value. Daylighting improves productivity in workplaces [9]. Tenants spend 47 5-6% more
53 on office areas with high daylight than those with low daylight presence [10]. 77 Spaces
54 with high view and daylight access 5 also have a 6% effective rent premium over areas
55 with inadequate access to view and daylight [11].

56 The potential for daylight utilization in the tropics is high. Daylight is abundant
57 in this area because of the high sun intensity and long illumination period during the
58 daytime [12]. Studies of daylighting 58 in the tropics need to consider inconsistent cloud
59 formation 82 of intermediate skies, which are neither clear nor overcast [13]. 82 Global
60 illuminance at noon reached 80 Klux in March and 60 Klux in December [14].

61 From the architectural design standpoint, a building should have a narrow plan
62 to optimize daylighting [15]. Nevertheless, deep-plan buildings are commonly
63 developed to maximize the net floor area 62 [Hansen, 2006 and Lashina et al., 2019]. A
64 deep-plan building design limits the daylight level in spaces far from side windows. The

65 daylight intensity reduces as the distance from the side window increases [16], leading
66 to uneven daylight distribution and glare problems [17]. (Heng et al., 2020 and
67 Mayhoub, 2014). A core daylighting system is required to bring daylight in spaces
68 distances from the building perimeter (Linhart, Witfoff 2010)

69 ⁵ A Horizontal Light Pipe (HLP) is one of the core daylighting systems that can
70 bring daylight further into a building's interiors. The HLP consists of an aperture, a
71 pipe, and an opening distribution. The aperture collects, redirects, and occasionally
72 concentrates or collimates the incoming light flux [18]. Pipe transports and opening
73 distribution distributes daylight to the deep area of the building. HLP ²⁸ is placed in the
74 plenum above the ceiling [18]. HLP increases the daylight factor (DF), and estimated
75 indoor illuminance reaches 25% and 24%, sequentially, in deep office spaces [19].

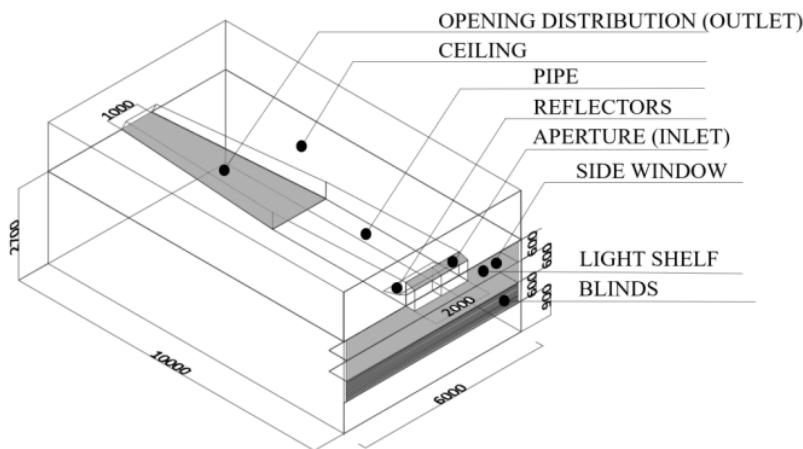
76 The aperture is located at the building façade, with a flat capturing system to
77 minimize the protrusion of the building façade [18]. The aperture is equipped with
78 ⁹ reflectors to redirect the incoming sunlight to minimize inter-reflections within the pipe
79 and to maximize the system efficiency (Hansen, 2006; Beltran et al., 1997), especially
80 ³² the oblique sunbeam in cases of solar positions not in axis with the pipe (Canziani et al.,
81 2004). Material of reflectors is a highly reflective specular material, such as an
82 aluminum sheet [Obradovic et al., 2021; 18; Hien and Chirattannan 2009]; silver,
83 mirror folium with a reflectivity of 99% [Obradovic et al., 2021]. The aperture is
84 covered by clear glazing [Hien and Chirattannan, 2009] with a visible transmittance
85 of 88%.

86 The pipe transports the light with the principle of multiple specular reflections.
87 ⁹ The efficiency of a mirror Light Pipe depends on the area, the pipe's geometric form,
88 the material's reflectivity, and the light sources' directional properties (Garcia et al.,
89 2003). The pipe materials are highly specular, such as specular reflective film with a

90 reflectance of 95% (Canziani, 2004; Beltran et al., 1997), polished aluminum with a
91 reflectivity of 85%, or silvered aluminum with a reflectivity of 95%. In cross-section,
92 the pipe is tapered towards the rear of the room (Beltran & Mogo, 2007).

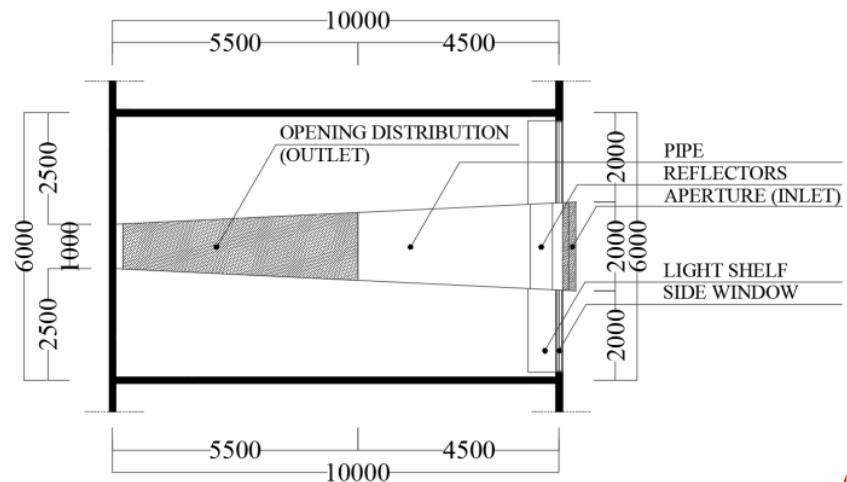
15
93 The opening distribution or diffuser transmits daylight to the deep area of the
94 building. The opening distribution is located at the ceiling plane (Figure 1), at 4.5 m
15
95 from the side window to the building depth, to optimize the light pipe efficiency
96 [Beltran, 1997]. The material of opening distribution is translucent sheets
97 (Chirarattananon et al., 2000), clear glass with egg-crate reflectors (Elsiana et al., 2020),
98 clear glazing (Elsiana et al., 2021), laser cut panels (Hansen & Edmonds, 2003; Kwok
99 & Chung, 2008).

1
100 The HLP obtains daylight from half of the hemisphere in front of the aperture
101 [20]. HLP captures and utilizes direct sunlight. HLP can be installed on any building
1
102 floor [20], supplement the daylight provided by a side window, and become the primary
103 daylight source in deep areas of the building [21].

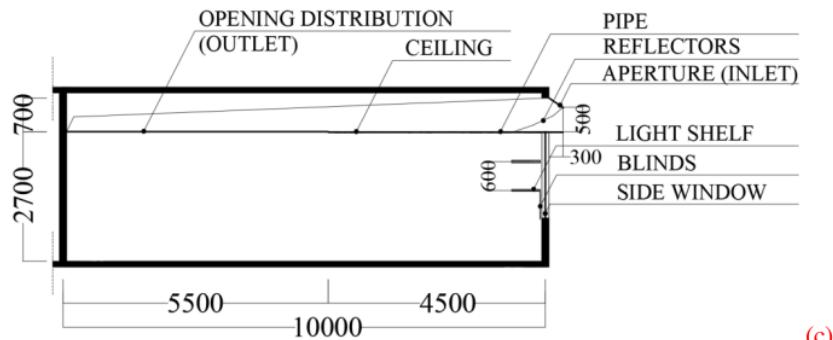

104 In the tropics, HLP should be combined with shading systems [22] to reduce
105 high daylight intensity adjacent to the perimeter window [19, 23] and improve daylight
106 uniformity [22]. In addition to controlling excessive daylight [13], shading systems can
107 protect buildings from direct sunlight and reduce glare problems [24]. Internal shading
108 consisting of reflective light shelves and blinds was used in this study. Reflective light
1
109 shelves can redirect daylight to the ceiling and improve daylight distribution [25],
1
110 whereas blinds can reduce luminance contrast. The combination of LS and partial blinds
111 at a height of 1.20 m is an effective shading design for office buildings in the tropics
112 [26].

113 Figure 1 shows the design of an office room with an HLP, light shelves, and
114 blinds. The aperture captures sunlight and daylight using a fixed mirror system. The

115 pipe transports daylight through multiple specular reflections, and the opening
116 distribution distributes daylight through the translucent glass. Internal shading consists
117 of light shelves that redirect sunlight to the ceiling for better ⁶⁸ [daylight distribution](#) [27]
118 [and blinds](#) that control direct sunlight [28].


119

120


(a)

121

(b)

122

(c)

123 **Figure 1. Office Room with horizontal light pipe and shading systems (a) perspective**
124 **(b) plan and (c) section [22]**

125

126 Previous research on HLP has mainly focused on improving its efficiency in
127 capturing, transporting, and distributing daylight. This research includes modification of
128 the HLP geometry and utilization of reflectors [21, 29]; laser cut panels at the aperture
129 and opening distribution [30, 31]; anidolic daylighting systems [12, 19], active
130 reflectors [18], egg-crate reflectors [32], and mirror systems [20]. In this research,
131 building geometry, which is one of the design aspects that significantly affects the
132 daylight and energy performance of a building [33], is studied.

133

⁸ Building geometry is one of the most essential architectural decisions made in

134

the early design stage (Fang & Cho, 2019). Exploring design possibilities in the early
135 design stages, including building geometry, is important. Building geometry and
136 fenestration selections significantly impact energy uses, making them a key area of
137 attention for performance enhancements to reach low or zero-net energy buildings
138 (Konis et al., 2016). Building geometry determines the quality of light distribution
139 (Egan & Olgay, 2002).

140

Earlier studies on building geometry commonly focused on thermal
141 performance [34, 35, 36] and energy performance [37, 38]. Earlier investigations

142 concerning daylight performance concentrated on fixed building geometries. The design
143 variables of these studies included the window-to-wall ratio, window orientation, wall
144 reflectance [39], window type, and window-to-wall ratio [40].
8

145 Previous studies on daylight performance evaluation and building geometry
146 have focused on buildings with skylights [33], side window strategies [41], and shading
147 [42,43] in non-tropical areas. Building geometry influences daylight performance
148 differently for different climate zones (Fang & Cho, 2019). Studies on building
149 geometry concerning daylight performance in the tropics are limited, particularly those
150 integrating HLP as a light transport system.

42
151 This study focuses on building aspect ratio, the ratio between the building length
152 and width [34], as one of the design variables of building geometry. Building aspect
153 ratio is one of the most important factors daylight performances (Fang & Cho, 2019;
154 Kibert, CJ, 2008). This study evaluates the impact of the aspect ratio of buildings
155 implementing HLP and shading systems on daylight performance. The optimum aspect
156 ratio of building implementing HLP and shading systems which has the highest daylight
157 factor, uniformity daylight factor and useful daylight illuminance were also presented.
5
158 The study location is Surabaya (7°21' S, 112°36' E), a city in the Tropics. The research
159 will provide valuable information for architects in designing the geometry of building
160 integrating HLP and shading system in early design stages. The integration of HLP and
161 shading systems in different building aspect ratio can contribute to enhanced daylight
162 performance.

163 2. Sky Condition of Surabaya

23
164 Surabaya, Indonesia, is one of the cities in the Tropics. The tropical sky is predominant
165 with the intermediate sky, which means it is neither overcast nor clear [12, 13]. The

166 following section focuses on the determination and classification of three sky
167 conditions: overcast, intermediate, and clear sky in Surabaya, using the sunshine
168 duration method [44].

169 Sunshine duration data from 2016-2020 measured at the Tanjung Perak II
170 Station of Indonesia's Meteorological, Climatological, and Geophysical Agency in
171 Surabaya were analyzed. Figure 2 shows Surabaya's solar radiation data profile from
172 2016-2020. The profile indicates that the shortest average sunshine duration occurred in
173 December, as high as 49.3%. The longest average sunshine duration was observed in
174 August, as high as 92%. The average sunshine duration in Surabaya from 2016-2020
175 was 72.3%.

176 Relative sunshine duration is the ratio of the sunshine duration to the maximum
177 possible duration in a certain period [44]. The monthly mean value of the relative
178 sunshine duration (σ_m) is employed to estimate the probability of occurrence of the
179 clear (Pcl), intermediate (Pin), and overcast sky (Poc). The equations for the monthly
180 probabilities of the occurrence of clear, intermediate, and overcast skies are:

$$181 \quad Pcl = \frac{5.689}{1.054 - \frac{\sigma_m}{100}} - 5.397 \quad (1)$$

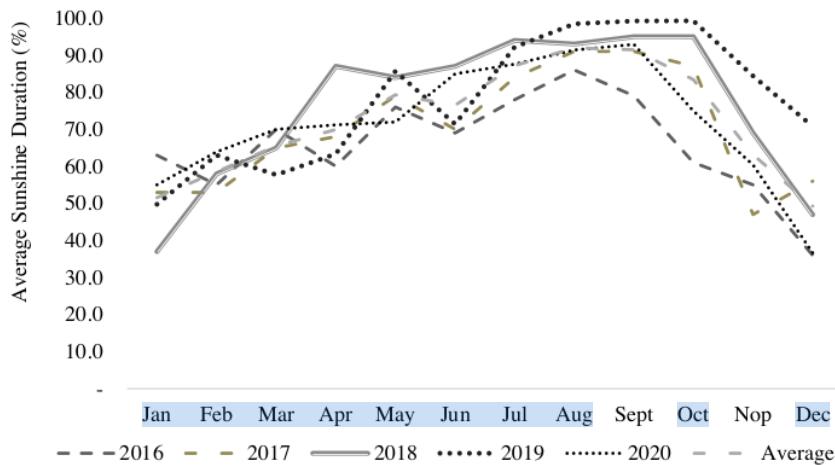
$$182 \quad Pin = \frac{100 - 5.689}{1.054 - \frac{\sigma_m}{100}} - \frac{78.629}{0.551 + \frac{\sigma_m}{100}} \quad (2)$$

$$183 \quad Poc = \frac{78.629}{0.551 + \frac{\sigma_m}{100}} - 50.649 \quad (3)$$

184 where:

185 Pcl (%) = monthly probability of occurrence of clear sky

186 Pin (%) = monthly probability of occurrence of intermediate sky


187 Poc (%) = monthly probability of occurrence of overcast sky

188

 σ_m (%)

= monthly mean value of relative sunshine duration

12

189

190 Figure 2. Average Sunshine Duration of Surabaya [45]

191

192

37

Figure 3 shows the average sunshine duration and the estimated probability of

193

20 occurrence of clear, intermediate, and overcast sky conditions. The yearly relative

194

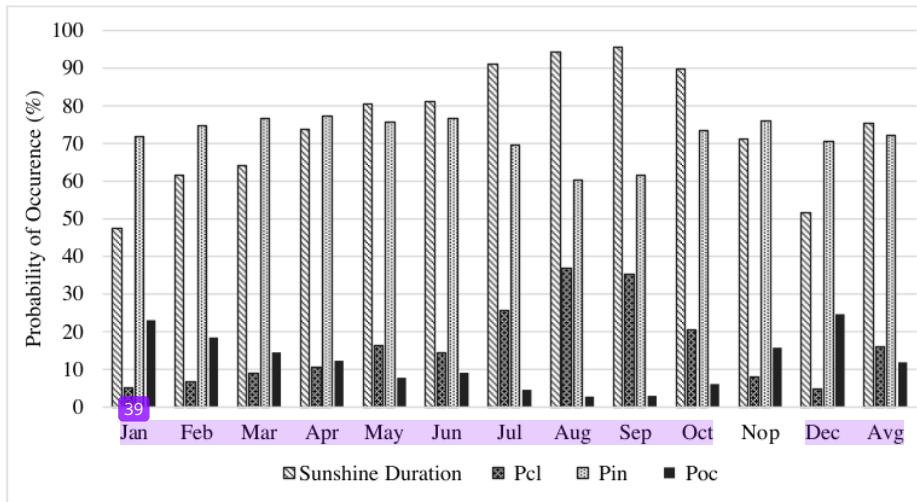
frequency of occurrence of overcast (Poc), intermediate (Pin), and clear sky (Pcl),

195

corresponding to the working period in Surabaya, were 11.9%, 72.1%, and 16.1%,

196

respectively. The intermediate sky had the highest probability of occurrence of sky


197

conditions in Surabaya. These results align with the previous study about sky conditions

198

in the Tropics [13].

199

200

201 Figure 3. The average sunshine duration and the estimated probability of occurrence of
202 clear, intermediate, and overcast sky conditions 20

203 **3. Methodology**

204 The method of the research was experimental, using simulation as a tool. Integrated
205 Environment Solution-Virtual Environment (IES-VE) daylight simulation was used to 71
206 study the daylight performance of various aspect ratios of buildings implementing HLP
207 and shading systems. The IES-VE is based on radiance, which uses a raytracing
208 calculation method and considers surface transmission, reflection, and refraction values
209 [13,19]. Radiance has been extensively validated and is an unbiased daylight simulation 12
210 tool [46]. IES-VE is stable, tested, and based on validated Building Performance
211 Simulation results [47]. IES-VE is widely used worldwide and can simulate various
212 daylighting systems and lighting design features.

213 IES-VE has been validated in previous research on HLP [19], dynamic internal
214 light shelves [13], light shelves, anidolic systems, translucent materials, light shelves 51
215 with external reflectors [48], light shelves, external horizontal louvers, internal
216 horizontal blinds [49], and anidolic daylighting system [12]. The correlation of the

217 daylight factor and daylight ratio of IES-VE simulation results and physical scaled
218 model 1:10 measurements results focusing on HLP, and dynamic internal light shelves
219 were in the range of 0.92 to 0.95 [19] and 0.83-0.99 [13], sequentially. The root mean
220 square error of real measurements and IES-VE simulation was less than 10% [48].
221 Validation studies showed that the IES-VE software is reliable for calculating daylight
222 performance from various daylighting systems such as light pipes, light shelves, and
223 anidolic daylighting systems in tropical areas using daylight ratio and daylight factor.

224 **3.1 Experimental with simulation as a tool**

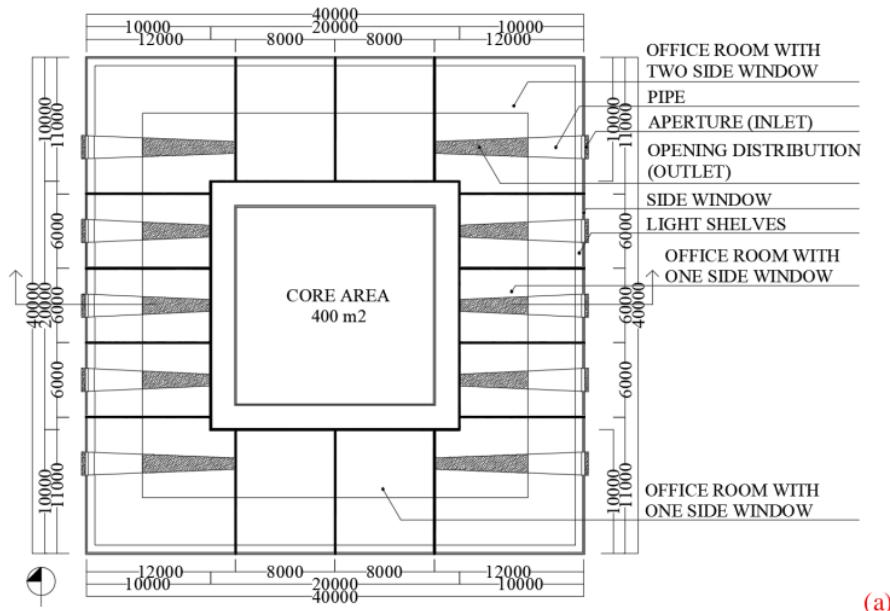
225 Experimental with IES-VE simulation was employed to study the impact of geometry of
226 building implementing HLP and shading system on daylight performance. The daylight
227 performance of the base case, an office building implementing HLP and shading
228 systems with an aspect ratio of 1:1, was compared with various aspect ratios of office
229 buildings implementing HLP and shading systems. The evaluated daylight performance
230 consisted of average daylight factor (DFav), uniformity daylight factor (UDF), and
231 useful daylight illuminance (UDI).

232 The simulation employed the weather file of Juanda International Airport and
233 used the radiance parameters, as displayed in Table 1.

234 **Table 1.** Radiance Parameters in IES-VE Simulations

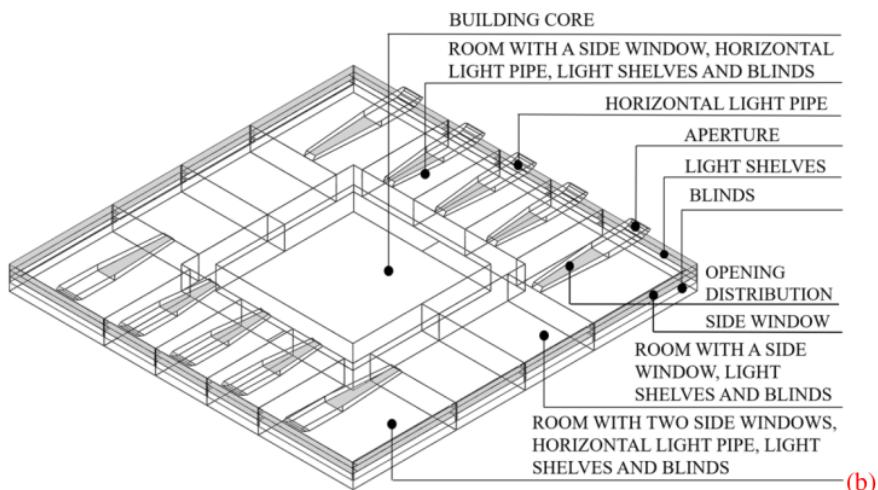
Parameters	Values
Ambient bounces (-ab)	5
Ambient divisions (-ad)	2048
Ambient accuracy (-aa)	0.2
Ambient resolution (-ar)	64
Ambient super-samples (-as)	512

235


236 Figure 4 shows the office building configuration that implements HLP and
237 shading systems. The ¹⁸ base case was rectangular in the floor plan and had an area of
238 1.600 m². The building length and leasing depth span were 40 m and 10 m, respectively,
239 representing a typical office building with medium-depth space [50]. The floor-to-
240 ceiling height was 2.7 m, based on the ¹ office floor-to-floor height consideration of Kohn
241 and Katz [51]. The office building had a single zone, a central core area of 400 m², and
242 an open-plan work area of 1200 m². The office building was oriented to the north.

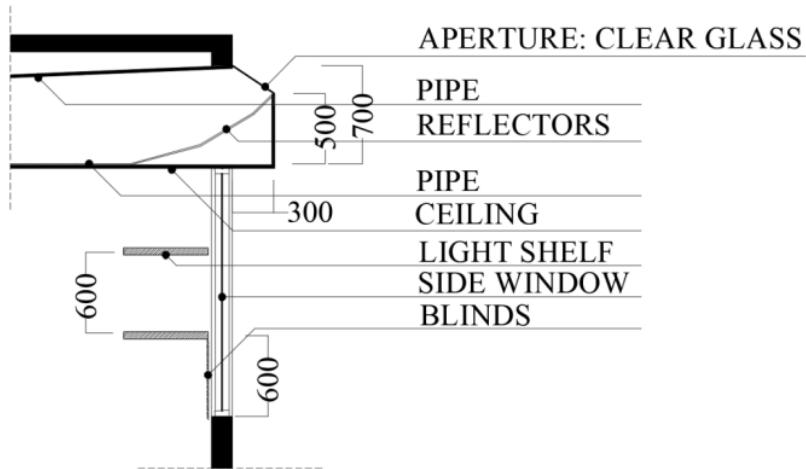
243 A typical office building floor was divided into smaller rentable units for
244 different tenants, consistent with previous research on high-rise offices [52]. The
245 smallest office room had an area of 60 m² and employed ten workers with a minimum
246 floor area per workstation of 6 m² [53]. The building core functions as a service and
247 circulation area and was excluded from the daylight performance analysis.

248 The side window in the office building had a ⁶ window-to-wall ratio of 67%. The ¹
249 window glazing material was clear glass with a visible transmittance (VT) of 0.76.
250 Shading systems consisting of two reflective light shelves with 0.6 m in width and
251 partial blinds (Figure 5) were integrated into office buildings as effective internal
252 shading in the tropics [26]. Following previous study results from Lim et al. [54],
253 modifying tinted glazing to clear glass VT 0.75, external shading devices, light shelves,
254 and blinds can significantly increase the daylight quantity and quality in office buildings
255 in the tropics.


256

257

(a)


258

(b)

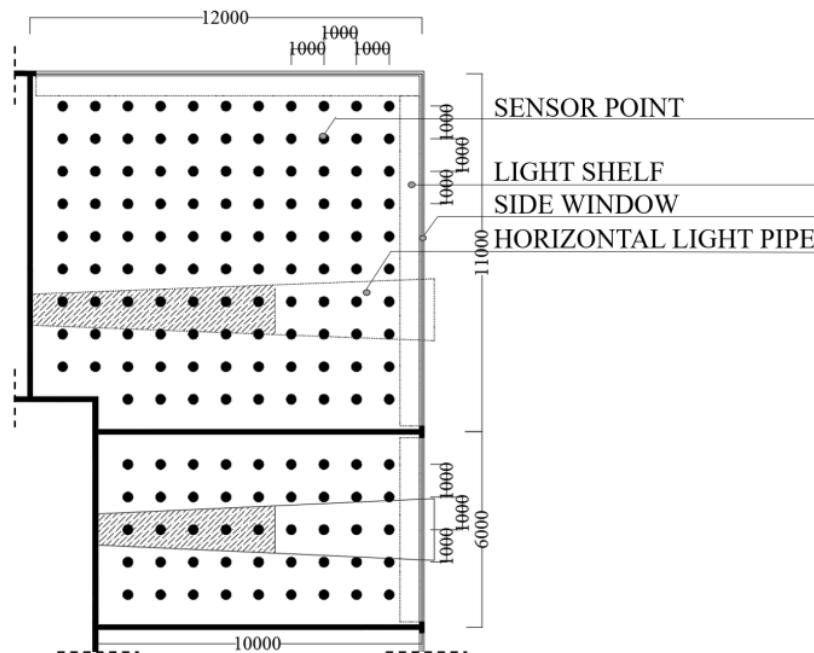
259 Figure 4. Geometrical parameters of the base-case office building implementing

260 horizontal light pipe and shading systems

261

262 **Figure 5. The aperture of horizontal light pipe and shading systems**

263


264 HLP was integrated into the building with an aperture-oriented east or west,
 265 following its best orientation in the tropics [15]. The width, length, and height of HLP
 266 were 2 m, 10 m, and 0.7 m, respectively. The aperture of HLP collects sunlight from the
 267 building façade (Figure 5) and transfers it through the pipe with a highly specular
 268 material on its inner surface. The aperture is equipped with reflectors to redirect the
 269 incoming sunlight to minimize inter-reflections within the pipe and to maximize the
 270 system efficiency (Hansen, 2006; Beltran et al., 1997). The opening distribution emits
 271 daylight through a transparent glass. No daylight is distributed through the HLP at a
 272 distance of 0 to 4.5 m from the side window to maximize its efficiency and daylight
 273 distribution within the space. The HLPs were placed every 6 m to uniformly illuminate
 274 the open-plan office space, in line with previous research by Beltran [21].

275 **Figure 6 shows the location of sensor points in the building plan. The height of**
 276 **sensor points is 0.8 m above the floor (work plane) with a grid of 1 m x 1 m. UDI is**
 277 **based on work-plane illuminances (Nabil & Mardaljevic, 2006) and considers daylight**
 278 **“useful” if all work-plane sensor points simultaneously within the 100-2000lx range**

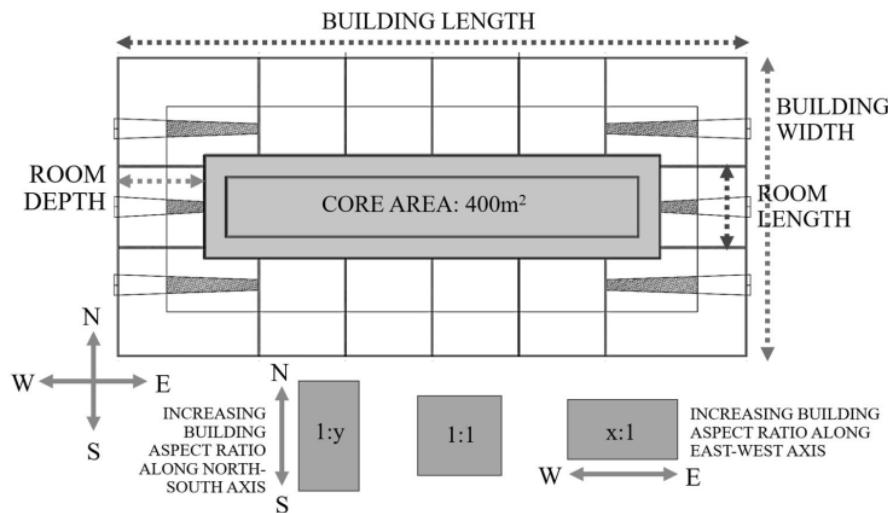
279 (Nabil & Mardaljevic, 2005). The occupancy hours used are 3650 for the period of
280 8:00-18:00 for the entire year.

281 There are three types of office rooms in terms of daylighting access: an office
282 room with a side window, HLP, and shading systems; an office room with two side
283 windows, HLP, and shading systems; and an office room with a side window and
284 shading systems (Figure 7). The office room with a side window, HLP, and shading
285 systems facing the east or west, whereas the office room with two side windows and
286 shading systems facing the north or south.

287

288 Figure 6. Sensor points in building

289


290
291 For the same building, core, and work area, the building aspect ratio varied from
292 1:1 to 2.1:1 (Figure ... and Table 2). The maximum aspect ratio was 2.1:1, considering
293 the maximum lease span for office function without a single tenant group [55] and

294 daylight attenuation by increasing HLP length with a static reflector [12]. Cases AR
295 1.1:1 to AR 2.1:1 were buildings with an increased aspect ratio along the east-west axis,
296 whereas cases AR 1:1.1 to 1:2.04 were buildings with an increased aspect ratio along
297 the north-south axis.

298 All cases were modeled in the IES-VE to analyze daylight using a 1x1 m grid.

299 ⁵² The height of the analysis grid was 0.8 m above the floor. The materials and surface
300 properties of the office room, side window, HLP, and shading ⁵⁵ systems are summarized
301 in Table 3. The impact of the aspect ratio of building implementing HLP and shading
302 system on daylight performance was then analyzed using regression analysis through
303 SPSS software.

304

305

306 **Figure 7. Increasing building aspect ratio along specific axis**

307

308 **Table 2. The configuration of base case and cases**

Building parameters	Base Case	AR 1.1:1	AR 1.2:1	AR 1.3:1	AR 1.4:1

38					
length (m)	40	42	44	46	48
width (m)	40	38.1	36.4	35	33.3
aspect ratio	1:1	1.1:1	71.2:1	1.3:1	1.4:1
	AR 1.56:1	AR 1.68:1	AR 1.8:1	AR 1.96:1	AR 2.1:1
length (m)	50	52	54	56	58
width (m)	32	30.8	29.6	28.6	27.6
aspect ratio	1.56:1	1.68:1	21.8:1	1.96:1	2.1:1
	AR 1:1.1	AR 1:1.2	AR 1:1.3	AR 1:1.47	AR 1:1.56
length (m)	38	36	34	33	32
width (m)	42.1	44.4	47	49	50
aspect ratio	71.1:1	1:1.2	1:1.3	1:1.47	1:1.56
	AR 1:1.67	AR 1:1.79	AR 1:1.89	AR 1:2.04	
length (m)	31	30	29	28	
width (m)	52	53	55	57	
aspect ratio	1:1.67	1:1.79	1:1.89	1:2.04	

309

310 Table 3. Materials and surface properties in IES-VE simulation

Elements	Materials	Reflectance (%)	Specularity	Roughness	Visible Transmittance
Interior wall	Plastic: white paint	0.75	0.00	0.02	N/A
Interior ceiling	Plastic: white paint	0.75	0.00	0.00	N/A
Interior floor	Plastic: light grey	0.45	0.00	0.03	N/A
Light pipe inner surfaces	Metal: mirror acrylic	0.85	0.90	0.02	N/A
Light pipe's aperture	Clear glass	N/A	N/A	N/A	0.88

Light pipe's opening distribution	Clear glass	N/A	N/A	N/A	0.85
Light shelf	Metal: mirror acrylic	0.85	0.90	0.02	N/A
Blinds	Plastic	25.0	0.04	8.03	N/A
Side window	Clear glass	N/A	N/A	N/A	0.76

311 **3.2 Daylight Metrics**

312 Three daylight metrics were evaluated to study the impact of the aspect ratio of
 313 buildings implementing HLP and shading systems. The daylight performance analysis
 314 included the average daylight factor (DFav), uniformity daylight factor (UDF), and
 315 useful daylight illuminance (UDI). DFav was used to evaluate the daylight quantity.
 316 Building aspect ratio, one of the building geometry parameters, impacts DF [56]. In an
 317 office building, evaluation of daylight distribution, which has a strong relationship with
 318 visual comfort and describes daylight quality [57], is essential. The daylight distribution
 319 was assessed by using the uniformity of light. UDI, one of the dynamic daylight
 320 performance metrics, was then used to evaluate daylight sufficiency during occupied
 321 hours in the year.

322 The DF (Eq.4) is the ratio between indoor (E_i) and exterior illuminance (E_o) in
 323 an unshaded area under CIE standard overcast sky conditions [58]. The average daylight
 324 factor (DFav) is the mean DF at all sensor points placed on the work plane height, 0.8 m
 325 above the floor. The recommended DF range for workspaces is 2-5% (British Council
 326 for Offices Guide in 6). Rooms with an average DF of less than 2% will look gloomy,
 327 and a room with a DF of more than 5% appear very bright [59].

328
$$DF = \frac{E_i}{E_o} \times 100\% \quad (4)$$

329 The uniformity DF (Eq.5) shows the degree of homogeneity in the light
 330 distribution [60]. UDF value is determined by dividing the minimum DF value (DF

331 min) by the average DF value for the entire room (DFav). The UDF required for the
332 working environment should be a minimum of 0.4 [61].

333
$$UDF = \frac{DF_{min}}{DF_{avg}}$$
 (5)

334 Useful Daylight Illuminance (UDI)_{100-2000lx} is the percentage of occupied hours
335 in the year with daylight illuminance within the range of 100-2000lx (Eq.6) [62]. UDI is
336 a climate-based daylight analysis based on daylight due to multiple sky conditions in the
337 occupied hours of the year in specific geographical locations [63].

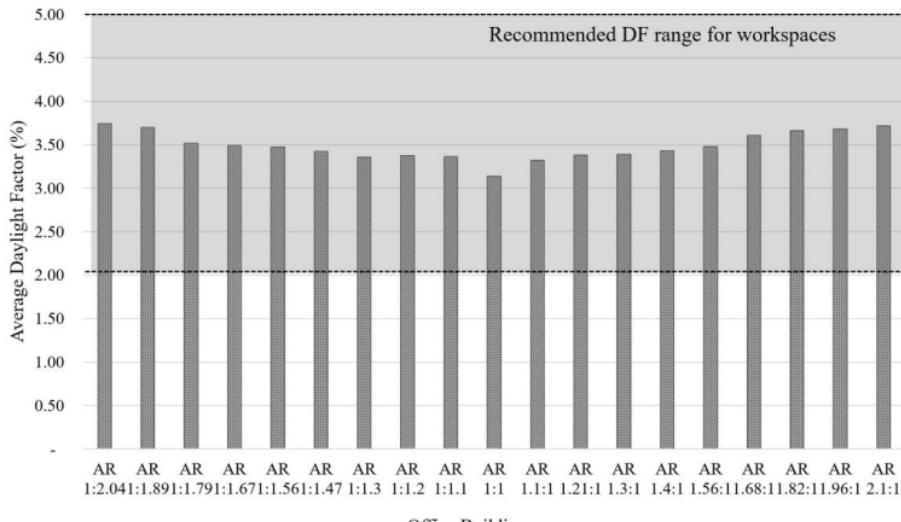
338
$$UDI_{100-2000lx} = \frac{t_{100 \text{ lx} \leq E \leq 2000 \text{ lx}}}{T} \times 100\%$$
 (6)

339 where t is the duration of daylight illuminance (E) ranging from 100-2000lx, and T is
340 the total number of occupied hours in the year.

341 Daylight illuminances higher than 2000lx (UDI exceed) tend to produce thermal
342 or visual discomfort, whereas illuminances lower than 100lx are considered insufficient
343 as the only source of illumination [5]. Daylight illuminances in the range of 100-500lx
344 (UDI supplementary) and 500-2000lx (UDI autonomous) are considered effective in
345 complementing electric lighting and are sufficient as a main source of illumination,
346 sequentially [56]. The minimum criteria of UDI_{100-2000lx} are 50% [39, 64].

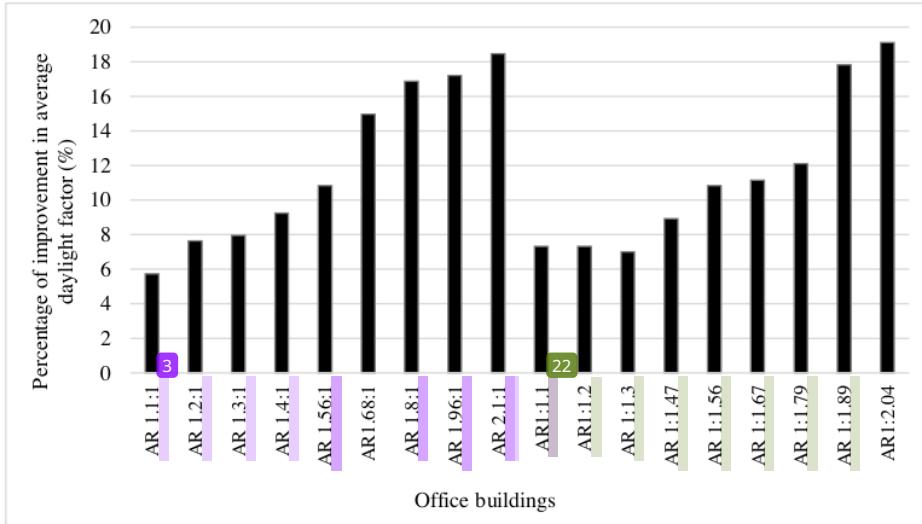
347 **4. Results and Discussion**

348 **4.1 Daylight performance results and analysis**


349 **4.1.1 Average Daylight Factor Analysis**
350 The simulation results showed that all cases had a DFav level of 3.14% to 3.74%. The
351 base case, with a building aspect ratio of 1:1, exhibited the lowest average DF level of

352 3.14%. Office building AR 1:2.04 had the highest average DF level of 3.74% (Figure
353 8). The average DF level of all cases was within the recommended DF range for
354 workspaces of 2-5%.

355 ⁶⁷ Figure 9 shows the percentage of the DFav improvement in the cases compared
356 ¹ to the base case. The results showed that buildings implementing HLP and shading
357 systems with higher aspect ratios had a higher DFav level. A higher building aspect
358 ratio implies that the building perimeter form is extended, allowing daylight to reach
359 most building spaces and increasing the total daylighting area. These results align with
360 previous research [33], showing that larger building aspect ratios have a higher daylight
361 performance in a hot climate. Following a previous study [12], the increase in the
362 building aspect ratio also indicates a reduction in the HLP length in rooms oriented east
363 and west, improving daylight levels within the space.

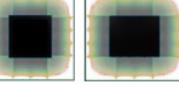
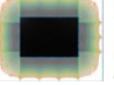
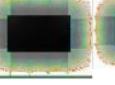
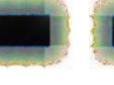
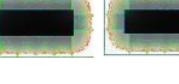
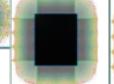

364 Increasing the aspect ratio of the building implementing HLP and shading
365 ¹¹ systems along the north-south axis resulted in a more significant improvement in DFav
366 ¹¹ than that along the east-west axis. The percentage of DFav improvement ranged from
367 5.73% to 18.47% in building elongated along the east-west axis and from 7.32% to
368 19.11% in buildings elongated along the north-south axis. Building AR 1:2.04, which
369 ¹⁰ was elongated along the north-south axis, significantly improved the DFav more than
370 ¹⁶ building AR 1.96:1, which was elongated along the east-west axis. The improvements
371 in the DFav of building AR 1:2.04 and AR 1.96:1 were as high as 19.11% and 17.2%,
372 respectively. With a similar building aspect ratio, building AR 1:2.04 has a higher
373 perimeter area that receives daylight from the east and west and a higher HLP integrated
374 into buildings than building AR 1.96:1.

375

376

377 **Figure 8.** Average Daylight Factor of office buildings with various building aspect ratio
378

379 **Figure 9.** Percentages of average daylight factor improvement of office buildings with a
380 different aspect ratio







381

382 Table 4 summarizes the DF comparison between the base case and cases. Office
383 building AR 2.1:1, which had an aspect ratio of 2.1:1, had the highest percentage of

384 sensor points with a DF level of 2-5%, which reached as high as 50.3%. The lowest
 385 percentage of sensor points with a DF level of 2-5% was in the base case, which
 386 reached 31.34%.

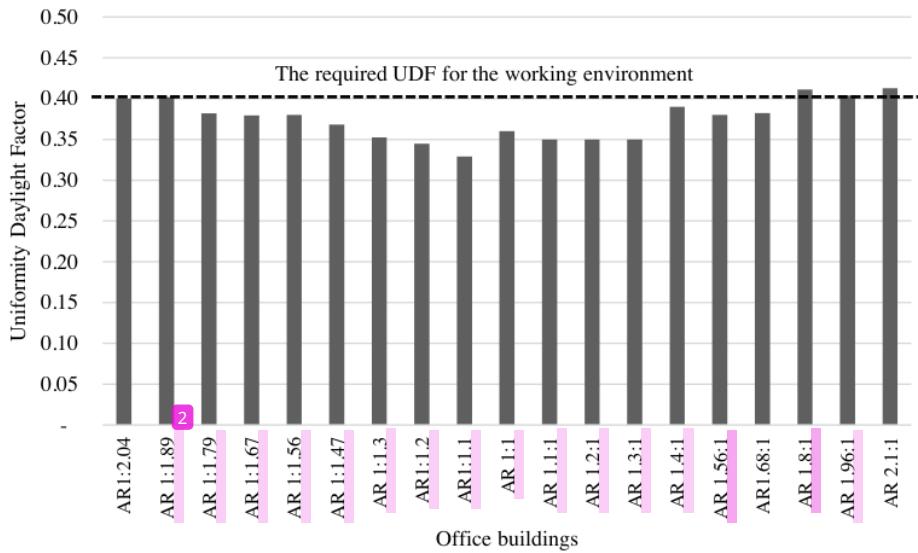
387 The increase in the building aspect ratio along the east-west axis results in a
 388 slightly higher percentage of sensor points with a DF level of 2-5% than along the
 389 north-south axis. With a similar building aspect ratio, office building AR 1:2.04, which
 390 was elongated along the north-south axis, had a lower percentage of sensor points with a
 391 DF level of 2-5% than building AR 1.96:1, which was elongated along the east-west
 392 axis. The percentage of sensor points with a DF level of 2-5% for buildings AR 1:2.04
 393 and AR 1.96:1 were 47.9% and 50.1%, respectively. With a similar building aspect
 394 ratio, building AR 1:1.96 has a higher perimeter area that receives daylight from the
 395 north and south than building AR 1:2.04.

396 Table 4. Daylight factor comparison between the base case and all cases

	Base Case	AR 1.1:1	AR 1.2:1	AR 1.3:1	AR 1.4:1	AR 1.56:1
Daylight Factor (DF)	maximum 9.7 minimum 0.8 average 3.14 uniformity 0.36	10.2 0.8 3.32 0.35	10 0.8 3.38 0.35	9.9 0.8 3.39 0.35	10.7 0.9 3.43 0.39	10.2 0.9 3.48 0.38
Percentage of changes in DF	maximum 0 minimum 0 average 0 uniformity 0	5.15 0 7.64 -2.78	3.09 0 7.96 -2.78	2.06 0 9.24 -2.78	10.31 12.5 9.24 8.33	5.15 12.5 10.83 5.56
Percentage of sensor points with DF level 2-5%	45.6	44.2	42.9	44	44.1	45.34
Daylight Factor (DF)	maximum 10.6 minimum 0.9 average 3.61	10.6 0.9 3.67	10.5 0.9 3.68	10.3 1 3.72	10.5 0.8 3.37	10.3 0.8 3.37

uniformity	0.38	0.41	0.40	0.41	0.33	0.34				
Percentage maximum	9.28	9.28	8.25	6.19	8.25	6.19				
of changes minimum	12.5	12.5	12.5	25	0	0				
in DF average	14.97	16.88	17.20	18.47	7.32	7.32				
uniformity	5.56	13.89	11.11	13.89	-8.33	-5.56				
Percentage of sensor points with DF level 2-5%	46.9	49.24	50.1	50.3	43.61	45.12				
	AR 1:1.3	AR 1:1.47	AR 1:1.56	AR 1:1.67	AR 1:1.79	AR 1:1.89	AR 1:2.04			
DF	4.75	4.25	3.75	3.25	2.75	2.25	1.75	1.25	0.75	0.25
Daylight Factor (DF)	maximum	10.2	10.7	10.1	10.3	10.1	10.6	10.8		
minimum	0.8	0.8	1	0.9	0.9	1	1			
average	3.36	3.42	3.48	3.49	3.52	3.70	3.74			
uniformity	0.35	0.37	0.38	0.38	0.38	0.40	0.40			
Percentage maximum	5.15	10.31	4.12	6.19	4.12	9.28	11.34			
of changes minimum	0	0	25	12.5	12.5	25	25			
in DF average	7.01	8.92	10.83	11.15	12.10	17.83	19.11			
uniformity	-2.78	2.78	5.56	5.56	5.56	11.1	11.11			
Percentage of sensor points with DF level 2-5%	45.05	45	45.2	46.8	48.7	49.8	47.9			

397 4.1.2 Uniformity Daylight Factor Analysis

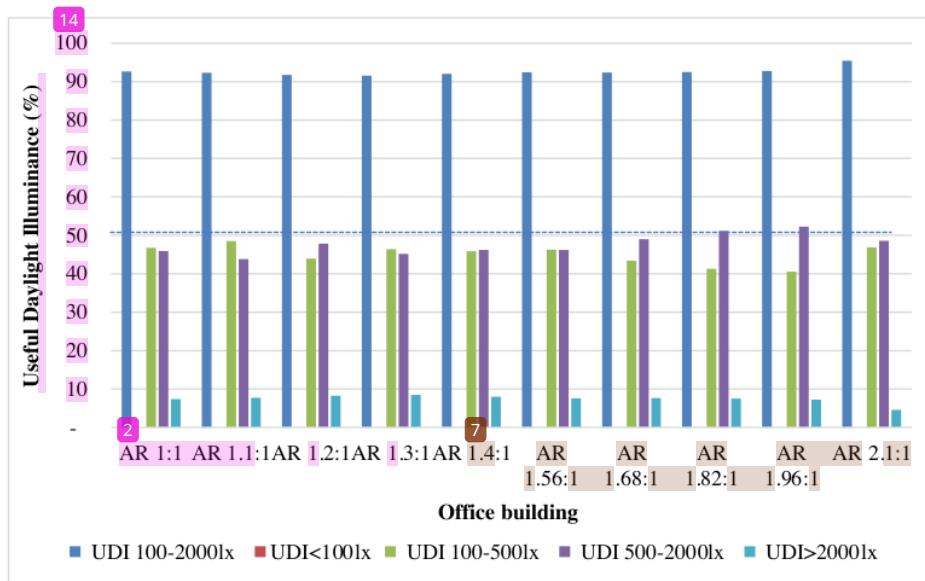

398 Figure 10 shows the UDF values of office buildings with different aspect ratios. The
 399 results showed that the base case had a UDF value of 0.36, below the required UDF for
 400 the working environment, which should be at least 0.4. Only five buildings had UDF
 401 ≥ 0.4 , i.e., buildings AR 1.8:1, AR 1.96:1, AR 2.1:1, AR 1:1.89, and AR1:2.04.

402 Buildings implementing HLP and shading systems with $UDF \geq 0.4$ had a high
 403 building aspect ratio. A high building aspect ratio results in a higher daylight level [41].

404 The contrast between the daylight level in the area far from the side window and the
 405 area near the side window decreased, reducing the visual problem.

406 Increasing the building aspect ratio along the east-west axis resulted in a more
 407 significant improvement in UDF than the north-south axis. The UDF improvement in
 408 buildings elongated along the east-west axis was 8.33%-13.89% for buildings AR 1.4:1-

409 AR 2.1:1. The percentages of UDF improvement of buildings elongated along the
 410 north-south axis were 2.78% to 11.11% for buildings AR 1:1.47 to AR1:2.04. The
 411 building elongated along the east-west axis has a larger perimeter area that receives
 412 daylight from the north and south. Following previous research [52], diffused
 413 illuminance was the primary daylight source for the north and south-facing side
 414 windows, resulting in a more uniform daylight distribution.



415
 416 **Figure 10.** Uniformity daylight factor of office buildings with different aspect ratio

417 *4.1.3 Useful Daylight Illuminance Analysis*

418 **Figure 11** shows the UDI of office buildings extended along the east-west axis. **Figure**
 419 **12** shows the UDI of office buildings elongated along the north-south axis. All office
 420 buildings with different aspect ratios had a $UDI_{100-2000lx}$ in the 83-95% range and were
 421 above the minimum criteria of $UDI_{100-2000lx}$. These **results showed the reliability** of HLP
 422 **and shading systems** in maintaining room lighting with $UDI_{100-2000lx}$ for over 50% of
 423 occupied hours in a year. The simulation results also showed that all buildings had no

424 percentages of UDI fell-short (<100lx) of the working year.

425

426 Figure 11. Useful daylight illuminance of office buildings elongated to the east-west
427 axis

428

429 Figure 12. Useful daylight illuminance of office buildings elongated to the north-south
430 axis
431

432 Office building AR 1: 2.04 elongated along the north-south axis had the lowest
433 UDI_{100-2000lx} value, as high as 83% of the work year. Office building AR 2.1:1 elongated
434 along the east-west axis had the highest UDI_{100-2000lx} value, which reached up to 95% of
435 the working year. With a similar aspect ratio, office buildings elongated along the east-
436 west axis had a higher UDI_{100-2000lx} value than those elongated along the north-south
437 axis. The reason is that office building AR 1: 2.04, elongated along the north-south axis,
438 had a larger opening area facing east and west than office building AR 2.1:1, elongated
439 along the east-west axis.

With a similar building aspect ratio, office building AR 1:2.04 elongated along the north-south axis had a higher UDI exceed ($>2000\text{lx}$) than office building AR 2.1:1 elongated along the east-west axis, as high as 16.8% and 4.6% **of the working year**, respectively. The office building elongated along the north-south axis had a larger opening area facing east and west than the office building AR 2.1:1, which elongated along the east-west axis.

Office buildings implementing HLP and shading systems had UDI100-500lx in the range of 35-49% of the working year. At those times, daylight illuminance is considered adequate as the primary source of room illumination or in combination with electric lighting [62]. Office building AR 1:2.04 elongated along the North-South axis had the lowest UDI100-500lx, which reached up to 35% of the working year. Office building AR 1.1:1 and AR 1:1.79 had the highest UDI100-500lx, as high as 49% of the work year.

453 Office buildings implementing HLP and shading systems had UDI autonomous
454 (500-2000lx) in 43-54% of the working year. These results indicated that daylight
455 illuminance was perceived as desirable or at least tolerable at 43-54% of the occupied
456 hours in a year. Office building AR 1:1.3 had the highest UDI500-2000lx, which

457 reached up to 54% of the work year. Office building AR 1:1.79 had the lowest UDI500-
458 2000lx, as high as 43% of the working year.

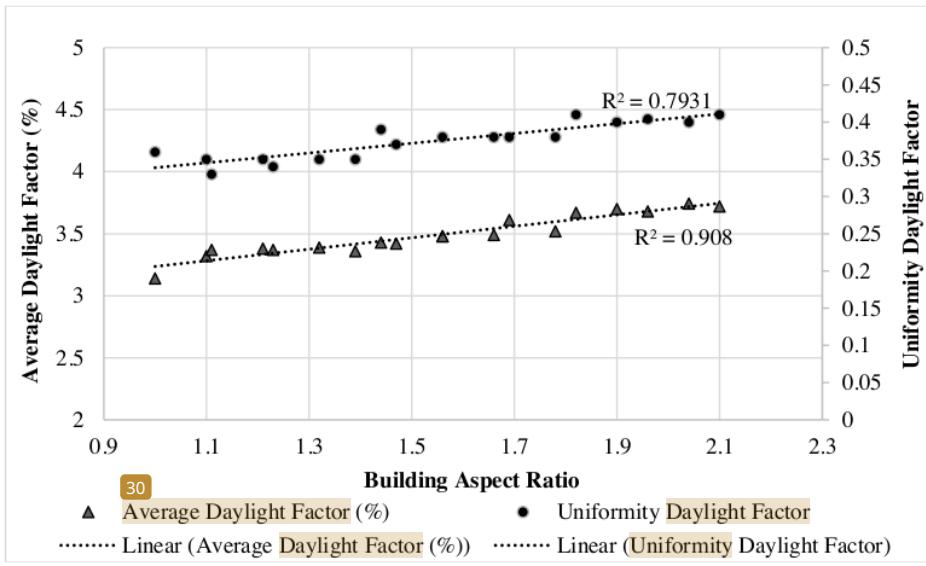
459 ***64 4.2 The Impact of Building Aspect Ratio on Daylight Performance***

460 The impact of the building aspect ratio on DFav, UDF, and UDI_{100-2000lx} was analyzed
461 using regression analysis. **Figure 13** shows a regression analysis plot of the building
462 aspect ratio and daylight performance. **Figure 13** shows the DFav and UDF as a
463 function of the building aspect ratio.

464 The regression analysis of the building aspect ratio with the DFav shows that the
465 building aspect ratio strongly influences the DFav, with the coefficient of determination
466 as high as 0.9089 (Figure 13). A linear relationship between the DFav and building
467 aspect ratio can be obtained, as follows:

$$468 \quad \text{DFav} = 0,463x + 2,7731 \quad (7)$$

469 With every 0.1 increase in the building aspect ratio, the average DF is expected to
470 increase by a linear difference of 2.82%. This equation is valid only in this case, a
471 building that implements HLP and shading systems.


472 The analysis also indicated that the building aspect ratio strongly influences the
473 UDF, with a coefficient of determination as high as 0.7973. A linear relationship
474 between the uniformity DF and building aspect ratio can be obtained as follows:

$$475 \quad \text{UDF} = 0,0656x + 0,2731 \quad (8)$$

476 With every 0.1 increase in the building aspect ratio, the uniformity DF is expected to
477 increase by a linear difference of 0.28. This equation is valid only in this case, which is
478 a building that implements HLP and shading systems.

479 As one may expect, the results indicated that the higher the building aspect ratio,
 24
 480 the higher the DFav of the entire building (Figure 13). The higher the building aspect
 24
 481 ratio, the larger perimeter receives daylight. These results align with Lee et al. [41] that
 482 the longer the building length compared to the building width, the higher the daylight
 483 availability. In office buildings with integrated HLP and shading systems, increasing the
 484 building aspect ratio from 1:1 to 2.1:1 will increase the average DF of the entire
 485 building by 18.47%.

486

487
 488 **Figure 13.** The relationship of building aspect ratio with average daylight factor and
 489 uniformity daylight factor
 490

491 The regression analysis also showed that the higher the aspect ratio of the
 74
 492 building integrating HLP and shading systems, the higher the UDF value. Office
 17
 493 building with an aspect ratio of 2.1:1 has a higher UDF than office building with an
 17
 494 aspect ratio of 1:1. The UDF improvement of office buildings with an aspect ratio of
 49
 495 2.1:1 reached 17.2% compared to office buildings with an aspect ratio of 1:1.

496 The higher aspect ratio means that the building becomes narrower in plan and
497 reduces room depth. The increase in the UDF level as the building aspect ratio
498 increases aligns with previous research by Lee et al. [41] that the smaller the room
499 depth, the more daylight intensity enters the room. A higher building aspect ratio results
500 in a higher daylight level [41]. The contrast between the daylight level in the area far
501 from the side window and the area near the side window then decreased, resulting in a
502 more uniform daylight distribution, which, in this research, is characterized by an
503 increase in UDF value.

504 Figure 14 shows the $UDI_{100-2000lx}$ as a function of the building aspect ratio. The
505 regression analysis for the aspect ratio of the building elongated along the east-west axis
506 (Figure 14a) with $UDI_{100-2000lx}$ shows that the building aspect ratio has a weak influence
507 on the $UDI_{100-2000lx}$, with a coefficient of determination of 0.4052 (Figure 14a). A linear
508 relationship between the building aspect ratio and $UDI_{100-2000lx}$ can be obtained as
509 follows:

$$UDI_{100-2000lx} = 1.8164x + 89.832 \quad (9)$$

510 With every 0.1 increase in the building aspect ratio, $UDI_{100-2000lx}$ is expected to increase
511 by a linear difference of 90.01. This equation is valid only in this case, a building that
512 implements HLP and shading systems.

513 The regression analysis for the aspect ratio of a building elongated along the
514 north-south axis (Figure 12b) with $UDI_{100-2000lx}$ shows that the building aspect ratio
515 moderately influences $UDI_{100-2000lx}$, with a coefficient of determination of 0.6373
516 (Figure 12b). A linear relationship between the building aspect ratio and $UDI_{100-2000lx}$ is
517 obtained as follows:

$$UDI_{100-2000lx} = -7.4997x + 102.28 \quad (10)$$

520 With every 0.1 increase in the building aspect ratio, $UDI_{100-2000lx}$ is expected to decrease
521 by a linear difference of 101.53. This equation is valid only in this case, buildings that
522 implement HLP and shading systems.

523 Unlike the DF trends, improving the aspect ratio of buildings elongated along 13
524 the north-south axis decreases the $UDI_{100-2000lx}$. The improvement in the aspect ratio of
525 buildings elongated along the north-south axis 10 increases the building area's side window
526 facing west, which causes an increase in the UDI exceed ($>2000lx$) and a decrease in 57
527 the $UDI_{100-2000lx}$. In contrast, improving the aspect ratio of buildings elongated along the
528 east-west axis slightly improves $UDI_{100-2000lx}$, caused by the reduction of the building
529 area's side window facing west.

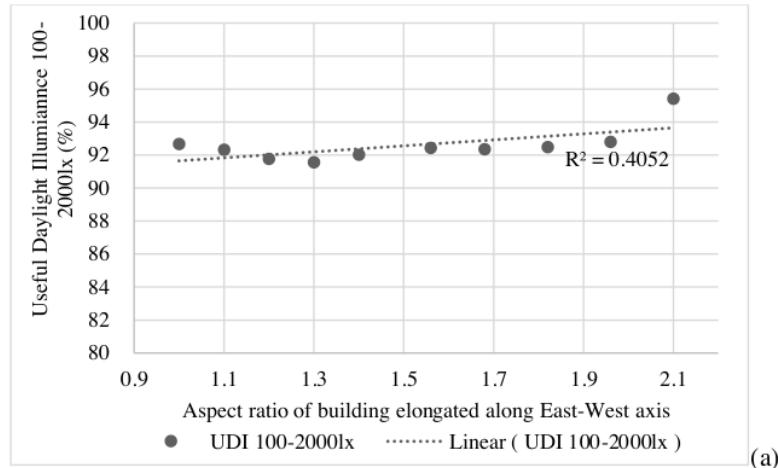
530 In this research, the $UDI_{100-2000lx}$ trends are influenced more by the percentages
531 of $UDI > 2000lx$, where all office buildings had no percentage of occupied hours in the 72
532 year with daylight illuminance $< 100lx$. Area with an illuminance level of more than
533 2000 lx is located on office rooms facing West. In line with previous research [Boubekri
534 and Lee, 2017], a large portion of illuminance values of more than 2000 lx are excluded
535 from the $UDI_{100-2000lx}$ calculation and makes the building that has a larger façade area
536 facing sunlight; in this research, the West, has a lower UDI .

537 Using linear regression, the building aspect ratio has a relatively weak and
538 moderate influence on $UDI_{100-2000lx}$. $UDI_{100-2000lx}$ trends are influenced by the
539 percentages of $UDI > 2000lx$, where 44 daylight illuminances higher than 2000 lx tend to
540 produce thermal or visual discomfort and closely correlate with the Daylight Glare
541 Probability [Boubekri and Lee, 2017]. These results align with previous research using
542 the Annual Glaring Index, which showed that building aspect ratios have a minor
543 impact on glaring using linear regression [Maltais and Gosselin, 2017].

544 In this research, the impact of building aspect ratio elongated East-West and
545 North-South axes on UDI_{100-2000lx} is weak and moderate sequentially. These results
546 might have occurred because UDI_{100-2000lx} comes from summation over the entire floor
547 area. The building area is constant for all UDI simulations, which might lower the
548 impact of the building aspect ratio.
78

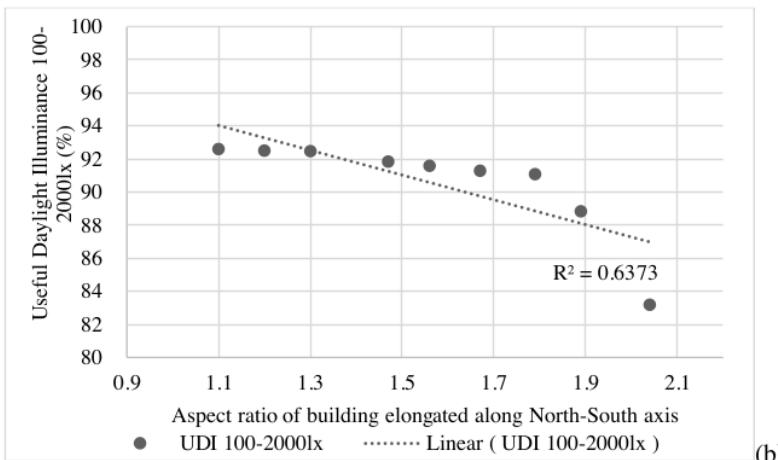
549 Determination of the optimum building aspect ratio involving DFav, UDF, and
550 UDI_{100-2000lx} showed that the optimum building aspect ratio is AR 2.1:1, which has a
551 narrow plan and is elongated to the East-West axis. The building is 58m in length and
552 27.6m in width. The building has DFav, UDF, and UDI as high as 3.72lx; 0.413 and
553 95% of the working year, sequentially. With a similar building aspect ratio, building
554 AR 1:2.04, elongated to the North-South axis, has a lower UDI_{100-2000lx}, as high as
555 83% of the working year. Building elongated along the North-South axis is not selected
556 for the optimum building aspect ratio because although it has the highest DFav and
557 UDF of 0.4, it has a lower UDI_{100-2000lx}. Considering the design of daylighting in tropical
558 climates emphasizes controlling solar radiation entering the buildings, building
559 elongated to the East-West axis that has a higher UDI_{100-2000lx} than the North-South
560 axis is selected as the optimum building aspect ratio.

561 These results can give an insight for building designer in determining the
562 building aspect ratio for daylight performances in early design stages. Observing
563 various daylight metrics, in this research DF, UDF and UDI, is important in the design
564 phase. Previous research also stated the recommendation to observe various daylight
565 metrics in the design phase, since they have different influence with respect to the
566 design variables (Athahillah, 2022). These research also give


567 ==desain office bulding darpat diperbaiki
568 ==gap knowledge yang ditambahkan, punya practical value

569 Consideration of other aspects such as thermal and energy performances should
570 be elaborated in future studies. The relationship between building aspect ratio and other
571 54 design variables such as window to wall ratio, building orientation should be studied.

572


573

574

(a)

575

(b)

576 **Figure 14.** The relationship of building aspect ratio elongated along (a) east-west axis
577 and (b) north-south axis with $UDI_{100-2000lx}$.

578

579 **5. Conclusion**

580 The impact of the aspect ratio of buildings with HLP and shading systems on daylight
581 performance was studied. The results indicated that office buildings integrating HLP
582 and shading systems with an aspect ratio of 1.1:1 to 1:2.04 had an average DF in the
583 range of 2-5% and UDI_{100-2000lx} in the range of 83-95%. Only five office buildings had
584 UDF \geq 0.4, i.e., buildings with an aspect ratio of 1.82:1, 1.96:1, 2.1:1, 1:1.89, and 1:2.04,
585 sequentially.

586 6 The results indicated that improving the building aspect ratio increased the 65
587 average Daylight Factor and Uniformity Daylight Factor. Increasing the building aspect
588 79 ratio along the north-south axis improved the average DF more than 36 along the east-west
589 axis. Increasing the building aspect ratio along the north-south axis reduced the
590 16 UDI_{100-2000lx}, while increasing the building aspect ratio along the east-west axis
591 improved the UDI_{100-2000lx} slightly. The optimum building aspect ratio involving
592 DFav, UDF, and UDI100-2000lx then showed that the optimum building aspect ratio is
593 AR 2.1:1, which has a narrow plan and is elongated to the East-West axis.

594 6 Future research can involve other design variables, such as building orientation
595 12 and window-to-floor ratio. Future studies should also focus on the energy and thermal
596 performance of buildings integrating HLP and shading systems. The daylight and
597 energy optimization of buildings implementing HLP and shading systems can also be
598 investigated. Considering the importance of users' psychological aspects, user
599 perceptions of buildings implementing HLP and shading systems can also be included.

600 **Funding Details**

601 The authors report no funding.

602 **19 Declaration of Competing Interest**

603 The authors declare that they have no competing interests that could have appeared in
604 work reported in this paper.

605 **References**

606 [1] Chi, Doris A., David Moreno, and Jaime Navarro. 2018. "Correlating Daylight
607 Availability Metric with Lighting, Heating and Cooling Energy Consumptions."

608 *Building and Environment* 132 (September 2017): 170–80.

609 <https://doi.org/10.1016/j.buildenv.2018.01.048>.

610 [2] Chen, Yuanyi, Junjie Liu, Jingjing Pei, Xiaodong Cao, Qingyan Chen, and Yi
611 Jiang. 2014. "Experimental and Simulation Study on the Performance of Daylighting in
612 an Industrial Building and Its Energy Saving Potential." *Energy and Buildings* 73: 184–
613 91. <https://doi.org/10.1016/j.enbuild.2014.01.030>.

614 [3] Wong, Ing Liang. 2017. "A Review of Daylighting Design and Implementation
615 in Buildings." *Renewable and Sustainable Energy Reviews* 74 (March): 959–68.
616 <https://doi.org/10.1016/j.rser.2017.03.061>.

617 [4] Li, D. H.W., J. C. Lam, and S. L. Wong. 2005. "Daylighting and Its Effects on
618 Peak Load Determination." *Energy* 30 (10): 1817–31.
619 <https://doi.org/10.1016/j.energy.2004.09.009>.

620 [5] Boubekri, M (2014). Daylighting Design: Planning Strategies and Best Practice
621 Solutions. Basel: Birkhauser Verlag GmbH.

622 [6] Alrubaih, M S, M. F.M. Zain, M A Alghoul, N. L.N. Ibrahim, M A Shameri,
623 and Omkalthum Elayeb. 2013. "Research and Development on Aspects of Daylighting

624 Fundamentals.” *Renewable and Sustainable Energy Reviews*. 21, 494–505.

625 <https://doi.org/10.1016/j.rser.2012.12.057>.

626 [7] Li, Danny H W, and Joseph C. Lam. 2003. “An Investigation of Daylighting
627 Performance and Energy Saving in a Daylit Corridor.” *Energy and Buildings* 35 (4):
628 365–73. [https://doi.org/10.1016/S0378-7788\(02\)00107-X](https://doi.org/10.1016/S0378-7788(02)00107-X).

629 [8] Boubekri, M. (2008). Daylighting, Architecture and Health. Architectural Press.
630 <https://doi.org/https://doi.org/10.1016/B978-0-7506-6724-1.00025-7>

631 [9] Ander, G.D. (2003). Daylighting Performance and Design, 2nd Edition. New
632 Jersey: John Wiley & Sons, Inc.

633 [10] Turan, Irmak, Andrea Chegut, Daniel Fink, and Christoph Reinhart. 2020. “The
634 Value of Daylight in Office Spaces.” *Building and Environment* 168 (October 2019):
635 106503. <https://doi.org/10.1016/j.buildenv.2019.106503>.

636 [11] Turan, Irmak, Andrea Chegut, Daniel Fink, and Christoph Reinhart. 2021.
637 Development of View Potential Metrics and the Financial Impact of Views on Office
638 Rents. *Landscape and Urban Planning* 215 (November). Elsevier:104193.
639 doi:10.1016/J.LANDURBPLAN.2021.104193.

640 [12] Roshan, Mohsen, and Aliyu Salisu. 2016. “Assessing Anidolic Daylighting
641 System for efficient daylight in open plan office in the tropics”. *Journal of Building
642 Engineering*, 8, 58–69. <https://doi.org/10.1016/j.jobe.2016.07.002>

643 [13] Lim, Yaik Wah, and C. Y.S. Heng. 2016. “Dynamic Internal Light Shelf for
644 Tropical Daylighting in High-Rise Office Buildings.” *Building and Environment* 106:
645 155–66. <https://doi.org/10.1016/j.buildenv.2016.06.030>.

646 [14] Zain-ahmed, A, K Sopian, and Z Zainol Abidin. 2002. "The Availability of
647 Daylight from Tropical Skies — a Case Study of Malaysia." *Renewable Energy*, 25:
648 21–30. [https://doi.org/10.1016/S0960-1481\(00\)00209-3](https://doi.org/10.1016/S0960-1481(00)00209-3)

649 [15] G-Hansen, V. R. (2006). Innovative daylighting systems for deep-plan
650 commercial buildings. Faculty of Built Environment and Engineering, Queensland
651 University. <http://eprints.qut.edu.au/16709/>

652 [16] Urbano Gutiérrez, R., J. Du, N. Ferreira, A. Ferrero, and S. Sharples. 2019.
653 "Daylight Control and Performance in Office Buildings Using a Novel Ceramic Louvre
654 System." *Building and Environment* 151 (October 2018): 54–74.
655 <https://doi.org/10.1016/j.buildenv.2019.01.030>.

656 [17] Mayhoub, M.S. 2014. "Innovative Daylighting Systems' Challenges: A Critical
657 Study." *Energy and Buildings* 80: 394–405.
658 <https://doi.org/10.1016/j.enbuild.2014.04.019>.

659 [18] Canziani, R., F. Peron, and G. Rossi. 2004. "Daylight and Energy Performances
660 of a New Type of Light Pipe." *Energy and Buildings* 36 (11): 1163–76.
661 <https://doi.org/10.1016/j.enbuild.2004.05.001>.

662 [19] Heng, C.Y.S., Yaik-Wah Lim, and Dilshan Remaz Ossen. 2020. "Horizontal
663 Light Pipe Transporter for Deep Plan High-Rise Office Daylighting in Tropical
664 Climate." *Building and Environment* 171 (December 2019): 106645.
665 <https://doi.org/10.1016/j.buildenv.2020.106645>.

666 [20] Duc Hien, V, and S Chirarattananon. 2009. "An Experimental Study of a Facade
667 Mounted Light Pipe." *Lighting Research and Technology* 41 (2): 123–42.
668 <https://doi.org/10.1177/1477153508096167>.

669 [21] Beltran, L. O., E. S. Lee, and S. E. Selkowitz. 1997. “Advanced Optical
670 Daylighting Systems: Light Shelves and Light Pipes.” *Journal of the Illuminating
671 Engineering Society* 26 (2): 91–106. <https://doi.org/10.1080/00994480.1997.10748194>.

672 [22] Elsiana, Feny, Sri Nastiti N Ekasiwi, and I Gusti Ngurah Antaryama. 2021.
673 “Integration of Horizontal Light Pipe and Shading Systems in Office Building in the
674 Tropics” *Journal of Applied Science and Engineering* 25 (1): 231–43.

675 [23] Kim, Minseok, Seung Bok Leigh, Taeyeon Kim, and Sooyoun Cho. 2015. “A
676 Study on External Shading Devices for Reducing Cooling Loads and Improving
677 Daylighting in Office Buildings.” *Journal of Asian Architecture and Building
678 Engineering* 14 (3): 687–94. <https://doi.org/10.3130/jaabe.14.687>.

679 [24] Luca, Francesco De, Abel Sepúlveda, and Toivo Varjas. 2022. “Multi-
680 Performance Optimization of Static Shading Devices for Glare, Daylight, View and
681 Energy Consideration.” *Building and Environment* 217 (January): 109110.
682 <https://doi.org/10.1016/j.buildenv.2022.109110>.

683 [25] Hashemi, Arman. 2014. “Daylighting and Solar Shading Performances of an
684 Innovative Automated Reflective Louvre System.” *Energy and Buildings* 82: 607–20.
685 <https://doi.org/10.1016/j.enbuild.2014.07.086>.

686 [26] Lim, Yaik Wah, Mohd Hamdan Ahmad, and Dilshan Remaz Ossen. 2013.
687 “Internal Shading for Efficient Tropical Daylighting in Malaysian Contemporary High-
688 Rise Open Plan Office.” *Indoor and Built Environment* 22 (6): 932–51.
689 <https://doi.org/10.1177/1420326X12463024>.

690 [27] Kontadakis, Antonis, Aris Tsangrassoulis, and Lambros Doulos. 2018. “A
691 Review of Light Shelf Designs for Daylit Environments.” *Sustainability* 10(1),71.

692 https://doi.org/10.3390/su10010071.

693 [28] Gomes, M. Glória, A. J. Santos, and M. Calhau. 2022. “Experimental Study on
694 the Impact of Double Tilted Venetian Blinds on Indoor Daylight Conditions.” *Building*
695 and Environment

225 (April). <https://doi.org/10.1016/j.buildenv.2022.109675>.

696 [29] Beltrán, L. O. & Mogo, B. M. (2007). Development of Optical Light Pipes for
697 Office Spaces. PLEA 2007 - The 24th Conference on Passive and Low Energy
698 Architecture, Singapore, 22-24 November.

699 [30] Hansen, G., and Edmonds I. (2003). Natural illumination of deepplan office
700 buildings: light pipe strategies. In: ISES Solar World Congress 2003, 14-19 June 2003,
701 Göteborg, Sweden.

702 [31] Kwok, C. M., and T. M. Chung. 2008. “Computer Simulation Study of a
703 Horizontal Light Pipe Integrated with Laser Cut Panels in a Dense Urban
704 Environment.” *Lighting Research and Technology* 40 (4): 287–305.
705 <https://doi.org/10.1177/1477153508094584>.

706 [32] Elsiana, F., F. Soehartono, and L. Kristanto. 2020. “Daylight Performance of
707 Horizontal Light Pipe with Egg-Crate Reflector in the Tropics.” *IOP Conference Series:*
708 *Earth and Environmental Science* 490 (1). <https://doi.org/10.1088/1755-1315/490/1/012006>.

710 [33] Fang, Yuan, and Soolyeon Cho. 2019. “Design Optimization of Building
711 Geometry and Fenestration for Daylighting and Energy Performance.” *Solar Energy*
712 191 (July): 7–18. <https://doi.org/10.1016/j.solener.2019.08.039>.

713 [34] Inanici, Mehlika N., and F. Nur Demirbilek. 2000. “Thermal Performance

714 Optimization of Building Aspect Ratio and South Window Size in Five Cities Having
715 Different Climatic Characteristics of Turkey.” *Building and Environment* 35 (1): 41–52.
716 [https://doi.org/10.1016/S0360-1323\(99\)00002-5](https://doi.org/10.1016/S0360-1323(99)00002-5).

717 [35] Yang, Jinxin, Qian Shi, Massimo Menenti, Man Sing Wong, Zhifeng Wu,
718 Qunshan Zhao, Sawaiid Abbas, and Yong Xu. 2021. “Observing the Impact of Urban
719 Morphology and Building Geometry on Thermal Environment by High Spatial
720 Resolution Thermal Images.” *Urban Climate* 39 (July): 100937.
721 <https://doi.org/10.1016/j.uclim.2021.100937>.

722 [36] Li, Jiayu, Bohong Zheng, Komi Bernard Bedra, Zhe Li, and Xiao Chen. 2022.
723 “Effects of Residential Building Height, Density, and Floor Area Ratios on Indoor
724 Thermal Environment in Singapore.” *Journal of Environmental Management* 313
725 (March): 114976. <https://doi.org/10.1016/j.jenvman.2022.114976>.

726 [37] McKeen, Philip, and Alan S Fung. 2014. “The Effect of Building Aspect Ratio
727 on Energy Efficiency.” *Buildings* 4: 336–54. <https://doi.org/10.3390/buildings4030336>.

728 [38] Chen, Kian Wee, Patrick Janssen, and Arno Schlueter. 2018. “Multi-Objective
729 Optimisation of Building Form, Envelope and Cooling System for Improved Building
730 Energy Performance.” *Automation in Construction* 94 (July): 449–57.
731 <https://doi.org/10.1016/j.autcon.2018.07.002>.

732 [39] Mangkuto, Rizki A., Mardliyahtur Rohmah, and Anindya Dian Asri. 2016.
733 “Design Optimisation for Window Size, Orientation, and Wall Reflectance with Regard
734 to Various Daylight Metrics and Lighting Energy Demand: A Case Study of Buildings
735 in the Tropics.” *Applied Energy* 164: 211–19.
736 <https://doi.org/10.1016/j.apenergy.2015.11.046>.

737 [40] Lartigue, B., B. Lasternas, and V. Loftness. 2014. “Multi-Objective
738 Optimization of Building Envelope for Energy Consumption and Daylight.” *Indoor and*
739 *Built Environment* 23 (1): 70–80. <https://doi.org/10.1177/1420326X13480224>.

740 [41] Lee, Jaewook, Mohamed Boubekri, and Feng Liang. 2019. “Impact of Building
741 Design Parameters on Daylighting Metrics Using an Analysis, Prediction, and
742 Optimization Approach Based on Statistical Learning Technique.” *Sustainability*
743 (*Switzerland*) 11 (5). <https://doi.org/10.3390/su11051474>.

744 [42] Sepúlveda, Abel, Francesco De Luca, Martin Thalfeldt, and Jarek Kurnitski.
745 2020. “Analyzing the Fulfillment of Daylight and Overheating Requirements in
746 Residential and Office Buildings in Estonia.” *Building and Environment* 180 (April):
747 107036. <https://doi.org/10.1016/j.buildenv.2020.107036>.

748 [43] Maltais, Louis Gabriel, and Louis Gosselin. 2017. “Daylighting ‘Energy and
749 Comfort’ Performance in Office Buildings: Sensitivity Analysis, Metamodel and Pareto
750 Front.” *Journal of Building Engineering* 14 (February): 61–72.
751 <https://doi.org/10.1016/j.jobe.2017.09.012>.

752 [44] Rahim, Ramli, and Rosady Mulyadi. 2004. “Classification of Daylight and
753 Radiation Data into Three Sky Conditions by Cloud Ratio and Sunshine Duration.”
754 *Energy and Buildings* 36: 660–66. <https://doi.org/10.1016/j.enbuild.2004.01.012>.

755 [45] Meteorological, Climatological, and Geophysical Agency of Surabaya

756 [46] Ayoub, Mohammed. 2020. “A Review on Light Transport Algorithms and
757 Simulation Tools to Model Daylighting inside Buildings.” *Solar Energy* 198 (December
758 2019): 623–42. <https://doi.org/10.1016/j.solener.2020.02.018>.

759 [47] Negendahl, Kristoffer. 2015. "Building Performance Simulation in the Early
760 Design Stage: An Introduction to Integrated Dynamic Models." *Automation in*
761 *Construction* 54: 39–53. <https://doi.org/10.1016/j.autcon.2015.03.002>.

762 [48] Freewan, A. A. Y., & Al Dalala, J. A. (2020). Assessment of daylight
763 performance of Advanced Daylighting Strategies in Large University Classrooms; Case
764 Study Classrooms at JUST. *Alexandria Engineering Journal*, 59(2), 791–802.
765 <https://doi.org/10.1016/j.aej.2019.12.049>

766 [49] Reffat, R. M., & Ahmad, R. M. (2020). Determination of optimal energy-
767 efficient integrated daylighting systems into building windows. *Solar Energy*,
768 209(July), 258–277. <https://doi.org/10.1016/j.solener.2020.08.086>

769 [50] Gero, Johh S dan Sudweeks, Fay (1998). Artificial Intelligence in Design'98.
770 Springer Science+Business Media: Dordrecht. <https://doi.org/10.1007/978-94-011->
771 5121-4

772 [51] Kohn, A. Eugene dan Katz, Paul, (2002), Building Type Basics for Office
773 Buildings, John Wiley & Sons, Inc. New York.

774 [52] Lim, Y. W., Ahmad, M. H. 2013. "Daylighting as a Sustainable Approach for
775 High-Rise Office in Tropics." *International Journal of Real Estate Studies*, 8(1): 30-42.

776 [53] Meel, J. V., Martens, Y., Jan, V. R. H. (2010). Planning office spaces: A
777 practical guide for managers and Designers. London: Laurence King Publishing.

778 [54] Lim, Yaik-Wah, Mohd Zin Kandar, Mohd Hamdan Ahmad, Dilshan Remaz
779 Ossen, and Aminatuzuhariah Megat Abdullah. 2012. Building Façade Design for
780 Daylighting Quality in Typical Government Office Building. *Building and Environment*

781 57:194–204. doi:10.1016/j.buildenv.2012.04.015.

782 [55] Sev, Ayşin, and Aydan Özgen. 2009. Space Efficiency in High-rise Office
783 Buildings. *Metu Journal of the Faculty of Architecture* 26 (2):69–89.

784 doi:10.4305/METU.JFA.2009.2.4.

785 [56] Reinhart, C. F., Mardaljevic, J., & Rogers, Z. (2006). Dynamic daylight
786 performance metrics for sustainable building design. *LEUKOS - Journal of Illuminating*
787 *Engineering Society of North America*, 3(1), 7–31.

788 <https://doi.org/10.1582/LEUKOS.2006.03.01.001>

789 [57] Galatioto, A, and M Beccali. 2016. Aspects and Issues of Daylighting
790 Assessment : A Review Study. *Renewable and Sustainable Energy Reviews* 66.
791 Elsevier:852–860. doi:10.1016/j.rser.2016.08.018.

792 [58] Reinhart, Christoph F., and Daniel A. Weissman. 2012. “The Daylit Area -
793 Correlating Architectural Student Assessments with Current and Emerging Daylight
794 Availability Metrics.” *Building and Environment* 50: 155–64.

795 <https://doi.org/10.1016/j.buildenv.2011.10.024>.

796 [59] McMullan, R. (2007). Environmental Science in Building, Sixth Edition. New
797 York: Palgrave Macmillan.

798 [60] Michael, A., S. Gregoriou, and S. A. Kalogirou. 2018. “Environmental
799 Assessment of an Integrated Adaptive System for the Improvement of Indoor Visual
800 Comfort of Existing Buildings.” *Renewable Energy* 115: 620–33.

801 <https://doi.org/10.1016/j.renene.2017.07.079>.

802 [61] BREEAM. Health and Wellbeing - Hea 01 Visual comfort. Available

803 online: https://www.breeam.com/BREEAM2011SchemeDocument/Content/05_health/h
804 ea01.htm (Accessed 3 January 2023).

805 [62] Nabil, A., & Mardaljevic, J. 2006. "Useful daylight illuminances: A replacement
806 for daylight factors." *Energy and Buildings* 38(7): 905–913.
807 <https://doi.org/10.1016/j.enbuild.2006.03.013>

808 [63] Mangkuto, R. A., Siregar, M. A. A., Handina, A., & Faridah. 2018.
809 "Determination of appropriate metrics for indicating indoor daylight availability and
810 lighting energy demand using genetic algorithm." *Solar Energy* 170(April 2017): 1074–
811 1086. <https://doi.org/10.1016/j.solener.2018.06.025>

812 [64] Berardi, U., and Anaraki, H. K. 2015. "Analysis of the impacts of light shelves
813 on the useful daylight illuminance in office buildings in Toronto." *Energy Procedia*, 78:
814 1793–1798. <https://doi.org/10.1016/j.egypro.2015.11.310>

815 Obradovic, Biljana, and Barbara Matusiak. 2021. A Customised Method for Estimating
816 Light Transmission Efficiency of the Horizontal Light Pipe via a Temporal
817 Parameter with an Example Application Using Laser-Cut Panels as a Collector.
818 *MethodsX* 8. Elsevier B.V.:101339. doi:10.1016/j.mex.2021.101339.

819 Caruso, Gianpiero, and Jérôme Henri Kämpf. 2015. Building Shape Optimisation to
820 Reduce Air-Conditioning Needs Using Constrained Evolutionary Algorithms.
821 *Solar Energy* 118:186–196. doi:10.1016/j.solener.2015.04.046.

822 Kibert, Charles J (2008). *Sustainable Construction: Green Building aDesign and*
823 *Delivery. Second Edition. John Wiley&Sons, Inc. New Jersey*

824

825

826

The Impact of Aspect Ratio

ORIGINALITY REPORT

PRIMARY SOURCES

1	repository.petra.ac.id	2%
2	www.wigry.org.pl	1%
3	papelesdepopulation.uaemex.mx	1%
4	Rahim, R.. "Classification of daylight and radiation data into three sky conditions by cloud ratio and sunshine duration", Energy & Buildings, 200407	1%
5	www.researchgate.net	1%
6	pure.manchester.ac.uk	1%
7	documents.mx	1%
8	hdl.handle.net	<1%

9	eprints.qut.edu.au	<1 %
10	Internet Source	Internet Source
11	Amany Khalil, Osama Tolba, Sherif Ezzeldin. "Optimization of an office building form using a lattice incubate boxes method", Advanced Engineering Informatics, 2023	Publication
12	backend.orbit.dtu.dk	<1 %
13	Internet Source	Alibakhsh Kasaeian, Hamid Sarrafha. "Solar energy systems: An approach to zero energy buildings", Elsevier BV, 2021
14	Publication	ebin.pub
15	Publication	F Elsiana, F Soehartono, L Kristanto. "Daylight performance of horizontal light pipe with egg-crate reflector in the tropics", IOP Conference Series: Earth and Environmental Science, 2020
16	Internet Source	books.bk.tudelft.nl
17	Hamidreza Alinejad, Thomas H.-K. Kang, Seung Yong Jeong, Byeonguk Ahn.	<1 %

"Engineering Review of Wind-Induced Torsional Moment and Response of Buildings", Journal of Structural Engineering, 2023

Publication

18 Rabee M. Reffat, Rehab M. Ahmad. <1 %
"Determination of optimal energy-efficient integrated daylighting systems into building windows", Solar Energy, 2020

Publication

19 ntnuopen.ntnu.no <1 %
Internet Source

20 riubu.ubu.es <1 %
Internet Source

21 Louis-Gabriel Maltais, Louis Gosselin. <1 %
"Daylighting 'energy and comfort' performance in office buildings: Sensitivity analysis, metamodel and pareto front", Journal of Building Engineering, 2017

Publication

22 doczz.com.br <1 %
Internet Source

23 www.ijert.org <1 %
Internet Source

24 Toja-Silva, Francisco, Oscar Lopez-Garcia, Carlos Peralta, Jorge Navarro, and Ignacio Cruz. "An empirical-heuristic optimization of <1 %

the building-roof geometry for urban wind energy exploitation on high-rise buildings", *Applied Energy*, 2016.

Publication

25 coek.info <1 %
Internet Source

26 dimensi.petra.ac.id <1 %
Internet Source

27 aaqr.org <1 %
Internet Source

28 eprints.utm.my <1 %
Internet Source

29 research.med.umkc.edu <1 %
Internet Source

30 scholar.psu.edu <1 %
Internet Source

31 Mohamed Boubekri. "Daylighting Design", Walter de Gruyter GmbH, 2014 <1 %
Publication

32 Canziani, R.. "Daylight and energy performances of a new type of light pipe", *Energy & Buildings*, 200411 <1 %
Publication

33 Rizki A. Mangkuto, Mhd. Akbar Anthony Siregar, Aishanura Handina, Faridah. "Determination of appropriate metrics for <1 %

indicating indoor daylight availability and lighting energy demand using genetic algorithm", Solar Energy, 2018

Publication

34 cyberleninka.org <1 %
Internet Source

35 Submitted to British University In Dubai <1 %
Student Paper

36 Submitted to University of Nottingham <1 %
Student Paper

37 Proceedings of ISES World Congress 2007 (Vol I – Vol V), 2009. <1 %
Publication

38 Submitted to University of Abertay Dundee <1 %
Student Paper

39 www.meteosxm.com <1 %
Internet Source

40 Umberto Berardi, Hamid Khademi Anaraki. <1 %
"The benefits of light shelves over the
daylight illuminance in office buildings in
Toronto", Indoor and Built Environment, 2016
Publication

41 V.R.M. Lo Verso, F. Giuliani, F. Caffaro, F. <1 %
Basile et al. "Questionnaires and simulations
to assess daylighting in Italian university

classrooms for IEQ and energy issues",

Energy and Buildings, 2021

Publication

42 Yijun Zhou, Mingxue Ma, Vivian WY. Tam, Khoa N. Le. "Design variables affecting the environmental impacts of buildings: A critical review", Journal of Cleaner Production, 2023 <1 %

Publication

43 Mohammad Zounemat-Kermani, Miklas Scholz, Mohammad-Mahdi Tondar. "Hydrodynamic modelling of free water-surface constructed storm water wetlands using a finite volume technique", Environmental Technology, 2015 <1 %

Publication

44 Nabil, A.. "Useful daylight illuminances: A replacement for daylight factors", Energy & Buildings, 200607 <1 %

Publication

45 Runqi Liang, Dingming Liu, Yanyi Sun, Xuanli Luo, David Grant, Gavin Walker, Yupeng Wu. "Investigation of Mg-Y coated gasochromic smart windows for building applications", Building Simulation, 2018 <1 %

Publication

46 deepblue.lib.umich.edu <1 %

Internet Source

47 orca.cardiff.ac.uk <1 %
Internet Source

48 zemch.org <1 %
Internet Source

49 Mohamad T. Araji, Iqbal Shahid. "Symbiosis optimization of building envelopes and micro-algae photobioreactors", Journal of Building Engineering, 2018 <1 %
Publication

50 Roberts, N. A., and D. G. Walker. "Phonon Transport in Asymmetric Sawtooth Nanowires", ASME/JSME 2011 8th Thermal Engineering Joint Conference, 2011. <1 %
Publication

51 Shibo Wang, Bin Chen, Jian Suo, Joe R. Zhao. "Impact of building morphology and outdoor environment on light and thermal environment in campus buildings in cold region during winter", Building and Environment, 2021 <1 %
Publication

52 Soo-Jin Lee, Seung-Yeong Song. "Energy efficiency, visual comfort, and thermal comfort of suspended particle device smart windows in a residential building: A full-scale experimental study", Energy and Buildings, 2023 <1 %
Publication

53 Stevanović, Sanja. "Optimization of passive solar design strategies: A review", *Renewable and Sustainable Energy Reviews*, 2013. <1 %
Publication

54 Yijun Zhou, Vivian WY. Tam, Khoa N. Le. "Sensitivity analysis of design variables in life-cycle environmental impacts of buildings", *Journal of Building Engineering*, 2022 <1 %
Publication

55 gcris.iyte.edu.tr <1 %
Internet Source

56 hal.science <1 %
Internet Source

57 icntadconference.com <1 %
Internet Source

58 lib.buet.ac.bd:8080 <1 %
Internet Source

59 vtechworks.lib.vt.edu <1 %
Internet Source

60 Afagh Mohagheghi, Mehrdad Moallem, Alireza Khayatian. "Neural network-based LED lighting control with modeling uncertainty and daylight disturbance", *IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society*, 2017 <1 %
Publication

61 Baraa J. Alkhatatbeh, Yumna Kurdi, Somayeh Asadi. "Enhancing Learning Environments: Exploring Optimal Classroom Design Connected to Double-Loaded Corridors Across the U.S. Climate Zones", Energy and Buildings, 2023 <1 %

Publication

62 Christopher Yii Sern Heng. "Integration of Shading Device and Semi-Circle Horizontal Light Pipe Transporter for High-Rise Office Building in Tropical Climate", Environmental Research, Engineering and Management, 2021 <1 %

Publication

63 Huang, Lingjiang, and Jiafen Wu. "Effects of the splayed window type on daylighting and solar shading", Building and Environment, 2014. <1 %

Publication

64 Reza Foroughi, Somayeh Asadi, Soha Khazaeli. "Identifying the Optimum Aspect Ratio of Windows in Small Commercial Buildings", Construction Research Congress 2018, 2018 <1 %

Publication

65 Stephen Simm, David Coley. "The relationship between wall reflectance and daylight factor" <1 %

in real rooms", Architectural Science Review,
2011

Publication

66	ejournal.um.edu.my	<1 %
67	escholarship.org	<1 %
68	semarakilmu.com.my	<1 %
69	theses.lib.polyu.edu.hk	<1 %
70	www.dgt.uns.ac.rs	<1 %
71	www.elec.qmul.ac.uk	<1 %
72	www.tandfonline.com	<1 %
73	yonsei.pure.elsevier.com	<1 %
74	"Issue PDF", Technology Architecture + Design, 2017	<1 %
75	Deema Amleh, Abdelrahman Halawani, Muhannad Haj Hussein. "Simulation-Based Study for Healing environment in intensive	<1 %

care units: enhancing daylight and access to view, optimizing an ICU room in temperate climate, the case study of Palestine.", Ain Shams Engineering Journal, 2023

Publication

76 Hossein Omrany, Amirhosein Ghaffarianhoseini, Umberto Berardi, Ali Ghaffarianhoseini, Danny H. W. Li. "Is atrium an ideal form for daylight in buildings?", Architectural Science Review, 2019

Publication

<1 %

77 Irmak Turan, Andrea Chegut, Daniel Fink, Christoph Reinhart. "Development of view potential metrics and the financial impact of views on office rents", Landscape and Urban Planning, 2021

Publication

<1 %

78 William Brooks, David H. Barnett, W. A. Harrison, David Hattz, John Mankowski, James Dickens, Andreas Neuber. "Investigation of Lightning Attachment Risks to Small Structures Associated With the Electrogeometric Model (EGM)", IEEE Transactions on Plasma Science, 2020

Publication

<1 %

79 "Green Buildings and Renewable Energy", Springer Science and Business Media LLC, 2020

Publication

<1 %

80

Mohsen Roshan, Aliyu Salisu Barau.
"Assessing Anidolic Daylighting System for
efficient daylight in open plan office in the
tropics", Journal of Building Engineering, 2016

<1 %

Publication

81

Schulte, Nico, Si Tan, and Akula Venkatram.
"The ratio of effective building height to
street width governs dispersion of local
vehicle emissions", Atmospheric Environment,
2015.

<1 %

Publication

82

Yaik-Wah Lim, C.Y.S. Heng. "Dynamic internal
light shelf for tropical daylighting in high-rise
office buildings", Building and Environment,
2016

<1 %

Publication

Exclude quotes

On

Exclude matches

Off

Exclude bibliography

On